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Abstract 
Near infrared (NIR) spectroscopy was used to predict the soil organic carbon (SOC) 
contents at local scale in eleven target sites. For that, eight spectral libraries of different 
sizes (ranging from 3482 to 36 samples) were used to construct national, provincial and 
local scale models. Inaccurate predictions were obtained except when the largest national 
library was used to construct the model. We also obtained SOC predictions once the 
models were adapted to target sites characteristics. For the models' adaptation, we used a 
two–step approach consisting on spiking (as first step) and extra–weighting (as second 
step). The effect of spiking was small in larger–sized models and high in smaller–sized 
models, whereas the effect of extra–weighting was small in smaller–sized models and 
large in larger–sized models. The very high accuracy obtained after models' adaptation 
(R2>0.95; RPIQ>5.48), regardless of the size of the spectral library, suggests that large 
spectral libraries are not needed for local scale SOC assessment. These results have 
important implications regarding the way that NIR spectroscopy can result highly effective 
for land management and how users can focus and organize the analytical efforts.   
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1. Introduction 
The soil organic carbon (SOC) content is the most important factor affecting the presence, activity and 
characteristics of the soil microbial communities, plays a central role in soil quality, and due to global warming 
issues, there is an increasing interest in monitoring changes in SOC stocks. Due to the high spatial variability, a 
precise quantification of changes in SOC stocks requires large numbers of samples, otherwise the statistical 
robustness of comparisons would be constrained by large uncertainties, prone to lead to misleading conclusions 
(Mäkipää et al., 2008; Muukkonen et al., 2009). Therefore, fast, cheap and accurate methods should be 
preferentially used for SOC analysis, allowing the analysis of thousands of samples with limited budgets and 
efforts. The near infrared (NIR) reflectance spectroscopy is a technique which meets these characteristics. The 
NIR spectrum of a soil sample contains abundant information about physical, chemical and biological properties. 
However, due to the characteristics of the NIR spectra, multivariate models relating NIR spectra with the soil 
properties are needed to extract that information. Several reports show the capacity of the combined use of NIR 
spectroscopy and chemometrics to predict several soil properties, including SOC (eg. Stenberg et al., 2010). The 
models should contain spectra similar to those to be predicted, otherwise, the predictions cannot be expected to 
be accurate (Stenberg et al., 2010). Since the soils can be extremely different in composition and properties, 
there is a trend to develop large spectral libraries, in order to ensure that derived models contain similar 
samples to those to predict (Shepherd and Walsh, 2002; Nocita et al., 2014). However, the adequateness of large–
scale (regional, national, continental or global) models cannot be guaranteed when they are applied at local scale 
(Brown et al., 2005; Wetterlind and Stenberg, 2010; Guerrero et al., 2010; Kuang and Mouazen, 2013), especially 
for underrepresented soil types (Guerrero et al., 2014). In addition, the development of large spectral libraries 
requires huge efforts, being expensive, and the spectral measurements are dependent on the instrument and 
laboratory conditions (Ge et al., 2011). Moreover, the physical accessibility to the spectral libraries samples is 
sometimes restricted, making the development of calibration transfer difficult, and sometimes impractical or 
even impossible. These are serious limitations to the big potential of the technique, and frequently, new users 
decide to develop their own libraries and models, being a step which partially diminishes the NIR advantages.  
Recently, Guerrero et al. (2014) designed an approach to ensure the adequateness of models to new target sites. 
The approach was focused on the adaptation of models to the characteristics of the target site's samples. This 
targeting approach was based on spiking, which implies an analytical effort, since a spiking subset must be 
analyzed with the reference method. However, if the approach is used in combination with small–sized spectral 
libraries, then the overall analytical effort could be drastically reduced, since the development of large spectral 
libraries might be avoided. Thus, we question the actual necessity of that important effort. Therefore, we found it 
interesting to compare the accuracy obtained with that approach when applied to a wide range of spectral 
libraries of different sizes. In the present study, eight different–sized spectral libraries (ranging from 3482 to 36 
samples) have been considered, and the SOC contents have been predicted in 886 samples from eleven local 
target sites. The model's adaptation approach shown in Guerrero et al. (2014) essentially consists of two main 
steps: 1) spiking with representative samples, and 2) apply an extra–weight to the spiking subset. In order to 
show clearly the effects of both steps on prediction accuracy, the SOC contents were predicted using (i) unspiked 
models (UM), which were constructed only with the samples from the spectra libraries, (ii) spiked models (SM), 
and (iii) spiked models where the spiking subset was extra–weighted (EW). 
 
