Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/30796

Spatio-temporal modeling of infectious diseases by integrating compartment and point process models


no-thumbnailVer/Abrir:

 2022 Ribeiro et al - Spatio-temporal modeling of infectious diseases by integrating.pdf



2,14 MB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Spatio-temporal modeling of infectious diseases by integrating compartment and point process models
Autor :
Ribeiro Amaral, André Victor
González, Jonatan A.  
Moraga, Paula
Editor :
Springer
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2022-12-13
URI :
https://hdl.handle.net/11000/30796
Resumen :
Infectious disease modeling plays an important role in understanding disease spreading dynamics and can be used for prevention and control. The well-known SIR (Susceptible, Infected, and Recovered) compartment model and spatial and spatio-temporal statistical models are common choices for studying problems of this kind. This paper proposes a spatio-temporal modeling framework to characterize infectious disease dynamics by integrating the SIR compartment and log-Gaussian Cox process (LGCP) models. The method’s performance is assessed via simulation using a combination of real and synthetic data for a region in São Paulo, Brazil. We also apply our modeling approach to analyze COVID-19 dynamics in Cali, Colombia. The results show that our modified LGCP model, which takes advantage of information obtained from the previous SIR modeling step, leads to a better forecasting performance than equivalent models that do not do that. Finally, the proposed method also allows the incorporation of age-stratified contact information, which provides valuable decision-making insights.
Palabras clave/Materias:
Compartment SIR model
Infectious diseases
Log-Gaussian Cox process
Spatial point process
Spatio-temporal modeling
Área de conocimiento :
CDU: Ciencias sociales: Demografía. Sociología. Estadística: Estadística
Tipo documento :
application/pdf
Derechos de acceso:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1007/s00477-022-02354-4
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.