Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/31573
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSoler Gil, Francisco José-
dc.contributor.authorJiménez, Luis M.-
dc.contributor.authorValiente, David-
dc.contributor.authorPaya, Luis-
dc.contributor.authorReinoso, Oscar-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Sistemas y Automáticaes_ES
dc.date.accessioned2024-02-28T11:27:08Z-
dc.date.available2024-02-28T11:27:08Z-
dc.date.created2023-11-
dc.identifier.citationProceedings of the 20th International Conference on Informatics in Control, Automation and Robotics - (Volume 1)es_ES
dc.identifier.isbn978-989-758-670-5-
dc.identifier.issn2184-2809-
dc.identifier.urihttps://hdl.handle.net/11000/31573-
dc.description.abstractNowadays neural networks are widely used for segmentation tasks and there is a belief that these approaches are synonymous of advances and improvements. This article aims to compare the performance of a neural network, trained in our previous work, and an algorithm which is specifically designed for the segmentation of reticular structures. As shown in this paper, in certain cases it is feasible to use conventional techniques outside the paradigm of artificial intelligence achieving the same performance. To prove this, in this article a quantitative and qualitative comparative analysis is carried out between an ad hoc algorithm for segmenting reticular structures and the model of neural network that provided the best results in our previous work in this task. Established techniques such as Random Sample Consensus (RANSAC) and region growing have been used to implement the proposed algorithm. For the quantitative analysis, standard metrics such as precision, recall and f1-score are used. These metrics will be calculated with a self-generated dataset, consisting of a thousand point clouds that were generated automatically in the previous work. The studied algorithm is tailor-made for this database. For reproducibility, code and datasets are provided at https://github.com/Urwik/ rrss grnd filter.git.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent31es_ES
dc.language.isoenges_ES
dc.publisherINSTICC - Institute for Systems and Technologies of Information, Control and Communicationes_ES
dc.relation.ispartofProceedings of the 20th International Conference on Informatics in Control, Automation and Robotics Volume 1es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPlane Segmentationes_ES
dc.subjectPoint Cloudses_ES
dc.subjectRegion Growinges_ES
dc.subjectRANSACes_ES
dc.subjectNeural Networkses_ES
dc.subjectClimbing Robotses_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleComparative Analysis of Segmentation Techniques for Reticular Structureses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.5220/0000168300003543es_ES
Aparece en las colecciones:
Artículos Ingeniería de Sistemas y Automática


Vista previa

Ver/Abrir:
 2023_ICINCO_Estructuras (2) (1)-222.pdf

9,33 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.