2. Material and Methods 
2.1. Spectral libraries 
Eight spectral libraries were selected (Table 1). Three spectral libraries (SL1, SL2 and SL3) contain soil samples 
collected at national scale (Spain), three spectral libraries (SL4, SL6 and SL8) contain soil samples collected at 
provincial scale (Alicante Province, in Spain), and two spectral libraries (SL5 and SL7) contain soil samples 
collected at local scale. The SL5 contains samples from an agricultural area (78 ha) located in Sjöstorp (Southern 
Sweden). The SL7 contains soil samples from a Pinus sylvestris L. forest (ca. 350 ha) located in Peñalén 
(Guadalajara, Spain). The SL1 was built with soil samples collected for different purposes during independent 
samplings, but also with soil samples which were exclusively collected for the development of a large and diverse 
soil spectral library. Therefore, a portion of the samples were randomly collected, while others were collected on 
the basis of spatial criterion and also to cover the most important (i.e., most abundant) lithologies, climatic 
conditions, vegetation types and land uses. The same procedures were followed for the development of the SL4. 
However, only the spatial criterion was used for the collection of samples comprising the local–scale libraries 
SL5 and SL7.    
2.2. Target sites 
A total of 974 topsoil samples were collected in eleven local target sites. Each target site is a relatively small area, 
ranging from several hectares to a few square kilometres. The target sites represent examples where a dense 
sampling was needed at local–scale, although for different purposes. Therefore, there was not a common 
sampling scheme. In some target sites, the samples were randomly collected, while in other sites the sampling 
was stratified, and in others regularly distributed in space (grid). Ten sites were located in Spain and one in 
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the UK. These sites were located, at least, at a distance larger than 20 kilometres from samples included in any of 
the spectral libraries. The pH of the soils included in the target sites ranged from acid to basic, and were 
developed over different parent materials, mostly sedimentary (including evaporitic) but also metamorphic 
rocks, and covering contrasted climatic conditions. Moreover, different land uses can be found in the target sites. 
The most important characteristics of these target sites are shown in Table 2. 
 

Table 1. Main characteristics of the spectral libraries (SL) 
   Soil organic carbon (g C kg-1) statistics 
 Scale / Country n Minimum Maximum Mean SDc Skewness Kurtosis 
SL1 National (Spain) 3482 0.19 144.9 18.9 23.8 2.55 6.42 
SL2a National (Spain) 1096 1.22 125.5 10.0 9.28 5.14 39.1 
SL3a National (Spain) 362 1.54 125.5 10.8 12.2 4.92 31.2 
SL4 Provincial (Alicante, Spain) 147 4.02 142.4 58.5 35.5 0.07 –1.08 
SL5 Local (Sjöstorp, Sweden) 123 12.0 33.8 18.0 4.66 1.74 2.70 
SL6b Provincial (Alicante, Spain) 73 4.48 142.4 60.9 35.8 0.12 –0.98 
SL7 Local (Peñalén, Spain) 40 13.6 102.1 41.1 16.6 1.02 2.45 
SL8b Provincial (Alicante, Spain) 36 8.33 142.4 60.6 35.5 0.36 –0.81 

a Randomly selected subsets of SL1 
b Randomly selected subsets of SL4 
c SD: standard deviation 
 
