Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/31586
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoler, F. J.-
dc.contributor.authorPeidro, Adrian-
dc.contributor.authorFabregat Jaén, Marc-
dc.contributor.authorPaya, Luis-
dc.contributor.authorReinoso, Oscar-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Sistemas y Automáticaes_ES
dc.date.accessioned2024-02-28T11:55:34Z-
dc.date.available2024-02-28T11:55:34Z-
dc.date.created2023-09-
dc.identifier.isbn978‐84‐9749‐860‐9-
dc.identifier.urihttps://hdl.handle.net/11000/31586-
dc.description.abstractThis article aims to compare our previous work on segmentation of reticular structures with neural networks against an ad hoc algorithm for the same purpose. Nowadays neural networks or artificial intelligence are widely used concepts synonymous with advances and improvements, but in certain cases it is possible to use more classical techniques, outside the paradigm of artificial intelligence to achieve the same type of tasks with similar results. To corroborate last mention, in this article we perform a quantitative and qualitative comparative analysis between an ad hoc algorithm and the best neural network model in our latest work for segmenting reticular structures. Conventional methods such as Random Sample Consensus (RANSAC) and region growing are used to implement the algorithm. Standardised metrics such as precision, recall and f1-score are used for quantitative comparison. The latter will be calculated on a proprietary dataset, consisting of a thousand point clouds automatically generated in previous work. The algorithm in question is designed specifically for such a databasees_ES
dc.formatapplication/pdfes_ES
dc.format.extent9es_ES
dc.language.isospaes_ES
dc.publisherUNIVERSIDAD DE ZARAGOZA ESCUELA DE INGENIERÍA Y ARQUITECTURAes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectRegion Growinges_ES
dc.subjectRANSACes_ES
dc.subjectPlane Segmentationes_ES
dc.subjectNeural Networkses_ES
dc.subjectPoint Cloudses_ES
dc.subjectClimbing Robotses_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleAnálisis comparativo de técnicas de segmentación de estructuras reticulareses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.17979/spudc.9788497498609es_ES
Appears in Collections:
Artículos Ingeniería de Sistemas y Automática


Thumbnail

View/Open:
 8-2023-JAutomaticaAnalisisComparativo (1).pdf

771,55 kB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???