Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/31574

Computing the Traversability of the Environment by Means of Sparse Convolutional 3D Neural Networks


Vista previa

Ver/Abrir:
 3-2023_ICINCO_Traversability_A_Santo (1).pdf

3,25 MB
Adobe PDF
Compartir:
Título :
Computing the Traversability of the Environment by Means of Sparse Convolutional 3D Neural Networks
Autor :
Santo López, Antonio  
Gil, Arturo  
Valiente, David
Ballesta, Mónica
Peidro, Adrian  
Editor :
INSTICC - Institute for Systems and Technologies of Information, Control and Communication
Departamento:
Departamentos de la UMH::Ingeniería de Sistemas y Automática
Fecha de publicación:
2023-11
URI :
https://hdl.handle.net/11000/31574
Resumen :
The correct assessment of the environment in terms of traversability is strictly necessary during the navigation task in autonomous mobile robots. In particular, navigating along unknown, natural and unstructured environments requires techniques to select which areas can be traversed by the robot. In order to increase the autonomy of the system’s decisions, this paper proposes a method for the evaluation of 3D point clouds obtained by a LiDAR sensor in order to obtain the transitable areas, both in road and natural environments. Specifically, a trained sparse encoder-decoder configuration with rotation invariant features is proposed to replicate the input data by associating to each point the learned traversability features. Experimental results show the robustness and effectiveness of the proposed method in outdoor environments, improving the results of other approaches.
Palabras clave/Materias:
Autonomous Mobile Robots
Artificial Intelligence
Neural Networks
Sparse Convolution
Point Clouds
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
DOI :
https://doi.org/10.5220/0000168300003543
Aparece en las colecciones:
Artículos Ingeniería de Sistemas y Automática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.