Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/30981

Comparison of Short-Term Load Forecasting Performance by Neural Network and Autoregressive Based Models

Título :
Comparison of Short-Term Load Forecasting Performance by Neural Network and Autoregressive Based Models
Autor :
López, Miguel
VALERO, SERGIO  
Senabre, Carolina
Gabaldon, Antonio  
Editor :
Institute of Electrical and Electronics Engineers
Departamento:
Departamentos de la UMH::Ingeniería Mecánica y Energía
Fecha de publicación:
2018-06-27
URI :
https://hdl.handle.net/11000/30981
Resumen :
In the past decade, many techniques ranging from statistical methods to complex artificial intelligence systems have been proposed by implementing their application to an electric system and highlighting its performance; usually providing a measure of accuracy like RMSE over a definite period. Howe...  Ver más
Palabras clave/Materias:
autoregressive processes
demand forecasting
neural networks
power demand
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/other
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1109/EEM.2018.8469797
Nombre Congreso:
2018 15th International Conference on the European Energy Market (EEM)
Aparece en las colecciones:
Congresos, ponencias y comunicaciones



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.