Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/30771

Natural Hosts and Genetic Diversity of the Emerging Tomato Leaf Curl New Delhi Virus in Spain

Title:
Natural Hosts and Genetic Diversity of the Emerging Tomato Leaf Curl New Delhi Virus in Spain
Authors:
Juárez Gómez, Miguel  
Rabadán Manzanera, María Pilar
Díaz Martínez, Luis  
Tayahi, Monia
Grande-Pérez, Ana  
Gómez, Pedro
Editor:
Instituto de Biología Molecular y Celular de Plantas (IBMCP)
Department:
Departamentos de la UMH::Producción Vegetal y Microbiología
Issue Date:
2019
URI:
https://hdl.handle.net/11000/30771
Abstract:
Knowledge about the host range and genetic structure of emerging plant viruses provides insights into fundamental ecological and evolutionary processes, and from an applied perspective, facilitates the design and implementation of sustainable disease control measures. Tomato leaf curl New Delhi virus (ToLCNDV) is an emerging whitefly transmitted begomovirus that is rapidly spreading and inciting economically important diseases in cucurbit crops of the Mediterranean basin. Genetic characterization of the ToLCNDV Mediterranean populations has shown that they are monophyletic in cucurbit plants. However, the extent to which other alternative (cultivated and wild) hosts may affect ToLCNDV genetic population structure and virus prevalence remains unknown. In this study a total of 683 samples from 13 cultivated species, and 203 samples from 24 wild species from three major cucurbit-producing areas of Spain (Murcia, Alicante and Castilla-La Mancha) from five cropping seasons (2012–2016) were analyzed for ToLCNDV infection. Except for watermelon, ToLCNDV was detected in all cultivated cucurbit species as well as in tomato. Among weeds, Ecballium elaterium, Datura stramonium, Sonchus oleraceus, and Solanum nigrum were identified as alternative ToLCNDV plant hosts, which could act as new potential sources of virus inoculum. Furthermore, we performed full-genome deep-sequencing of 80 ToLCNDV isolates from different hosts, location and cropping year. Our phylogenetic analysis supports a Mediterranean virus population that is genetically very homogeneous, with no clustering pattern, and clearly different from Asian virus populations. Additionally, D. stramonium displayed higher levels of within-host genetic diversity than cultivated plants, and this variability appeared to increase with time. These results suggest that the potential ToLCNDV adaptive evolution occurring in wild plant hosts could serve as a source of virus genetic variability, thereby affecting the genetic structure and spatial-temporal dynamics of the viral population.
Keywords/Subjects:
Begomovirus
Genetic diversity
Molecular epidemiology
Host range
ToLCNDV
Type of document:
application/pdf
Access rights:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI:
https://doi.org/10.3389/fmicb.2019.00140
Appears in Collections:
Artículos Producción vegetal y microbiología



Creative Commons ???jsp.display-item.text9???