Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/30586
Bounded sets structure of 𝑪𝒑 (𝑿) and quasi-(𝑫𝑭)-spaces
Título : Bounded sets structure of 𝑪𝒑 (𝑿) and quasi-(𝑫𝑭)-spaces |
Autor : Ferrando, Juan Carlos Gabriyelyan, Saak Ka̧kol, Jerzy |
Editor : Wiley |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2019-12 |
URI : https://hdl.handle.net/11000/30586 |
Resumen :
For wide classes of locally convex spaces, in particular, for the space 𝐶𝑝(𝑋) of continuous
real-valued functions on a Tychonoff space 𝑋 equipped with the pointwise
topology, we characterize the existence of a fundamental bounded resolution (i.e.,
an increasing family of bounded sets indexed by the irrationals which swallows the
bounded sets). These facts together with some results from Grothendieck’s theory
of (𝐷𝐹)-spaces have led us to introduce quasi-(𝐷𝐹)-spaces, a class of locally convex
spaces containing (𝐷𝐹)-spaces that preserves subspaces, countable direct sums
and countable products. Regular (𝐿𝑀)-spaces as well as their strong duals are quasi-
(𝐷𝐹)-spaces. Hence the space of distributions 𝐷′(Ω) provides a concrete example of
a quasi-(𝐷𝐹)-space not being a (𝐷𝐹)-space. We show that 𝐶𝑝(𝑋) has a fundamental
bounded resolution if and only if 𝐶𝑝(𝑋) is a quasi-(𝐷𝐹)-space if and only if the strong
dual of 𝐶𝑝(𝑋) is a quasi-(𝐷𝐹)-space if and only if 𝑋 is countable. If 𝑋 is metrizable,
then 𝐶𝑘(𝑋) is a quasi-(𝐷𝐹)-space if and only if 𝑋 is a 𝜎-compact Polish space.
|
Palabras clave/Materias: bounded resolution class 𝔊 (𝐷𝐹)-space free locally convex space pointwise topology quasi-(𝐷𝐹)- space |
Área de conocimiento : CDU: Ciencias puras y naturales: Matemáticas |
Tipo documento : application/pdf |
Derechos de acceso: info:eu-repo/semantics/openAccess |
DOI : https://doi.org/10.1002/mana.201800085 |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.