Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/32254
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGuerrero, César-
dc.contributor.authorWetterlind, Johanna-
dc.contributor.authorStenberg, Bo-
dc.contributor.authorMouazen, Abdul-
dc.contributor.authorGabarrón-Galeote, Miguel Ángel-
dc.contributor.authorRuiz Sinoga, José Damián-
dc.contributor.authorZornoza, Raul-
dc.contributor.authorVISCARRA ROSSEL, Raphael-
dc.contributor.otherDepartamentos de la UMH::Agroquímica y Medio Ambientees_ES
dc.date.accessioned2024-06-03T07:49:10Z-
dc.date.available2024-06-03T07:49:10Z-
dc.date.created2016-01-
dc.identifier.citationSoil and Tillage Research, Volume 155, January 2016, Pages 501-509es_ES
dc.identifier.issn1879-3444-
dc.identifier.issn0167-1987-
dc.identifier.urihttps://hdl.handle.net/11000/32254-
dc.description.abstractNear infrared (NIR) spectroscopy was used to predict the soil organic carbon (SOC) contents at local scale in eleven target sites. For that, eight spectral libraries of different sizes (ranging from 3482 to 36 samples) were used to construct national, provincial and local scale models. Inaccurate predictions were obtained except when the largest national library was used to construct the model. We also obtained SOC predictions once the models were adapted to target sites characteristics. For the models’ adaptation, we used a two-step approach consisting on spiking (as first step) and extra-weighting (as second step). The effect of spiking was small in larger-sized models and high in smaller-sized models, whereas the effect of extra-weighting was small in smaller-sized models and large in larger-sized models. The very high accuracy obtained after models’ adaptation (R2 > 0.95; RPIQ > 5.48), regardless of the size of the spectral library, suggests that large spectral libraries are not needed for local scale SOC assessment. These results have important implications regarding the way that NIR spectroscopy can result highly effective for land management and how users can focus and organize the analytical efforts.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent12es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNear infrared spectroscopyes_ES
dc.subjectSoil organic carbones_ES
dc.subjectSpikinges_ES
dc.subjectExtra-weightinges_ES
dc.subjectLocal-scalees_ES
dc.subjectDiffuse reflectance spectroscopyes_ES
dc.subject.otherCDU::5 - Ciencias puras y naturaleses_ES
dc.titleDo we really need large spectral libraries for local scale SOC assessment with NIR spectroscopy?es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.still.2015.07.008es_ES
Aparece en las colecciones:
Artículos Agroquímica y Medio Ambiente


Vista previa

Ver/Abrir:
 Cesar Guerrero Soil Till Res Special Issue_R1.pdf

1,29 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.