Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/28786
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorLeal, Marina-
dc.contributor.authorBelmonte Ruipérez, José Antonio-
dc.contributor.otherDepartamentos de la UMH::Ciencia Jurídicaes_ES
dc.date.accessioned2023-01-26T08:01:02Z-
dc.date.available2023-01-26T08:01:02Z-
dc.date.created2022-07-30-
dc.identifier.urihttps://hdl.handle.net/11000/28786-
dc.description.abstractCada día se generan en todo el mundo una inmensa cantidad de datos que crecen de manera exponencial cada año. A estos datos masivos y a su almacenamiento y procesamiento los denominamos Big Data. Esta enorme cantidad de información provienen de nuevas fuentes de datos como, por ejemplo; dispositivos GPS, relojes inteligentes, sensores o dispositivos conectados a Internet (IoT). Los datos pueden presentarse en distintos formatos, y responden a las características de Volumen, Velocidad, Variedad, Veracidad y Valor. Se trata de una cantidad de datos tan grande y compleja que, para su almacenamiento, gestión, análisis y tratamiento, se requiere de softwares creados específicamente para ello, puesto que los softwares tradicionales empleados para la gestión de datos son ineficientes. Es aquí donde cobra importancia el Machine Learning. Mediante algoritmos de aprendizaje el sistema es capaz de descubrir patrones basados en los datos que recibe y en función de ellos, realizar predicciones. El uso de Big Data tiene gran valor añadido y puede ser aplicado en numerosos sectores, como es el de la seguridad y la defensa. En este ámbito permite, entre otras aplicaciones, su uso para la predicción de la comisión de delitos mediante el análisis de datos. Machine Bias es un artículo que analiza un caso concreto del uso de métodos de Big Data para la predicción de la reincidencia de criminales detenidos, y muestra el sesgo racial que se produce al aplicar estos métodos. Motivado por este caso, analizaré la relación del Big Data con la Seguridad y la Defensa. Realizaré un estudio práctico utilizando el software estadístico R para la aplicación de métodos de Big Data en predicción de delitos, y determinar si puede producirse sesgo.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent53es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Miguel Hernández de Elchees_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectsesgoes_ES
dc.subjectBig Dataes_ES
dc.subjectPredicciónes_ES
dc.subjectDelitoses_ES
dc.subject.otherCDU::3 - Ciencias sociales::34 - Derecho::343 - Derecho penal. Delitoses_ES
dc.titleEl sesgo en el uso del big data aplicado a la seguridad y defensa para la predicción de la comisión de delitos.es_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
Appears in Collections:
TFG - Grado de Seguridad Pública y Privada


Thumbnail

View/Open:
 TFG-Belmonte Ruipérez, José Antonio.pdf

1,4 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???