Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/26850
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLarrañaga, Ana-
dc.contributor.authorLucas Estañ, María del Carmen-
dc.contributor.authorMartinez, Imanol-
dc.contributor.authorGozalvez, Javier-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Comunicacioneses_ES
dc.date.accessioned2022-05-04T12:40:20Z-
dc.date.available2022-05-04T12:40:20Z-
dc.date.created2022-04-27-
dc.identifier.citationProcedia Computer Science, Volume 201, 2022es_ES
dc.identifier.issn1877-0509-
dc.identifier.urihttp://hdl.handle.net/11000/26850-
dc.description.abstract5th Generation (5G) and Beyond networks are being designed to support Ultra-Reliable and Low Latency Communications (URLLC). To this end, 5G defines a new radio (NR) interface with a new mechanism at the Physical (PHY) and Medium Access Control (MAC) layers that allow reducing the latency communication. One key mechanism to reduce the latency is the scheduling scheme. Mainly, 5G defines the use of the configured grant (CG) scheduling for uplink (UL) transmissions that eliminates the need to request and assign resources for each packet transmission by pre-allocating resources to the UE. The availability of simulation tools that accurately model the new mechanisms and technologies incorporated in 5G New Radio (NR) is key to research and evaluate new proposals and enhancements to meet the communication requirements of emerging services. In this context, this paper presents the implementation of the configured grant scheduling in the ns-3 network simulator. Remarkably, the configured grant has been implemented within the 5G-LTE-EPC Network simulAtor (5G-LENA) module that simulates the fundamental PHY-MAC NR features in line with the NR specifications. In addition, this paper validates the configured grant implementation through system-level simulations considering a typical Industry 4.0 scenario characterized by applications demanding URLLC.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent8es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectConfigured Grantes_ES
dc.subjectNRes_ES
dc.subject5Ges_ES
dc.subjectsemi-static schedulinges_ES
dc.subjectURLLCes_ES
dc.subjectns-3es_ES
dc.subject5G-LENAes_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología::621 - Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria::621.3 - Ingeniería eléctrica. Electrotecnia. Telecomunicacioneses_ES
dc.title5G NR Configured Grant in ns-3 Network Simulator for Ultra-Reliable Low Latency Communicationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.identifier.doi10.1016/j.procs.2022.03.064-
dc.relation.publisherversionhttps://doi.org/10.1016/j.procs.2022.03.064-
Aparece en las colecciones:
Artículos Ingeniería Comunicaciones


Vista previa

Ver/Abrir:
 5GNR_CG_NS3_LarrañagaLucas.pdf

814,81 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.