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Abstract

Mobile robotics has experienced an important proliferation in the recent days, with
many fields of application available. A great variety of different mobile robots are
present in different sectors of society, most of which are designated as autonomous.
This term implies that the robot manages to operate itself, without any special super-
vision. To that purpose, the robot must be enabled to gather information from the
environment in order to build its own understanding, which yields a map estimation.
The scope of this thesis is focused on this aspect: the map building process with visual
information from the environment. This process entails a non-trivial task, since it poses
a challenge when it comes to obtaining a simultaneous estimation of the localization
of the robot, and also of the map. This leads to one of the most essential paradigms
in such context: the problem of SLAM (Simultaneous Localization And Mapping).

Different sort of information can be acquired by a set of well known sensors boarded
on the robot, such as laser, sonar, GPS, etc. However, digital cameras have arisen as
a promising alternative. They provide low consumption, low cost and lightness. More-
over, these visual sensors represent a potential tool for encoding large amounts of
information within an only image. Thus in this work we propose a new map model,
embedded in a visual SLAM approach, which is solely based on the use of omnidirec-
tional images acquired with a monocular camera. An important strength of this camera
resides on its particular wide field of view. In addition, we process the information ex-
tracted from feature points, as physical landmarks which are visually detected on the
images. This idea differs from traditional approaches, which basically concentrate on
the accumulative scheme for the incremental re-estimation of all the landmarks in the
map.

Regarding the core algorithms under this context of visual SLAM, this thesis pro-
poses several improvements to the robustness of the standard algorithm models. In
particular, we present a customized offline model, which is capable of reducing those
harmful effects associated with non-linear noise, as those introduced by catadioptric
cameras. Many of the most accepted approaches are highly sensitive to this effects
and fail to provide convergence assurance for the final estimation.

Moreover, another recognized drawback of former approaches is the management
of the uncertainty of the system. This is usually originated by the same non-linear
sources. Consequently, the estimation may be severely impaired as errors dramatically
compromise its convergence. In this sense, this thesis contributes to the achievement
of a robust model for uncertainty reduction, which is dynamically devised.

As a general commitment along all this thesis, we establish an experimental frame-
work for all the different approaches and contributions made as a result of the research
conducted in this context. Thus both simulated and real dataset experiments are
repeatedly presented along this document.





Resumen

Actualmente dentro del campo de la robótica móvil se ha experimentado una impor-
tante proliferación de aplicaciones. Encontramos una gran variedad de robots móviles
presentes en diversos sectores de nuestra sociedad, muchos de los cuales son aceptados
como autónomos. Este término implica que el robot es capaz de operar por sí mismo,
sin ningún tipo de supervisión especial. Para tal efecto, el robot debe ser habilitado para
recoger información del entorno, de modo que pueda construir su propio entendimiento
del mismo, tal como es una estimación de un mapa. El ámbito de esta tesis se con-
centra en este aspecto: el proceso de construcción de mapas con información visual
del entorno. Este proceso implica una tarea de resolución no trivial, ya que plantea un
reto en lo que se refiere a la obtención simultánea de la localización del robot, pero
además del mapa. Esto último dirige hacia uno de los paradigmas más esenciales en
este contexto: el problema de SLAM (Simultaneous Localization And Mapping).

Distintos tipos de información pueden adquirirse mediante un conjunto bien cono-
cido de sensores embarcados en el robot, tales como láser, sónar, GPS, etc. Sin
embargo, las cámaras digitales emergen como una prometedora alternativa. Propor-
cionan bajo consumo, bajo coste y ligereza. Además, estos sensores visuales suponen
una potencial herramienta para codificar grandes cantidades de información en una
única imagen. Así, en este trabajo proponemos un nuevo modelo de mapa, embebido
dentro de una propuesta de SLAM visual, la cual está basada únicamente en el uso de
imágenes omnidireccionales, adquiridas con una cámanra monocular. Una importante
fortaleza de esta cámara radica en su particular amplio campo de visión. Además,
procesamos la información extraída de puntos característicos, entendidos como marcas
físicas, los cuales son detectadas visualmente sobre las imágenes. Esta idea difiere de
las propuestas tradicionales, cuyo objeto se concentra en un esquema acumulativo para
la reestimación de todas las marcas del mapa.

