Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/1915

Highly efficient full-wave electromagnetic analysis of 3D arbitrarily-shaped waveguide microwave devices using an integral equation technique


Thumbnail

View/Open:
 San_Blas_Radio_Science.pdf
495,68 kB
Adobe PDF
Share:
Title:
Highly efficient full-wave electromagnetic analysis of 3D arbitrarily-shaped waveguide microwave devices using an integral equation technique
Authors:
San Blas, Angel A.
Vidal, A .
Quesada Pereira, F. D.
Pérez Soler, J.
Gil, J.
Vicente, C.
Gimeno, Benito
Boria, Vicente E.
Department:
Departamentos de la UMH::Ingeniería de Comunicaciones
Issue Date:
2015-04-29
URI:
http://hdl.handle.net/11000/1915
Abstract:
A novel technique for the full-wave analysis of 5 3D complex waveguide devices is presented. This new formulation, based on the Boundary Integral- Resonant Mode Expansion (BI-RME) method, allows the rigorous full-wave electromagnetic characterization of 3D arbitrarily-shaped metallic structures making use of extremely low CPU resources (both time and memory). The unknown electric current density on the surface of the metallic elements is11 represented by means of Rao-Wilton-Glisson basis functions, and an algebraic procedure based on a singular value decomposition is applied to transform such functions into the classical solenoidal and non-solenoidal basis functions needed by the original BI-RME technique. The developed tool also provides an accurate computation of the electromagnetic fields at an arbitrary observation point of the considered device, so it can be used for predicting high-power breakdown phenomena. In order to validate the accuracy and efficiency of this novel approach, several new designs of band-pass waveguides filters are presented. The obtained results (S-parameters and electromagnetic fields) are successfully compared both to experimental data, and to numerical simulations provided by a commercial software based on the finite-element technique. The results obtained show that the new technique is specially suitable for the efficient full-wave analysis of complex waveguide devices considering an integrated coaxial excitation, where the coaxial probes may be in contact with the metallic insets of the component.
Keywords/Subjects:
ondas electromagnéticas
microondas
Knowledge area:
CDU: Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria: Ingeniería eléctrica. Electrotecnia. Telecomunicaciones
CDU: Electricidad. Magnetismo. Electromagnetismo
Type of document:
application/pdf
Access rights:
info:eu-repo/semantics/openAccess
DOI:
http://dx.doi.org/10.1002/2015RS005685
Appears in Collections:
Artículos Ingeniería Comunicaciones



Creative Commons ???jsp.display-item.text9???