Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/6895
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMIRA CARRIÓ, AMALIA-
dc.contributor.authorSainz Urruela, Carlos-
dc.contributor.authorCodina Márquez, Helena-
dc.contributor.authorJenkins, Stuart I.-
dc.contributor.authorRodríguez Díaz, Juan Carlos-
dc.contributor.authorMallavia, Ricardo-
dc.contributor.authorFalcó, Alberto-
dc.date.accessioned2021-01-14T08:25:20Z-
dc.date.available2021-01-14T08:25:20Z-
dc.date.created2020-03-06-
dc.date.issued2021-01-14-
dc.identifier.issn2079-4991-
dc.identifier.urihttp://hdl.handle.net/11000/6895-
dc.description.abstractRecent advances in the field of nanotechnology such as nanoencapsulation offer new biomedical applications, potentially increasing the scope and efficacy of therapeutic drug delivery. In addition, the discovery and development of novel biocompatible polymers increases the versatility of these encapsulating nanostructures, enabling chemical properties of the cargo and vehicle to be adapted to specific physiological requirements. Here, we evaluate the capacity of various polymeric nanostructures to encapsulate various antibiotics of different classes, with differing chemical structure. Polymers were sourced from two separate derivatives of poly(methyl vinyl ether-alt-maleic anhydride) (PMVE/MA): an acid (PMVE/MA-Ac) and a monoethyl ester (PMVE/MA-Es). Nanoencapsulation of antibiotics was attempted through electrospinning, and nanoparticle synthesis through solvent displacement, for both polymers. Solvent incompatibilities prevented the nanoencapsulation of amikacin, neomycin and ciprofloxacin in PMVE/MA-Es nanofibers. However, all compounds were successfully loaded into PMVE/MA-Es nanoparticles. Encapsulation efficiencies in nanofibers reached approximately 100% in all compatible systems; however, efficiencies varied substantially in nanoparticles systems, depending on the tested compound (14%–69%). Finally, it was confirmed that both these encapsulation processes did not alter the antimicrobial activity of any tested antibiotic against Staphylococcus aureus and Escherichia coli, supporting the viability of these approaches for nanoscale delivery of antibioticses
dc.description.sponsorshipThis research was funded by the Spanish Ministerio de Economía y Competitividad, grant numbers MAT-2017-86805-R and MAT-2014-53282-R,-
dc.description.sponsorshipand Spanish Ministerio de Ciencia e Innovación (MCI)—Agencia Estatal de Investigación (AEI)/Fondo Europeo de Desarrollo Regional (FEDER), grant number RTI2018-101969-J-I00-
dc.formatapplication/pdfes
dc.format.extent12es
dc.language.isoenges
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.subjectbiomaterialses
dc.subjectpolymerses
dc.subjectPMVE/MAes
dc.subjectelectrospinninges
dc.subjectnanofiberses
dc.subjectnanoparticleses
dc.subjectnanoencapsulationes
dc.subjectantibioticses
dc.titlePhysico-Chemically Distinct Nanomaterials Synthesized from Derivates of a Poly(Anhydride) Diversify the Spectrum of Loadable Antibioticses
dc.typeinfo:eu-repo/semantics/articlees
dc.contributor.instituteInstituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elchees
dc.identifier.doi10.3390/nano10030486-
dc.relation.publisherversionhttps://doi.org/10.3390/nano10030486-
Appears in Collections:
Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche


Thumbnail

View/Open:
 4-20_7c_Nanomaterials 4.034 (2018)_NFs vs NPs loaded with antibiotics.pdf
1,6 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???