En cuanto al algoritmo núcleo dentro de este contexto de SLAM visual, esta tesis
propone varias mejoras para la robustez de los modelos de algoritmos estándar. En
particular, presentamos un modelo personalizado de tipo offline, el cual es capaz de
reducir los efectos perjudiciales asociados con el ruido no lineal, tales como los in-
troducidos por las cámaras catadióptricas. Muchas de las propuestas más aceptadas
son altamente sentibles a estos efectos, y no logran asegurar la convergencia de la
estimación final.

Por otra parte, otro de los inconvenientes reconocidos de las primeras propuestas es
la gestión de la incertidumbre del sistema. Normalmente esto es debido a las mismas
fuentes no lineales. Consecuentemente, la estimación puede verse severamente dañada,
puesto que compromete dramáticamente su convergencia. En este sentido, esta tesis
contribuye a la consecución de un modelo robusto para la reducción de la incertidumbre,
la cual es concebida dinámicamente.

Como un compromiso general a lo largo de toda esta tesis, establecemos un marco
experimental para todas las propuestas y contribuciones surgidas de los resultados de
las investigaciones en este ámbito. De este modo, se presentan experimentos repeti-
damente a lo largo de este documento, tanto con conjuntos de datos simulados como
reales.





Conclusiones

Como consecuencia del periodo de investigación bajo el marco de esta tesis, distintos
resultados han sido obtenidos, los cuales han permitido realizar diversas aportaciones.
Las más relevantes han sido comunicadas en revistas y congresos internacionales y
nacionales. Además, el conjunto de artículos que sustentan el cuerpo de esta tesis,
comprenden las más relevantes. En este sentido, a continuación se exponen las conclu-
siones extraídas de estas publicaciones y su relación directa con esta tesis, así como con
los capítulos del documento. Hay que destacar que cada capítulo incluye un apartado
dedicado a conclusiones parciales sobre el mismo. De modo similar, el último capí-
tulo del documento, sintetiza todas las conclusiones, aportaciones y posibles trabajos
futuros. Para más información, se sugiere su consulta detallada.

El primer artículo [46] expone el modelo principal definido en esta tesis. Se trata
del nuevo modelo de mapa visual, conformado por un conjunto reducido de imágenes
omnidireccionales. Los resultados de esta publicación demuestran la validez de la prop-
uesta, la cual se denota como un modelo de mapa visual basado en un sistema EKF.
El Capítulo 4 extiende los detalles de la explicación de esta aportación, así como sus
resultados. En segundo lugar, la aportación hecha en la publicación [136], presenta
un trabajo donde se adapta la estructura del algoritmo SGD a la geometría omnidirec-
cional y al modelo propuesto anteriormente. También incluye resultados comparativos
de eficiencia y precisión frente al método estándar de SGD, como validación de la
propuesta para tratar los efectos indeseados de las fuentes de ruido no lineal. Los
detalles relacionados con esta implementación son presentados en el Capítulo 5. En
tercer lugar, la publicación [135] presenta un estudio exhaustivo para comparar dos de
las aportaciones principales hechas en esta tesis. Se trata del modelo de mapa visual
basado en un sistema EKF, apoyado en un conjunto de vistas omnidireccionales, y
la anterior propuesta constituida por una modificación del algoritmo SGD, adaptado
a la geometría omnidireccional. Los resultados confirman que el método SGD, pese
a ser offline, demuestra ser una robusta alternativa para mitigar efectos no lineales
indeseados, frente a los cuales el sistema EKF es especialmente sensible y ve como
su convergencia y funcionamiento se ven seriamente afectados. Los Capítulos 4 y 5
extienden con mayor profundidad los desarrollos realizados a tal efecto, así como todos
los resultados de dicha comparación.





Agradecimientos

Después de todo este largo camino resulta complicado expresar en unas pocas líneas
todos los agradecimientos que me gustaría. En primer lugar, quiero dar las gracias a mis
directores de tesis, Óscar Reinoso y Arturo Gil, por haberme brindado la oportunidad
de desarrollar este trabajo y por todo su apoyo y confianza desde el primer momento.
Sus directrices, recomendaciones y comentarios han sido fundamentales para dar forma
a esta tesis.