2.3. Models types 
In all cases, the models relating SOC with NIR spectra were constructed with partial least squares regression as 
multivariate method, using the OPUS software (version 6.5; BrukerOptik GmbH, Ettlingen, Germany). The three 
types of models were constructed as follows: 
i. Unspiked model (UM): one model was obtained from each of the eight spectral libraries. Thus, eight UM were 
obtained. These models were constructed using only samples from the specific spectral library (Appendix A). 
The spectra were preprocessed by the first derivative, and cross validation (leave–one–out) was used to select 
the number of PLS–vectors (or rank), based on the root mean square error of cross validation (RMSECV) 
changes, observed in a scree-plot.  
ii. Spiked model (SM): these models were constructed with samples from the specific spectral library and a 
spiking subset, which consisted of eight local samples from the target site. The spiked models were unique for 
each target site (Appendix A). Since we have eight spectral libraries and eleven target sites, then, a total of 88 SM 
were calibrated. For the selection of the spiking subset of a target site, a principal component analysis (PCA) was 
performed with the NIR spectra of the target site samples. Then, the Kennard–Stone algorithm (Kennard and 
Stone, 1969) was used to select eight local samples whose scores were evenly distributed across the space 
defined by the first three PCs (Guerrero et al., 2014). A different PCA was performed separately for each target 
site. In this case the model’s rank was set to the same number as in the corresponding UM (i.e., all the spiked 
models derived from the same SL had the same rank). 
iii. Spiked model where the spiking subset was extra–weighted (EW): in each of the 88 above–described SM, the 
spiking subset was extra–weighted; next, the model was recalibrated. For extra–weighting, the ‘statistical’ weight 
of the spiking subset was increased 'n' times, being 'n' the ratio between the size of the spectral library and the 
spiking subset. The extra–weight was achieved adding ‘n’ copies of the spiking subset (Guerrero et al., 2014). The 
rank of these models was set to the same as in the corresponding SM. Thus, all the models derived from the same 
SL (regardless their type) had the same rank. 

 
2.4. Predictions 
In each of the local target sites, the SOC contents were predicted with the different models (UM, SM and EW) 
derived from SL1. Then, the predictions of the eleven target sites obtained with the same model type (UM, SM or 
EW) were pooled together, and the determination coefficient (R2), RMSEP (RMSE of prediction), standard error 
of prediction (SEP), bias, ratio of performance to deviation (RPD) and ratio of performance to interquartile range 
(RPIQ) (Bellón-Maurel et al., 2010) were computed. Prior the computation of the above mentioned prediction 
performance parameters, the 88 samples used as spiking subsets were excluded. So, the prediction performance 
parameters were computed using 886 samples (974–88=886) from the eleven target sites. The same steps were 
followed with predictions obtained with UM, SM and EW models derived from the SL2, SL3, etc. A full description 
of models used in each target site is shown in the supplementary material (Appendix A). 
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Table 2. Main characteristics of each target site (TS) 
 

Code Site 
(Province/Country) UTM a Land useb Parent material Elevation 

(m a.s.l.) 
Temp. 

(ºC) 
Rainfall 

(mm) 
Soil organic carbon (g C kg-1) statisticsc 

n Min Max Mean SD Skew Kurt 

TS1 Anna 
(Valencia/Spain) 30SYJ0121 A, F Limestone 190 16.9 425 121 6.9 22.7 12.8 2.30 0.79 2.59 

TS2 Sª Maigmó 
(Alicante/Spain) 30SYH0664 A, F Marls 975 15.9 341 130 4.8 144.9 56.6 39.4 0.14 –1.06 

TS3 Ricote 
(Murcia/Spain) 30SXH4022 S, F Limestone & 

sandstone 310 16.5 330 155 28.8 141.5 65.3 25.5 0.53 –0.40 

TS4 Sax 
(Alicante/Spain) 30SXH9067 F Gypsum 470 16.1 315 95 4.6 40.3 18.0 7.1 0.89 1.11 

TS5 Gérgal 
(Almería/Spain) 30SWG4210 S Mica schist 1130 13.9 240 60 0.7 67.0 12.3 10.5 2.85 10.6 

TS6 San Clemente 
(Cuenca/Spain) 30SWJ4864 A, S, F Dolomite 695 14.3 450 55 5.7 72.8 17.5 11.3 2.39 8.30 

TS7 Amusco 
(Palencia/Spain) 30TUM8171 A Silt/clay & marls 710 12.5 500 56 3.5 43.0 12.0 7.78 1.97 4.07 

TS8 Migueláñez 
(Segovia/Spain) 30TUL8649 A Schists 900 11.2 550 55 2.8 27.4 8.1 4.22 1.94 5.81 

TS9 Riello 
(León/Spain) 30TTN5541 F Quartzite & 

gneiss 1140 9.8 1100 55 21.9 79.6 49.4 11.7 –0.20 0.12 

TS10 Sª Orihuela 
(Alicante/Spain) 30SXH7920 A, F Calcareous 200 18.1 295 88 3.2 78.1 28.6 18.0 0.28 –0.71 

