Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/30900

Accumulation of partly folded states in the equilibrium unfolding of the pneumococcal choline-binding module C-C-LytA

Title:
Accumulation of partly folded states in the equilibrium unfolding of the pneumococcal choline-binding module C-C-LytA
Authors:
Maestro García-Donas, Beatriz
Sanz, Jesús M.
Editor:
Biochemical Society
Issue Date:
2005
URI:
https://hdl.handle.net/11000/30900
Abstract:
Choline-binding modules are present in some virulence factors and many other proteins of Streptococcus pneumoniae (Pneumo coccus). The most extensively studied choline-binding module is C-LytA, the C-terminal moiety of the pneumococcal cell-wall amidase LytA. The three-dimensional structure of C-LytA is built up from six loop-hairpin structures forming a left-handed β solenoid with four choline-binding sites. The affinity of C-LytA for choline and other structural analogues allows its use as an efficient fusion tag for single-step purification of hybrid proteins. In the present study, we characterize the folding and stability of C-LytA by chemical and thermal equilibrium denaturation ex periments. Unfolding experiments using guanidinium chloride at pH 7.0 and 20 ◦ C suggest the existence of two partly folded states (I1 and I2) in the following model: N (native)→I1←→ I2. The N→I1 transition is non-co-operative and irreversible, and is signi ficant even in the absence of a denaturant. In contrast, the I1 ←→ 2transition is co-operative and reversible, with an associated freeenergy change ( G0) of 30.9+− 0.8 kJ · mol−1. The residual structure in the I2 state is unusually stable even in 7.4 M guanidinium chloride. Binding of choline stabilizes the structure of the native state, induces its dimerization and prevents the accumulation of the I1 species ([N]2 [I2]2, G0 =50.1+− 0.8 kJ · mol−1). Fluorescence andCDmeasurements, gel-filtration chromatography and limited proteolysis suggest that I1 differs from N in the local unfolding of the N-terminal β-hairpins, and that I2 has a residual structure in the C-terminal region. Thermal denaturation of C-LytA suggests the accumulation of at least the I1 species. These results might pave the way for an effective improvement of its biotechnological applications by protein engineering.
Keywords/Subjects:
affinity tag
choline-binding module
C-LytA
partly folded state
protein folding
β-solenoid
Type of document:
application/pdf
Access rights:
info:eu-repo/semantics/openAccess
DOI:
https://doi.org/10.1042/BJ20041194
Appears in Collections:
Instituto de Bioingeniería



Creative Commons ???jsp.display-item.text9???