Me gustaría también dar las gracias a todos los miembros del Departamento de
Ingeniería de Sistemas y Automática y del grupo de investigación ARVC: Luís Payá, Luís
Miguel Jiménez, David Úbeda, José María Marín, y especialmente a mis compañeros del
laboratorio, Loren, Fran, Mónica y Miguel por su ayuda y colaboración, y en particular,
por haberme permitido compartir tantos buenos momentos de amistad durante el día
a día.

Agradecer también a Jaime Valls Miró y Maani Ghaffari Jadidi el tiempo que dedi-
caron a compartir sus ideas durante mi estancia en la University of Technology Sydney,
las cuales fueron muy valiosas para el desarrollo de nuevas contribuciones dentro de
esta tesis.

Por otro lado, quiero dar las gracias a todos mis amigos, por ser junto con mi
familia, parte esencial de mi vida. Compartir momentos y experiencias con vosotros
me ha hecho crecer como persona y ha supuesto una gran energía para seguir adelante y
afrontar retos en todos los ámbitos, tanto personales, como académicos y profesionales.

De un modo muy especial, quiero dar las gracias a mi familia. A mi padre y a
mi madre, mi agradecimiento infinito por todo vuestro esfuerzo, sacrificio y dedicación
para hacernos salir adelante, por el apoyo y confianza que siempre me habéis dado y
por los valores que me habéis transmitido. Todo lo que soy hoy como persona se lo
debo a ellos. Junto con mi abuelo, han sido el modelo y guía durante toda mi vida.
A mi hermana, por ser cómplice de tantas situaciones y sensaciones indescriptibles. A
mis tíos, por ser otro pilar y referente dentro de mi familia. Y a mis primos, por ser
también mis hermanos.

Finalmente, y en general, quiero expresar mi agradecimiento a todas las personas
que durante algún momento me han acompañado en este camino, y que de un modo
más o menos directo, han supuesto un apoyo para la consecución de este trabajo.

A todos y cada uno de vosotros: gracias.



A mis padres



List of Tables

2.1 Camera specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Mirror specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Calibration parameters for the Wide 70 and Super-Wide mirrors. . . . . 30
2.4 Pioneer P3-AT specifications . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5 LMS200 specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 Dataset characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Dataset characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Equations for Jji. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xix





List of Figures

1.1 Different robotics applications. Figure 1.1(a) shows the Mars Rover, a
NASA explorer. Figure 1.1(b) shows the da Vinci surgical system. Fig-
ure 1.1(c) shows a Samsung autonomous cleaning robot. Figure 1.1(d)
shows a shipping drone used by Amazon. Figure 1.1(e) shows the self-
driving car developed by Google. Figure 1.1(f) shows an agricultural
robot by Bosch. Figure 1.1(g) shows the Nitrofirex, a firefighting UAV.
Figure 1.1(h) shows a the AUV Sirus. Figure 1.1(i) shows the JJCR
H20, a domestic mini-drone. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Integrated exploration and its relations within the framework of SLAM. 4
1.3 Figure 1.3(a) shows an example of a laser sensor. Figure 1.3(b) shows

an example of a sonar sensor. . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Occupancy and landmark maps. Figure 1.4(c) and Figure 1.4(d) present

2D and 3D landmark maps, respectively. Figure 1.4(a) and Figure 1.4(b)
present 2D and 3D occupancy maps, respectively. . . . . . . . . . . . . . 5

2.1 Generation of an image point p(u, v) in pixels from its corresponding
3D point X. The center of projection of the camera coincides with the
focus of the hyperboloid. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Representation of two central camera models. Figure 2.2(a) corresponds
to a central camera model for the standard planar perspective model,
which is not able to distinguish opposite points. Figure 2.2(b) corre-
sponds to the spherical central camera model, valid for omnidirectional
models, where opposite points are distinguishable by half-lines. . . . . . 22

2.3 Mapping of a scene point X to the point u′′ on the sensor plane, seen
on the XZ plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Camera CCD FireWire DMK21BF04. . . . . . . . . . . . . . . . . . . . 25
2.5 Hyperbolic mirrors used in this work, assembled in their coupling sys-

tems. Figure 2.5(a) presents the Wide 70 manufactured by Eizho. Fig-
ure 2.5(b) presents the Super-Wide manufactured by Accowle. . . . . . 25