TS11 Silsoe 
(Bedfordshire/UK) 

30UXC7765 
 A Mudstone 64 9.9 594 104 12.1 34.1 22.0 5.9 0.14 –1.35 

 ALL 974 0.7 144.9 3.41 31.2 1.31 0.94 
 Without Spiking Subsets 886 0.7 141.5 3.47 31.5 1.25 0.72 

 
a UTM coordinates (at 1 km2 resolution)  
b Land use: Agriculture (A), Forest (F), Shrubland (S)  
c Min: minimum; Max: maximum; SD: standard deviation; Skew: Skewness; Kurt: Kurtosis 
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2.5. Laboratory analysis  
All the analyses were carried out on air–dried and sieved (<2mm) samples. The SOC content (g C kg-1) was 
analyzed with the Walkley–Black method, except the samples from Sweden and UK, where the loss on 
ignition (LOI) method was used. The diffuse reflectance NIR spectra of the Swedish samples were obtained 
with an ASD FieldSpec Pro Fr (ASD, Boulder, CO, USA) between 350 nm and 2500 nm. The samples from 
Spain and UK were scanned in a FT–NIR spectrophotometer (MPA, Bruker Optik GmbH, Ettlingen, Germany). 
The x–scale of the FT–NIR spectra was transformed from wavenumbers to wavelengths (834 nm to 2632 nm) 
and all the spectra were resampled to 1 nm. Both instruments share the spectral range comprised between 
834 to 2500 nm, which was the range used when data from both instruments were needed.  
 
3. Results and discussion 
3.1. Predictions obtained with unspiked models 
Predictions obtained with the unspiked models are shown in Figure 1 (left panels). In general, large errors 
were observed, except when the model was constructed with the spectral library SL1 (Fig. 1a), which is the 
largest–sized library. The RMSEP obtained with this model was 9.9 g C kg-1, which corresponds with a RPD 
and a RPIQ of 3.17 and 4.08 respectively (Fig. 2). This RMSEP is slightly lower than the expected by the 
relationship observed between RMSEP and SD (Stenberg et al., 2010; Araújo et al., 2014). The unspiked 
models constructed with the other national–scale libraries (SL2 and SL3) were unable to predict the SOC with 
acceptable accuracy (Figs. 1d and 1g), being the RPD values below 1.59, mostly due to large bias (Fig 2), 
despite of high R2 values (>0.81). The SOC predictions obtained with models constructed with the local–scale 
spectral libraries SL5 and SL7 were inaccurate (Figs. 1m and 1s). This result was expected because these 
small local–scale libraries did not contain samples with similar characteristics to those found in the target 
sites (Brown et al., 2005; Waiser et al., 2007). The spectral library SL5 only contains samples from an 
agricultural area located in Sjöstorp (Sweden), and the spectral library SL7 only contains soil samples from a 
forest located in Peñalén (Guadalajara, Spain), whereas the target sites are located in other provinces of Spain 
and UK, where the lithologies (parent material), climate, vegetation type, land use and soil type were 
different. The use of a different instrument can also contribute to explain the large errors obtained with the 
model derived from the Swedish library (SL5). The predictions obtained with the models derived from the 
provincial libraries SL4, SL6 and SL8 (Figs. 1j, 1p, 1v) were not accurate. This was also expected because most 
of the target sites were not located in that province. However, large errors were also obtained in soil samples 
from a target site which was located within that province. This is the case of the target site TS4, which is an 
