Título : Generalization and Regularization for
Inverse Cardiac Estimators |
Autor : Melgarejo Meseguer, Francisco Manuel EVERSS, ESTRELLA Gutiérrez Fernández-Calvillo, Miriam Muñoz-Romero, Sergio Gimeno Blanes, Francisco Javier García-Alberola, Arcadi Rojo-Álvarez, José Luis |
Editor : Institute of Electrical and Electronics Engineers |
Departamento: Departamentos de la UMH::Ingeniería de Comunicaciones |
Fecha de publicación: 2022-03 |
URI : https://hdl.handle.net/11000/30613 |
Resumen :
Electrocardiographic Imaging (ECGI) aims to
estimate the intracardiac potentials noninvasively, hence
allowing the clinicians to better visualize and understand
many arrhythmia mechanisms. Most of the estimators of
epicardial potentials use a signal model based on an estimated
spatial transfer matrix together with Tikhonov regularization
techniques, which works well specially in simulations,
but it can give limited accuracy in some real data.
Based on the quasielectrostatic potential superposition
principle, we propose a simple signal model that supports
the implementation of principled out-of-sample algorithms
for several of the most widely used regularization criteria
in ECGI problems, hence improving the generalization
capabilities of several of the current estimation methods.
Experiments on simple cases (cylindrical and Gaussian
shapes scrutinizing fast and slow changes, respectively)
and on real data (examples of torso tank measurements
available from Utah University, and an animal torso and
epicardium measurements available from Maastricht University,
both in the EDGAR public repository) show that
the superposition-based out-of-sample tuning of regularization
parameters promotes stabilized estimation errors of
the unknown source potentials, while slightly increasing the re-estimation error on the measured data, as natural
in non-overfitted solutions. The superposition signal model
can be used for designing adequate out-of-sample tuning of
Tikhonov regularization techniques, and it can be taken into
account when using other regularization techniques in current
commercial systems and research toolboxes on ECGI
|
Palabras clave/Materias: Cross Validation electrocardiographic imaging generalization out-of-sample estimation potential quasielectrostatics superposition |
Área de conocimiento : CDU: Ciencias aplicadas: Ingeniería. Tecnología |
Tipo documento : application/pdf |
Derechos de acceso: info:eu-repo/semantics/openAccess |
DOI : https://doi.org/10.1109/TBME.2022.3159733 |
Aparece en las colecciones: Artículos Ingeniería Comunicaciones
|