2.6 Example of two omnidirectional images captured with the hyperbolic
mirrors: Wide 70 in Figure 2.6(a), and Super-Wide in Figure 2.6(b). . . 26

2.7 Projection model of an omnidirectional camera with an hyperbolic mirror. 28
2.8 Misalignment effects caused on the image plane. Figure 2.8(a) repre-

sents the ideal case whereas Figure 2.8(b) represents the realistic case
where there exists misalignment. . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Chessboard pattern with corner points indicated. These corner points
are the input for the calibration toolbox which returns the projection
function f that characterizes our omnidirectional sensor. . . . . . . . . . 30

xxi



2.10 Figure 2.10(a) shows the reprojected chessboard patterns from which
the corner points were detected for the calibration of the Wide 70 mirror.
Figure 2.10(b) shows the estimated f(ρ) obtained with the calibration
toolbox for the same mirror. ρ is measured as the distance in pixels
from the center of the omnidirectional image . . . . . . . . . . . . . . . 31

2.11 Projection model of the panoramic view. Point p(u, v)omni converts into
p(x, y)pano. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.12 Panoramic images converted from the omnidirectional reference system.
Figure 2.12(a) shows the image acquired with the Eizoh Wide 70 while
Figure 2.12(b) shows the image acquired with the Accowle Super-Wide
mirror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.13 Conversion from omnidirectional to panoramic view. Feature points are
detected on the panoramic, in Figure 2.13(b), and back-converted to the
omnidirectional, in Figure 2.13(a). . . . . . . . . . . . . . . . . . . . . . 34

2.14 Robot Pioneer P3-AT used in this work for the acquisition of omnidi-
rectional images, raw laser data and odometry data. . . . . . . . . . . . 35

2.15 Figure 2.15(a) represents the diagram for the Odometry model 1. Fig-
ure 2.15(b) represents the diagram for the Odometry model 2. . . . . . . 37

2.16 Epipolar geometry applied to the standard planar camera system. . . . 42
2.17 Epipolar geometry applied to the omnidirectional camera system. . . . . 44
2.18 Motion transformation parameters between poses A and B, with rel-

ative angles indicated. Figure 2.18(a) shows the relative transforma-
tion, whereas Figure 2.18(b) shows the transformation in the camera
reference system. A 3D point, X(x, y, z) is indicated with its image
projection on both cameras, denoted as pA(u, v) and pB(u, v). . . . . . . 46

2.19 Interpretation of the four possible solutions on the plane XY, given
a computed rotation R1, and translation tx1, after applying epipolar
constraints. Figure 2.19(a) represents the valid solution where rays
intersect in front of both cameras. For each figure, the relative pair of
angles that determine the transformation between views is: (R1, tx1) in
Figure 2.19(a), (R2, tx1) in Figure 2.19(b), (R1, tx2) in Figure 2.19(c)
and (R2, tx2) in Figure 2.19(d). . . . . . . . . . . . . . . . . . . . . . . . 48

2.20 Diagram for the visual odometry approach. . . . . . . . . . . . . . . . . 49
2.21 Mockup for the Dataset 1. Two examples of views of the environment

are indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.22 Mockup for the Dataset 2. Six examples of views of the environment

are indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.23 Results of visual odometry obtained in the Dataset 1. The estimated

visual odometry is drawn in dash-dotted line, the odometry in dashed
line and the ground truth in continuous line. . . . . . . . . . . . . . . . 53

2.24 Error results obtained in the Dataset 1. Figure 2.24(a) represents the
error at each step in X, Y and θ. Figure 2.24(b) presents the mean
RMS error and standard deviation against the number of matched points. 54

xxii



2.25 Results of visual odometry obtained in the Dataset 2. The estimated
visual odometry is drawn in continuous line and the ground truth in
dash-dotted line. The dark dots represent the rest of images that con-
form the grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.26 Error results obtained in the Dataset 2. Figure 2.26(a) represents the
error at each step in X, Y and θ. Figure 2.26(b) presents the mean
RMS error and standard deviation against the number of matched points. 56

2.27 Block diagram for the Scheme 1. . . . . . . . . . . . . . . . . . . . . . . 57
2.28 Block diagram for the Scheme 2. . . . . . . . . . . . . . . . . . . . . . . 59
2.29 Block diagram for the Scheme 3. . . . . . . . . . . . . . . . . . . . . . . 59
2.30 Scheme 1: Former SVD solver. Evolution of the error in β and φ (deg)

against the number of matched points. The bins represent different
subdivisions for the number of matched points detected. The frequency
is presented as a % out of the total. . . . . . . . . . . . . . . . . . . . . 61

