Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/30426

On the use of deep learning and parallelism techniques to signifcantly reduce the HEVC intra‑coding time


Thumbnail

View/Open:
 s11227-022-04764-1.pdf

882,05 kB
Adobe PDF
Share:
Title:
On the use of deep learning and parallelism techniques to signifcantly reduce the HEVC intra‑coding time
Authors:
Galiano, Vicente  
Migallon, Hector  
Martínez-Rach, Miguel Onofre  
López Granado, Otoniel Mario  
Perez Malumbres, Manuel  
Editor:
Springer
Department:
Departamentos de la UMH::Ingeniería de Computadores
Issue Date:
2022-08
URI:
https://hdl.handle.net/11000/30426
Abstract:
It is well-known that each new video coding standard signifcantly increases in computational complexity with respect to previous standards, and this is particularly true for the HEVC and VVC video coding standards. The development of techniques for reducing the required complexity without afecting ...  Ver más
Keywords/Subjects:
CNN
Deep learning
HEVC
Deep learning
Parallel processing
Slices
Video coding
Knowledge area:
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Type of document:
info:eu-repo/semantics/article
Access rights:
info:eu-repo/semantics/openAccess
DOI:
https://doi.org/10.1007/s11227-022-04764-1
Published in:
The Journal of Supercomputing (2023) 79
Appears in Collections:
Artículos Ingeniería de computadores



Creative Commons ???jsp.display-item.text9???