Resumen :
Actualmente, la ciencia de datos está ganando mucha atención en diferentes sectores.
Concretamente en la industria, muchas aplicaciones pueden ser consideradas. Utilizar
técnicas de ciencia de datos en el proceso de toma de decisiones es una de esas
aplicaciones que pueden aportar valor a la industria. El incremento de la disponibilidad
de los datos y de la aparición de flujos continuos en forma de data streams hace
emerger nuevos retos a la hora de trabajar con datos cambiantes. Este trabajo presenta
una propuesta innovadora, Incremental Decision Rules Algorithm (IDRA), un
algoritmo que, de manera incremental, genera y modifica reglas de decisión para
entornos de data stream para incorporar cambios que puedan aparecer a lo largo del
tiempo. Este método busca proponer una nueva estructura de reglas que busca mejorar
el proceso de toma de decisiones, planteando una base de conocimiento descriptiva y
transparente que pueda ser integrada en una herramienta decisional. Esta tesis describe
la lógica existente bajo la propuesta de IDRA, en todas sus versiones, y propone una
variedad de experimentos para compararlas con un método clásico (CREA) y un
método adaptativo (VFDR). Conjuntos de datos reales, juntamente con algunos
escenarios simulados con diferentes tipos y ratios de error, se utilizan para comparar
estos algoritmos. El estudio prueba que IDRA, específicamente la versión reactiva de
IDRA (RIDRA), mejora la precisión de VFDR y CREA en todos los escenarios, tanto
reales como simulados, a cambio de un incremento en el tiempo.
Nowadays, data science is earning a lot of attention in many different sectors.
Specifically in the industry, many applications might be considered. Using data
science techniques in the decision-making process is a valuable approach among the
mentioned applications. Along with this, the growth of data availability and the
appearance of continuous data flows in the form of data stream arise other challenges
when dealing with changing data. This work presents a novel proposal of an algorithm,
Incremental Decision Rules Algorithm (IDRA), that incrementally generates and
modify decision rules for data stream contexts to incorporate the changes that could
appear over time. This method aims to propose new rule structures that improve the
decision-making process by providing a descriptive and transparent base of knowledge
that could be integrated in a decision tool. This work describes the logic underneath
IDRA, in all its versions, and proposes a variety of experiments to compare them with
a classical method (CREA) and an adaptive method (VFDR). Some real datasets,
together with some simulated scenarios with different error types and rates are used to
compare these algorithms. The study proved that IDRA, specifically the reactive
version of IDRA (RIDRA), improves the accuracies of VFDR and CREA in all the
studied scenarios, both real and simulated, in exchange of more time.
|