2.31 Scheme 2: SVD solver with n-subset inputs and histogram voting. Evo-
lution of the error in β and φ (deg) against the number of matched
points. The bins represent different subdivisions for the number of
matched points detected. The frequency is presented as a % out of the
total. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.32 Scheme 3: SVD solver with n-subset inputs selected by combinational
permutation, and histogram voting. Evolution of the error in β and
φ (deg) against the number of matched points. The bins represent
different subdivisions for the number of matched points detected. The
frequency is presented as a % out of the total. . . . . . . . . . . . . . . . 63

2.33 Scheme 1: Time consumption and error. Figure 2.33(a) shows the time
consumed by the SVD, the matching process and the total time con-
sumption. Figure 2.33(b) shows the error in β and φ against the total
time consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.34 Scheme 2: Error in β and φ against the total time consumption. . . . . 66
2.35 Scheme 3: Error in β and φ against the total time consumption . . . . . 66

3.1 The colored items represent the real position of both, the path followed
by a vehicle, denoted by its state vector xt, and the set of discovered
landmarks as li. The same variables are estimated by the SLAM algo-
rithm and represented with blank items. The observation measurement
between the vehicle and the landmarks are expressed by zt,i, while the
control input which drives the vehicle from consecutive states is indi-
cated by ut. Note that the true locations are never known or measured
directly. Observations are made between true vehicle and landmark
locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Markov model for the SLAM problem, where the observation measure-
ments are assumed conditionally independent. xt and ut represent the
state vector and control inputs respectively, meanwhile li and zt are
the landmark locations and their pertinent observation measurements.
Note that zt at each t comprises the whole set of observation measure-
ments to all the visible landmarks. . . . . . . . . . . . . . . . . . . . . . 73

xxiii



3.3 This diagram represents a general approach for offline graph methods
such as SGD. A set of nodes are included to define both robot’s poses
and landmarks’. Each node introduces an error term which is deter-
mined by the error between the odometry prediction, g, and the dis-
tance between nodes, or similarly by the error between the observation
measurement to a landmark, zt, and the prediction based on the state h. 78

3.4 Figure 3.4(a) plots three functions at prior GP randoms. The dotted
line shows generated y values, the blue and red lines represent larger
set of evaluated points. Figure 3.4(b) plots the three random functions
corresponding to the GP posterior. That is the prior conditioned on
the four indicated observations with crosses, which are free from noise. . 83

4.1 Map building process. First view in the map, IA, is initialized at the
origin A, namely pose xlA . While the robot traverses the environment,
correspondences may be found between IA and the current image cap-
tured at the current robot’s pose xv, so that the robot can extract its
location. In case there is not any correspondence found, a new view is
initialized using the current image, for instance IB at point B, namely
pose xlB . The procedure finalizes when the entire environment is rep-
resented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Observation model variables: Figure 4.2(a) represents the motion trans-
formation between the pose of the robot xv and a certain view xln . Sim-
ilarly, Figure 4.2(b) depicts the same transformation represented on the
image frame of the two views acquired at xv and xln . The relative an-
gles of the transformation are indicated as φ, β and the unknown scale
factor ρ. Corresponding points between images are shown by green circles. 92

4.3 Multiple data association with low parallax. . . . . . . . . . . . . . . . . 93
4.4 Block diagram of the visual-based EKF approach. . . . . . . . . . . . . 95
4.5 Given a detected point ~p1 in the first image reference system, a point

distribution is generated to obtain a set of multi-scale points λi ~p1. By
using the EKF prediction, they can be transformed into ~qi′ on the second
image reference system by means of epipolar geometry with a rotation
R∼N(β̂, σβ), translation T∼N(φ̂, σφ) and scale factor ρ̂. Finally, ~q′i are
projected into the image plane to determine a restricted area where
correspondences have to be found. The circled points represent the
projection of the normal point distribution for the multi-scale points
that determine this area. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Transformation of the epipolar curve into an elliptical area as a conse-
quence of the propagation of the current uncertainty of the map estima-
tion. A point in the first image lies on the epipolar line. In the second
image it also lies on the epipolar line, which is inside the elliptical area
predicted by means of the uncertainty propagation. . . . . . . . . . . . . 99

