Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/5151
Modelos matemáticos para estudiar el procesamiento de la
información en la retina
Título : Modelos matemáticos para estudiar el procesamiento de la
información en la retina |
Autor : Bolea Oliván, José Ángel |
Tutor: Fernández Jover, Eduardo |
Fecha de publicación: 2017-06-28 |
URI : http://hdl.handle.net/11000/5151 |
Resumen :
La aplicación de métodos y herramientas matemáticas ha contribuido con éxito
a los avances en neurociencia desde mediados del siglo XX. En los últimos años
diversos progresos tecnológicos han permitido una mayor exploración del
sistema nervioso, lo que ha provocado un llamativo aumento en el empleo... Ver más
The application of mathematical methods and tools has successfully
contributed to advances in neuroscience since the last mid century. In recent
years, a diversity of technological developments has allowed a greater
exploration of the nervous system, causing a striking increase in the use of
mathematics to investigate the large number of data now available to
neuroscientists.
In the present doctoral thesis our objective is to determine how visual
information is processed in the retina and how this is coded and transmitted
to the brain. This has been achieved using several mathematical methods to
study and analyze neuronal images as well as physiological signals.
Initially, we addressed the study of several morphological aspects of retinal
cells to better understand certain particularities of the retinal circuits. In this
sense we have studied the possible characterization of neurons as
multifractals (Fernández et al., 1999) and have developed a new method - the
V-proportion, based on the Voronoi diagram, this permits to study the
spatial relationships between neural mosaics of the retina (Ahnelt et al., 2000; Martínez et al., 2010).
Furthermore, we have analyzed simultaneous responses of populations of
retinal ganglion cells, which are responsible for encoding the visual
information and sending it to the brain. Using Artificial Neural Networks
(Ferrández et al., 1999) and Information Theory (Ferrández et al., 2002) we found that the most relevant parameters in the coding process are the
number of action potentials and the exact time in which the first of them
occurs after the stimulus. This information is transmitted using a redundant
population code.
In order to reduce population data without losing relevant information, we
have developed a method to detect groups of neurons with similar responses
(Bonomini et al., 2005a). We then incorporated this into an open source free
program that facilitates the analysis of data recorded with multielectrodes
(Bonomini et al., 2005b).
Finally, we have designed a process to decode the visual information from
the retina by quantitatively evaluating the stimulus reconstruction achieved
(Díaz-Tahoces et al., 2015).
|
Palabras clave/Materias: Matemáticas Geometría Neurociencias Teoria de la información |
Área de conocimiento : CDU: Ciencias puras y naturales: Matemáticas CDU: Ciencias aplicadas: Ingeniería. Tecnología |
Tipo de documento : info:eu-repo/semantics/doctoralThesis |
Derechos de acceso: info:eu-repo/semantics/openAccess |
Aparece en las colecciones: Tesis doctorales - Ciencias e Ingenierías
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.