area with gypsiferous soils. This soil type is underrepresented in that provincial spectral library, since 
gypsiferous soils only cover 4.9% of the total area in that province. The result indicates that location within 
the library’s geographical limits per se is not a guarantee to obtain accurate predictions when downscaling 
(Sudduth and Hummel, 1996; Gogé et al. 2012; Kuang and Mouazen, 2013). The less abundant soil types 
would be underrepresented in the spectral library, especially when systematic sampling is used to construct 
the spectral library. The underrepresentation could be smaller if a stratified sampling is used to generate the 
library. However, it is almost unknown how to define or identify the strata to be sampled (Gogé et al. 2012; 
Grinand et al., 2012; Peng et al., 2013; Araújo et al., 2014; Shi et al., 2014). In general, these results were in 
agreement with those from Shepherd and Walsh (2002), who suggested the need of large spectral libraries 
for the construction of accurate models. 
3.2. Predictions obtained with spiked models 
As expected, the predictions obtained with the spiked models (Fig. 1, central panels) were more accurate than 
those obtained with the unspiked models (Fig. 1, left panels). Spiking ensures that the model contains 
samples with similar characteristics to those from the target site (McCarty and Reeves, 2001; Guerrero et al., 
2010; Wetterlind and Stenberg, 2010). However, the magnitude of the improvement was inversely related 
with the size of the spectral library (Figs. 2 and 3). The higher the model’s size was, the lower the impact of 
the spiking subset (~dilution). Indeed, the SOC predictions obtained before (UM) and after spiking (SM) the 
biggest–sized model were highly correlated (Pearson’s r = 0.998; slope = 1.005; data not shown), indicating a 
very small effect due to spiking. On the other hand, the spiking effect on models derived from small–sized 
libraries was very high, since the eight samples added (i.e., spiking subset) represented a considerable 
proportion in the spiked model. As consequence, the predictions were drastically improved (Figs. 1 and 2). 
For example, when the model constructed with the Swedish local–scale library (SL5) was spiked, the 
prediction R2 raised from 0.04 (Fig. 1m) to 0.94 (Fig. 1n), and the RPIQ increased in more than 4.8 units, 
reaching a value of 5.3 (Fig. 2). Similar improvements were observed on the other local–scale library (SL7; 
Fig. 1t), allowing to RPIQ to reach a value of 5.7 (Fig. 2). It is worth highlighting that, after spiking, the most 
accurate predictions were obtained with the models derived from the smaller–size libraries (Fig. 2).  
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Figure 1. Scatter plots of predicted vs. measured soil organic carbon (SOC) contents in the 886 samples collected in 
eleven target sites. Panels on left: predictions obtained with unspiked models (UM). Central panels: predictions obtained 
with spiked models (SM). Panels on right: predictions obtained with spiked models where the spiking subset was extra–
weighted (EW). Predictions obtained with models derived from the same spectral library (SL) are shown in the same row. 
The identification of the spectral library used is shown in brackets in each panel. The root mean square error of 
prediction (RMSEP) is given as g C kg-1. 
 