4.7 Block diagram of the enhanced matching model. . . . . . . . . . . . . . 99

xxiv



4.8 Results obtained in the first simulated scenario over 100 repetitions.
Figure 4.8(a) shows the ground truth in continuous line and the odom-
etry in dashed line. The location of the views that conform the final map
is indicated by blue dots and the observation range by a dash-dotted
circle. Figure 4.8(b) represents the variation of the RMS error on the
estimation against the observation range of the robot. The continuous
line represents the mean error on the estimation and the dashed line
the mean error on the odometry. . . . . . . . . . . . . . . . . . . . . . . 102

4.9 Results obtained in the second simulated scenario over 100 repetitions.
Figure 4.9(a) shows the ground truth in continuous line and the odome-
try in dashed line. The location of the views that conform the final map
is indicated by blue dots and the observation range by a dash-dotted
circle. Figure 4.9(b) represents the variation of the RMS error on the
estimation against the observation range of the robot. The continuous
line represents the mean error on the estimation and the dashed line
the mean error on the odometry. . . . . . . . . . . . . . . . . . . . . . . 103

4.10 Mockup for the Dataset 3. Two views are indicated. . . . . . . . . . . . 106

4.11 Mockup for the Dataset 4. Three views are indicated. . . . . . . . . . . 107

4.12 Mockup for the Dataset 5. Five views are indicated. . . . . . . . . . . . 108

4.13 Results obtained in the Dataset 3 (Figure 4.10) for a final map con-
stituted by N=7 views with A=0.02. Figure 4.13(a) presents the esti-
mated solution in dash-dotted line, the odometry in dashed line and the
ground truth in continuous line. The location of the views is indicated
by crosses and their uncertainty by error ellipses. Figure 4.13(b) repre-
sents the error at each step in X, Y and θ within convergence intervals
of 2σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.14 Results obtained in the Dataset 3 (Figure 4.10) for a final map consti-
tuted by N=12 views with A=0.05. Figure 4.14(a) presents the esti-
mated solution in dash-dotted line, the odometry in dashed line and the
ground truth in continuous line. The location of the views is indicated
by crosses and their uncertainty by error ellipses. Figure 4.14(b) repre-
sents the error at each step in X, Y and θ within convergence intervals
of 2σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.15 Results obtained in the Dataset 3 (Figure 4.10) for a final map con-
stituted by N=19 views with A=0.1. Figure 4.15(a) presents the esti-
mated solution in dash-dotted line, the odometry in dashed line and the
ground truth in continuous line. The location of the views is indicated
by crosses and their uncertainty by error ellipses. Figure 4.15(b) repre-
sents the error at each step in X, Y and θ within convergence intervals
of 2σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xxv



4.16 Results obtained in the Dataset 4 (Figure 4.11) for a final map consti-
tuted by N=10 views with A=0.04. Figure 4.16(a) presents the esti-
mated solution in dash-dotted line, the odometry in dashed line and the
ground truth in continuous line. The location of the views is indicated
by crosses and their uncertainty by error ellipses. Figure 4.16(b) repre-
sents the error at each step in X, Y and θ within convergence intervals
of 2σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.17 Results obtained in the Dataset 5 (Figure 4.12) for a final map consti-
tuted by N=8 views with A=0.02. The estimated solution is presented
in dash-dotted line, the odometry in dashed line and the ground truth
in continuous line. The location of the views is indicated by crosses and
their uncertainty by error ellipses. . . . . . . . . . . . . . . . . . . . . . 113

4.18 Error results obtained in the Dataset 5. Figure 4.18(a) represents the
error of the estimation at each step in X, Y and θ within convergence
intervals of 2σ. Likewise Figure 4.18(b) represents the error of the
odometry at each step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.19 Time consumption against number of views observed. Figure 4.19(a)
presents the total computation time divided into: observation time
(blue, left-side y-axis) and processing time (green, right-side y-axis).
Figure 4.19(b) represents with continuous line the standard deviation
in the observation time along the 300 repetitions of the experiment.
The mean value is drawn with dash-dotted line. . . . . . . . . . . . . . . 117

