Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/30460
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBatzelis, Efstratios-
dc.contributor.authorBlanes, Jose M.-
dc.contributor.authorToledo Melero, Fco. Javier-
dc.contributor.authorGaliano, Vicente-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Computadoreses_ES
dc.date.accessioned2024-01-09T08:41:04Z-
dc.date.available2024-01-09T08:41:04Z-
dc.date.created2022-05-
dc.identifier.citationIEEE Journal of Photovoltaics, vol. 12, no. 3, may 2022es_ES
dc.identifier.issn2156-3403-
dc.identifier.issn2156-3381-
dc.identifier.urihttps://hdl.handle.net/11000/30460-
dc.description.abstractThis article revisits the objective function (or metric) used in the extraction of photovoltaic (PV) model parameters. A theoretical investigation shows that the widely used current distance (CD) metric does not yield the maximum likelihood estimates (MLE) of the model parameters when there is noise in both voltage and current samples. It demonstrates that the Euclidean distance (ED) should be used instead, when the voltage and current noise powers are equal. For the general case, a new noise-scaled Euclidean distance (NSED) metric is proposed as a weighted variation of ED, which is shown to fetch the MLE of the parameters at any noise conditions. This metric requires the noise ratio (i.e., ratio of the two noise variances) as an additional input, which can be estimated by a new noise estimation (NE) method introduced in this study. One application of the new metric is to employ NSED regression as a follow-up step to existing parameter extraction methods toward fine-tuning of their outputs. Results on synthetic and experimental data show that the so-called NSED regression “add-on” improves the accuracyes_ES
dc.formatapplication/pdfes_ES
dc.format.extent12es_ES
dc.language.isoenges_ES
dc.publisherIEEE Xplorees_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEuclidean distance (ED)es_ES
dc.subjectfittinges_ES
dc.subjectnoise extraction (NE)es_ES
dc.subjectorthogonal distancees_ES
dc.subjectparameter estimationes_ES
dc.subjectparameter extractiones_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleNoise-Scaled Euclidean Distance: A Metric for Maximum Likelihood Estimation of the PV Model Parameterses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/ 10.1109/JPHOTOV.2022.3159390es_ES
Appears in Collections:
Artículos Ingeniería de computadores


Thumbnail

View/Open:
 Noise-Scaled_Euclidean_Distance_A_Metric_for_Maximum_Likelihood_Estimation_of_the_PV_Model_Parameters.pdf

1,65 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???