Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/31368
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorThandavarayan, Gokulnath-
dc.contributor.authorSepulcre, Miguel-
dc.contributor.authorGozalvez, Javier-
dc.contributor.authorColl-Perales, Baldomero-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Comunicacioneses_ES
dc.date.accessioned2024-02-09T11:07:38Z-
dc.date.available2024-02-09T11:07:38Z-
dc.date.created2023-07-
dc.identifier.citationJournal of Network and Computer Applications Volume 216, July 2023,es_ES
dc.identifier.issn1095-8592-
dc.identifier.issn1084-8045-
dc.identifier.urihttps://hdl.handle.net/11000/31368-
dc.description.abstractCooperative perception (a.k.a. Collective perception or cooperative sensing) will allow Connected and Automated Vehicles (CAVs) to share information about detected objects. Cooperative perception improves the sensing accuracy, confidence and range of CAVs, and extends their perception of the driving environment. First message generation rules based on the mobility and dynamics of detected objects have been proposed to decide when a cooperative perception message should be generated and what information it should include. Studies have shown that this type of generation rules can compromise the scalability of cooperative perception and vehicular networks, as they tend to transmit significant amounts of redundant information and generate small and frequent cooperative perception messages that increase the communications overhead. To combat these inefficiencies, this paper proposes and evaluates three techniques that combine, for the first time, baseline mobility-based generation rules for cooperative perception messages with mechanisms to control the redundancy and organize the information about detected objects in order to avoid the frequent transmission of small messages. This study demonstrates that the proposed techniques improve the perception of CAVs and reduce the information age. In addition, the techniques reduce the channel load and improve the scalability of cooperative perception services and vehicular networks. The study demonstrates that the most effective technique is based on: (1) first applying the generation rules to decide whether a cooperative perception message should be generated, (2) then applying redundancy control, and finally (3) organizing the information about all detected objects to avoid small and frequent messageses_ES
dc.formatapplication/pdfes_ES
dc.format.extent14es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCooperative perceptiones_ES
dc.subjectCollective perceptiones_ES
dc.subjectCooperative sensinges_ES
dc.subjectCPSes_ES
dc.subjectCPMes_ES
dc.subjectConnected automated vehicleses_ES
dc.subjectAutonomous vehicleses_ES
dc.subjectCAVes_ES
dc.subjectRSUes_ES
dc.subjectV2Xes_ES
dc.subjectVehicular networkses_ES
dc.subjectCongestion controles_ES
dc.subjectRedundancy mitigationes_ES
dc.subjectC-ITSes_ES
dc.subjectDCCes_ES
dc.subjectETSIes_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleScalable cooperative perception for connected and automated drivinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.jnca.2023.103655es_ES
Aparece en las colecciones:
Artículos Ingeniería Comunicaciones


Vista previa

Ver/Abrir:
 Scalable cooperative perception for connected and automated driving (1).pdf

3,46 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.