Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/5615
Analysis of neural substrates and physiological responses involved in the processing of primary emotions
Título : Analysis of neural substrates and physiological responses involved in the processing of primary emotions |
Autor : Sorinas Nerín, Jennifer |
Tutor: Fernández Jover, Eduardo |
Departamento: Departamentos de la UMH::Biología Aplicada |
Fecha de publicación: 2019-07-16 |
URI : http://hdl.handle.net/11000/5615 |
Resumen : Emotions are a key process in the evolution of species and in particular in the development of human beings. They influence most of the neuronal processes that take place in our day to day, from decision-making, communication and social relations, selective attention, learning and memory. Understan... Ver más Las emociones son un proceso clave en la evolución de las especies y en concreto en el desarrollo del ser humano. Influyen en la gran parte de los procesos neuronales que tienen lugar en nuestro día a día, desde la toma de decisiones, la comunicación y relaciones sociales, la atención selectiva, el aprendizaje y la memoria. Lograr entender su fisiología y neurobiología es un gran reto, aún sin respuesta, que lleva planteándose desde la época grecorromana. La gran cantidad de aplicaciones desde la clínica, para el diagnóstico y tratamiento de los trastornos del estado de ánimo, hasta la mejora de las interacciones cerebro-computadora aplicable tanto en pacientes como en individuos sanos, es inimaginable; de modo que conseguir dar con un sistema capaz de reconocer emociones en tiempo real es el santo grial de la neurociencia afectiva hoy en día. Sin embrago, la falta de un modelo teórico que defina el propio término, así como sus componentes primarios y mecanismos de acción, hace que exista una gran variabilidad entre los resultados y modelos computacionales que tratan de resolver la ecuación. De cara a poder establecer un modelo de clasificación de emociones en tiempo-real es necesario fijar una serie de parámetros previos, como el modelo emocional a seguir, el tiempo de ventana óptimo para extraer las características que codifican la información emocional, el método de extracción de dichas características, cuántas y cuáles son las características que representan el procesamiento de la información emocional y el algoritmo adecuado para clasificar este tipo de información y señal. Basándonos en el modelo dimensional de las emociones, en concreto en la dimensión de la valencia que caracteriza el grado positivo o negativo de un estímulo generando respuestas de acercamiento o rechazo, respectivamente; hemos tratado de especificar los parámetros necesarios para desarrollar un modelo computacional que nos permita reconocer emociones en la escala de la valencia emocional enfocado a aplicaciones en tiempo real. Para ello hemos analizado la señal electroencefalografica, electrocardiográfica y la temperatura de la piel, de 24 voluntarios durante la estimulación emocional. Dicha estimulación se llevó a cabo a través de una base de datos audiovisual de diseño propio que contenía el mismo número de vídeos de contenido catalogado como positivo y negativo. El análisis de los datos se desarrolló teniendo en cuenta dos aproximaciones experimentales, una sujeto-dependiente (SD) y otra sujeto-independiente (SI). Los resultados obtenidos mediante la aproximación SD nos permitieron elaborar un modelo computacional basado en la señal de electroencefalografía, logrando una precisión de 0.989 (±0.013) según el f1-score. El modelo se basa en una ventana de trial de 12 segundos de duración, el método no-lineal denominado wavelet packets para la extracción de características, 20 pares de características de localización-frecuencia distribuidas a lo largo de gran parte de la corteza cerebral y en el rango de 8 a 45 Hz en el espectro de la señal de EEG, y en los clasificadores quadratic discriminant analysis y k-nearest neighbors. Por otro lado, en la señal procedente del sistema nervioso periférico, se encontraron patrones de respuesta específicos para cada categoría emocional, sugiriendo que la dimensión de la valencia influye en la respuesta del componente somático emocional. Sin embargo, tener en cuenta la respuesta corporal no mejoraba la precisión de nuestro modelo computacional de reconocimiento de emociones positivas y negativas; además, los resultados hallados no nos permiten, por el momento, hacer inferencias acerca de la fisiología de las emociones. A nivel de la neurobiología de las emociones, patrones de asimetría inter-hemisférica, así como asimetría rostro-caudal sugieren la existencia de un circuito neuronal de procesamiento de la valencia emocional. Sin embargo, para poder definir dicho circuito con precisión sería necesario continuar con los estudios de las relaciones de las distintas áreas y frecuencias resaltadas, para poder aportar más evidencias al mecanismo de acción de la dimensión de la valencia emocional. Los resultados obtenidos por el modelo computacional basado en la señal de EEG propuesto en la presente tesis doctoral, motivan la continuidad del estudio de las emociones basado en el modelo dimensional, con el objetivo de demostrar la validez y reproducibilidad del modelo propuesto en tiempo-real y para poder elaborar una teoría que recoja la vía y mecanismos de acción tanto cerebrales como corporales de la dimensión de la valencia emocional. |
Palabras clave/Materias: Neurociencias Procesos cognitivos Sistemas en tiempo real |
Área de conocimiento : CDU: Ciencias puras y naturales: Biología: Biología celular y subcelular. Citología |
Tipo de documento : info:eu-repo/semantics/masterThesis |
Derechos de acceso: info:eu-repo/semantics/openAccess |
Aparece en las colecciones: Tesis doctorales - Ciencias e Ingenierías |
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.