3.3. Predictions obtained with spiked models where the spiking subset was extra–weighted 
The accuracy of the SOC predictions was additionally improved when the spiking subset was extra–weighted 
(Fig. 1, panels on right). All the predictions obtained were very accurate, regardless of the size of the spectral 
library (Fig. 2). The results clearly indicated the need to extra–weight the spiking subset when medium– and 
large–sized models are spiked (Fig. 3). The impact of the spiking subset is ‘diluted’ on large–sized models, but 
extra–weighting counterbalances the dilution effect. When the spiking subset is extra–weighted, the model is 
forced to fit preferentially to these samples. The spiking subset is composed by representative samples of the 
target site; consequently, the targeted or adapted model can provide accurate predictions for the rest of 
samples from that target site. Despite of the small effect of extra–weighting on small–sized models (Fig. 3), it 
is always recommended because it caused an additional improvement in the accuracy of the SOC predictions, 
and it does not imply any additional analytical effort respect to spiking. Indeed, the most accurate predictions 
were obtained when the adaptation approach was applied to the smallest–sized library (Figs. 2 and 3).  
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Figure 1. (continued) 

 
3.4. Advantages of the model's adaptation by the extra-weighted spiking approach 
The adaptation approach overcomes a number of potential limitations related with the applicability and use 
of models. First, it allows the use of provincial and national models to predict at local scale (i.e., 
'downscaling') without bias, even in those sites with soils underrepresented in the spectral library. Secondly, 
when the approach was tested on the provincial libraries, the results indicated that the approach increased 
the model’s geographical limits, allowing the successful downscaling to sites located outside the library's 
geographical limits. Furthermore, the approach also allows the model transfer to other sites, regardless if 
they were located in different provinces, or even in different countries. This is clearly shown when local–scale 
models were used (i.e., those derived from SL5 and SL7). The samples used in local–scale models and samples 
from target sites were differing in a wide range of characteristics: parent material, soil type, land use, climatic 
conditions and organic carbon contents. In addition, the spectra from the local–scale model derived from 
library SL5 were obtained with a different instrument than that used to scan the samples from the target 
sites. Summarizing, the approach allows the model's transferability to a wide range of conditions. Thirdly, the 
approach requires fewer efforts than the development of large spectral libraries, despite the need to make 
reference analyses on the spiking subset for each new target site considered. In this study, a total of 88 local 
samples were needed to spike the models (8 local samples × 11 target sites) with a very high accuracy.  
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Figure 2. Values of the coefficient of determination (R2), root mean square error of prediction (RMSEP), bias and ratio of 
performance to interquartile range (RPIQ) of predictions shown in Figure 1. White, grey and black symbols denote, 
respectively, predictions obtained with unspiked models (UM), spiked models (SM) and spiked models where the spiking 
subset was extra–weighted (EW). Squares, circles and triangles were used for national, provincial and local–scale spectral 
libraries (SL), respectively.   
 
This small analytical effort was enough to predict the SOC in 886 samples (or 974 samples if we consider also 
the spiking subsets). The reference analysis of 88 samples (as spiking subsets) represents ca. ~10% of the 
total samples to be measured (974). When the smallest library was used (36 samples), the total number of 
samples analyzed with the reference method was only 124 samples (36+88). This number represents 20 
times less effort than the needed for the development of the largest spectral library, composed by 3482 
samples. In addition to the analytical efforts, the predictions obtained with the unspiked model derived from 
the largest SL (Figure 1a) were less accurate than the obtained with the extra–weighted spiked model derived 
from the smallest SL (Figure 1x). In comparison with the analytical efforts needed for the development of a 
national spectral library, composed by 3482 samples, our approach would allow the evaluation of more than 
400 target sites, assuming that 8 local samples would be needed as spiking subset in each target site, and 
using a small–sized model of ~100 samples. For this reason, this approach is adequate for those studies were 
abundant and repeated measurements of SOC are needed at fine spatial resolution. Some examples of this 
type of studies are those needed to monitor changes in SOC stocks as consequence of land use conversions, 
agricultural and forest management, or those related with climatic change, where hundreds of SOC 
measurements per site are periodically needed. In addition, this type of studies implies replications in 
different sites. Therefore, an intensive monitoring in more than 400 target sites can provide a realistic view of 
changes in SOC stocks, especially if these monitoring sites are covering a wide range of representative units 
(ecosystems, land uses, etc.) across a country. Thus, once a small spectral library is available, this approach 
requires fewer samples with reference analysis than other approaches (Wetterlind et al., 2008, 2010; 
Mahmood et al., 2013; Debaene et al., 2014; Gogé et al., 2014; Ramirez–López et al., 2014). In this way, new 
NIR users would start to estimate SOC at local scale with simple and austere libraries. After the evaluation of 
several target sites, the spiking subsets can be added to the library for further development. In this way the 
creation of the spectral library is a dynamic process, but never a limiting issue. Once a library is large enough, 
other approaches can be followed, such the LOCAL ones (Gogé et al., 2012; Ramirez–López et al., 2013; 
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Nocita et al., 2014), where a large spectral library is needed. The LOCAL approach frequently outperforms the 
predictions obtained with a global approach (i.e., using a unique model from the whole spectral library) 
(Genot et al., 2011; Rabenarivo et al., 2013; Gogé et al., 2014). However, the predictions obtained with EW 
models are more accurate than those reported by other authors using the LOCAL approach, as Gogé et al. 
(2012, 2014), or Nocita et al. (2014) who used a very large European spectral library composed by ca. 
~20000 samples (LUCAS database).  
 

 

 
 
 
 
 
 
 
 
Figure 3. Values of ratio of performance to 
deviation (RPD) obtained in predictions 
shown in Figure 1. Data are not stacked.  
 

