Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/30796
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRibeiro Amaral, André Victor-
dc.contributor.authorGonzález, Jonatan A.-
dc.contributor.authorMoraga, Paula-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2024-01-26T22:28:33Z-
dc.date.available2024-01-26T22:28:33Z-
dc.date.created2022-12-13-
dc.identifier.citationStochastic Environmental Research and Risk Assessment (2023) 37:1519–1533es_ES
dc.identifier.issn1436-3259-
dc.identifier.issn1436-3240-
dc.identifier.urihttps://hdl.handle.net/11000/30796-
dc.description.abstractInfectious disease modeling plays an important role in understanding disease spreading dynamics and can be used for prevention and control. The well-known SIR (Susceptible, Infected, and Recovered) compartment model and spatial and spatio-temporal statistical models are common choices for studying problems of this kind. This paper proposes a spatio-temporal modeling framework to characterize infectious disease dynamics by integrating the SIR compartment and log-Gaussian Cox process (LGCP) models. The method’s performance is assessed via simulation using a combination of real and synthetic data for a region in São Paulo, Brazil. We also apply our modeling approach to analyze COVID-19 dynamics in Cali, Colombia. The results show that our modified LGCP model, which takes advantage of information obtained from the previous SIR modeling step, leads to a better forecasting performance than equivalent models that do not do that. Finally, the proposed method also allows the incorporation of age-stratified contact information, which provides valuable decision-making insights.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent15es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCompartment SIR modeles_ES
dc.subjectInfectious diseaseses_ES
dc.subjectLog-Gaussian Cox processes_ES
dc.subjectSpatial point processes_ES
dc.subjectSpatio-temporal modelinges_ES
dc.subject.classificationEstadística e investigación operativaes_ES
dc.subject.otherCDU::3 - Ciencias sociales::31 - Demografía. Sociología. Estadística::311 - Estadísticaes_ES
dc.titleSpatio-temporal modeling of infectious diseases by integrating compartment and point process modelses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s00477-022-02354-4es_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


no-thumbnailVer/Abrir:

 2022 Ribeiro et al - Spatio-temporal modeling of infectious diseases by integrating.pdf



2,14 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.