Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/32596
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Xu, Jiaohui | - |
dc.contributor.author | Caraballo, Tomas | - |
dc.contributor.author | Valero, José | - |
dc.contributor.other | Departamentos de la UMH::Estadística, Matemáticas e Informática | es_ES |
dc.date.accessioned | 2024-07-22T10:20:12Z | - |
dc.date.available | 2024-07-22T10:20:12Z | - |
dc.date.created | 2023-12-20 | - |
dc.identifier.citation | Volume 89, article number 22, (2024) | es_ES |
dc.identifier.issn | 1432-0606 | - |
dc.identifier.issn | 0095-4616 | - |
dc.identifier.uri | https://hdl.handle.net/11000/32596 | - |
dc.description.abstract | A kind of nonlocal reaction-di¤usion equations on an unbounded domain containing a frac- tional Laplacian operator is analyzed. To be precise, we prove the convergence of solutions of the equation governed by the fractional Laplacian to the solutions of the classical equation governed by the standard Laplacian, when the fractional parameter grows to 1. The existence of global attractors is investigated as well. The novelty of this paper is concerned with the convergence of solutions when the fractional parameter varies, which, as far as the authors are aware, seems to be the rst result of this kind of problems in the literature. | es_ES |
dc.format | application/pdf | es_ES |
dc.format.extent | 30 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Plan S Approved | es_ES |
dc.rights | info:eu-repo/semantics/closedAccess | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Fractional Laplacian | es_ES |
dc.subject | Convergence of solutions | es_ES |
dc.subject | Global attractors | es_ES |
dc.subject | AMS subject classi cations | es_ES |
dc.subject | 35R11, 35A15, 35B41, 35K65 | es_ES |
dc.subject.other | CDU::5 - Ciencias puras y naturales::51 - Matemáticas | es_ES |
dc.title | On the limit of solutions for a reaction-di¤usion equation containing fractional Laplacians | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00245-023-10090-6 | es_ES |
Ver/Abrir:
375AMOrevised UMH.pdf
241,31 kB
Adobe PDF
Compartir:
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.