 
Nevertheless, we consider unfair a simple comparison of RMSEP values with those reported in literature, 
especially with those studies where the ranges of the predicted variable are considerably different. The 
reason is that RMSEP values are affected by the range included (Bellon–Maurel et al., 2010; Kuang and 
Mouazen, 2011). This can be easily observed in the right part of Figure 4, where ranges were successively 
increased in a cumulative way, resulting in RMSEP values affected by the range. Probably the fairest 
comparison of models' accuracies is by comparing RMSEP values at fixed small intervals (classes) of the 
predicted variable (i.e., at specific ranges of SOC concentrations). Even a unique number cannot be used to 
summarize the overall accuracy, this is probably the unique useful way to provide RMSEP for further 
comparisons with other studies having different ranges of the target variable. These classes should be short 
(around 10 or 20 g C kg-1 SOC classes) otherwise the relative RMSEP will be influenced by the range. 
Nevertheless, excessively short classes are not advised, otherwise the number of observations per class can 
be low and scarcely informative. This would help to make fairer comparisons of the accuracy obtained by 
other researchers using different approaches, other algorithms, different spectral ranges, other instruments, 
etc. since it is practically improbable that other researchers will be using prediction sets with the same range. 
Fortunately, Nocita et al. (2014) used a LOCAL approach and provided the RMSEP values at arbitrary 15 g C 
kg-1 SOC classes. Concretely, they expressed these data as relative RMSEP values, just as percentage of the 
mean SOC of the class. Our relative RMSEP values (at 15 g C kg-1 SOC classes) obtained with the EW models 
derived from the smallest spectral library (SL8) were lower than those provided by Nocita et al. (2014) (Fig. 
4). Thus, it is not reasonable to expect that the LOCAL approach will outperform the extra–weighting 
approach for local–scale SOC predictions. However, this should be confirmed in future studies. 
The use of small libraries includes additional advantages, since the quality of the reference data of samples 
used for model’s construction can be increased, because several analytical replicates can be afforded, which 
might be prohibitive if the size of the spectral library is large. Additionally, it minimizes the use of legacy 
samples and archived collections, which samples properties might have been affected by the storage and can 
contain errors in labels (the larger the library the higher the chance to contain errors). Moreover, the analysis 
of samples comprising large archives might have been carried out by different analysts, and probably also 
using different reference methods. All these sources of errors associated with large spectral libraries can 
negatively affect the models’ prediction quality. However, this can be easily avoided in small–sized libraries. 
Furthermore, the use of small libraries may promote the sharing of analyzed samples among different NIR 
users.  
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Figure 4. Values of the root mean 
square error of prediction (RMSEP) 
calculated at arbitrary classes of soil 
organic carbon (SOC). Grey bars 
denote values of RMSEP (g C kg-1) 
obtained in each class (left axis). 
Black dots denote values of RMSEP 
expressed as percentage of the 
central value of the class (relative 
RMSEP) (right axis). Results shown in 
this figure correspond to data shown 
in Figure 1x. 

 
It is important to mention that we are not in opposition with the development of large–sized spectral 
libraries, which are undoubtedly useful in soil science, especially for mapping purposes (Viscarra Rossel and 
Webster, 2012; Viscarra Rossel et al., 2014). However, large–spectral libraries are less effective for highly 
precise quantitative analysis of soil properties at local–scale, where the use of small–sized libraries adapted 
(or targeted) to the target site is clearly a more competitive approach. The adaptation approach always 
guarantees that the models contain relevant information of the target site, since the model is targeted. Thus, 
there are clear indicators that large spectral libraries are not needed for the assessment of SOC at local scale. 
However, this approach is not valid for other scales, where a unique sample is collected at each target site or 
the sampling density is very low, although these scenarios are not the ones where the NIR spectroscopy 
presents advantages. Large scale maps are useful to establish policies for land use and management. Even so, 
the implementation of policies and proper land use and management decisions require small scale (fine 
spatial resolution) maps. The development of smaller scale maps implies soil analysis in large number of 
samples collected at local scale, where the budget for that purposes is usually low. Therefore, NIR 
spectroscopy, as fast and cheap method, has an important role at that scale.       
4. Conclusions 
Models derived from very small–sized spectral libraries can provide accurate SOC predictions once they have 
been adapted to target site's characteristics, outperforming those predictions obtained with a model derived 
from a large spectral library. The results suggest that large spectral libraries might not be needed for local 
scale SOC assessment with NIR spectroscopy. The model adaptation approach does not allow the total 
replacement of the reference method. Even considering this disadvantage, the adaptation approach requires 
small efforts. The combined use of the adaptation approach and small–sized spectral libraries can increase 
the effectiveness of the NIR spectroscopy as rapid and cheap tool for proper land management.      
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