Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/39187
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCueva, Christopher-
dc.contributor.authorSAEZ, ALEX-
dc.contributor.authorMarcos, Encarni-
dc.contributor.authorGenovesio, Aldo-
dc.contributor.authorJazayeri, Mehrdad-
dc.contributor.authorromo, ranulfo-
dc.contributor.authorSalzman, C. Daniel-
dc.contributor.authorShadlen, Michael-
dc.contributor.authorFusi, Stefano-
dc.date.accessioned2026-02-11T12:25:06Z-
dc.date.available2026-02-11T12:25:06Z-
dc.date.created2020-
dc.identifier.citationProc Natl Acad Sci U S A. 2020 Sep 15;117(37):23021-23032es_ES
dc.identifier.issn1091-6490-
dc.identifier.issn0027-8424-
dc.identifier.urihttps://hdl.handle.net/11000/39187-
dc.description.abstractOur decisions often depend on multiple sensory experiences separated by time delays. The brain can remember these experiences and, simultaneously, estimate the timing between events. To understand the mechanisms underlying working memory and time encoding, we analyze neural activity recorded during delays in four experiments on nonhuman primates. To disambiguate potential mechanisms, we propose two analyses, namely, decoding the passage of time from neural data and computing the cumulative dimensionality of the neural trajectory over time. Time can be decoded with high precision in tasks where timing information is relevant and with lower precision when irrelevant for performing the task. Neural trajectories are always observed to be low-dimensional. In addition, our results further constrain the mechanisms underlying time encoding as we find that the linear "ramping" component of each neuron's firing rate strongly contributes to the slow timescale variations that make decoding time possible. These constraints rule out working memory models that rely on constant, sustained activity and neural networks with high-dimensional trajectories, like reservoir networks. Instead, recurrent networks trained with backpropagation capture the time-encoding properties and the dimensionality observed in the data.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent12es_ES
dc.language.isoenges_ES
dc.publisherNational Academy of Scienceses_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectneural dynamicses_ES
dc.subjectrecurrent networkses_ES
dc.subjectreservoir computinges_ES
dc.subjecttime decodinges_ES
dc.subjectworking memoryes_ES
dc.titleLow-dimensional dynamics for working memory and time encodinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.contributor.instituteInstitutos de la UMH::Instituto de Neurocienciases_ES
dc.relation.publisherversion10.1073/pnas.1915984117es_ES
Aparece en las colecciones:
Instituto de Neurociencias


thumbnail_pdf
Ver/Abrir:
 Low-dimensional dynamics for working memory.pdf

3,1 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.