4.20 RMS error (blue, left-side y-axes) and time consumption (green, right-
side y-axes) against number of views observed. Figures 4.20(a) and 4.20(b)
present separately the observation time and the processing time against
the number of views observed, respectively. The times values and the
RMS error are drawn with colored continuous line whereas the mean
value for the RMS error is drawn with dash-dotted line. . . . . . . . . . 118

4.21 Standard deviation for the RMS error in Figure 4.20. . . . . . . . . . . . 119

5.1 Figure 5.1(a) presents the estimated trajectory obtained with the pro-
posed SGD approach in an environment of 20x20 m. The continuous line
shows the real path, the dash-dotted line the odometry and the dashed
line the estimated solution. Figure 5.1(b) shows the accumulated error
probability F (x) along the number of iterations. . . . . . . . . . . . . . 130

5.2 Figure 5.2(a) shows SLAM results in an office-like environment of 20×50m.
Real path in continuous line, odometry in dash-dotted line and the esti-
mated solution in dashed line. Figure 5.2(b) compares the accumulated
error probability F (x) of the presented approach (continuous line), and
the F (x) of the standard SGD (dashed line). . . . . . . . . . . . . . . . 131

5.3 Figure 5.3(a) shows SLAM results in a real office environment. The
continuous line shows the real path, the dashed line the odometry and
the dash-dotted line the estimated solution. Figure 5.3(b) shows the
accumulated error probability F (x) along the number of iterations for
our approach and the standard SGD respectively. . . . . . . . . . . . . . 133

xxvi



5.4 Figures 5.4(a) and 5.4(a) show SLAM results in a real office environ-
ment, with N=5 and N = 30 views observed respectively. The contin-
uous line shows the real path, the dash-dotted line the odometry and
the dashed line the estimated solution. . . . . . . . . . . . . . . . . . . . 135

5.5 Accumulated error probability F (x). Results obtained for the map
shown in Figure 5.4(a) with N=5 views, are compared using dashed
lines: the dashed blue line represents the proposed approach while the
dashed red line represents the standard SGD. Results obtained for the
map shown in Figure 5.4(b) with N=30 views, are compared using con-
tinuous lines: the continuous blue line represents the proposed approach
whereas the continuous red line represents the standard SGD. . . . . . . 136

5.6 Figures 5.6(c), 5.6(a) and 5.6(b) show the accumulated error probability
F (x) in a SLAM experiment, when the map is composed by N = 2,
N = 4 and N = 8 views respectively. The continuous lines show the
results provided by the proposed solution whereas the dashed lines show
results provided by the standard SGD solution. Different lengths for the
observation range are defined: rmin, rinter, rmax. . . . . . . . . . . . . . 138

5.7 Figures 5.7(a) and 5.7(b), present results of SLAM using a SGD algo-
rithm with real data. These map representations are formed by N=10
and N=20 respectively. The dash-dotted line represents the solution
obtained with the SGD approach, the continuous line represents the
ground truth whereas the odometry is drawn with dashed line. . . . . . 140

5.8 Comparison results between SGD and EKF in a low non-linear noise
scenario. Figure 5.8(a) presents RMS error against number of views
N . Figure 5.8(b) presents time consumption against number of views
N . The continuous line shows values for the solution provided by EKF,
meanwhile the dashed line shows the error for the solution obtained
with SGD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.9 Figures 5.9(a) and 5.9(b) presents the RMS error (m) against the prob-
ability of data association error (%) for EKF and SGD respectively.
Error for maps with different number of views N are indicated. . . . . . 144

6.1 Sensor data information distribution: probability of existence of feature
points on the 2D reference system. . . . . . . . . . . . . . . . . . . . . . 148

6.2 Map building process. The robot explores the environment while simul-
taneously initializes image views in the map at poses A, B and C. . . . 148

6.3 Detailed description of example presented in Figure 6.2: Figure 6.3(a)
represents the motion transformation between poses A, B and C. Fig-
ure 6.3(b) shows the images acquired at A, B and C, where the pro-
jection of P (x, y, z) on every image is indicated as pA(u, v), pB(u, v)
and pC(u, v) respectively. Feature points matched between images are
plotted with green crosses whereas the new feature points are plotted
with blue crosses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xxvii



6.4 Evolution of the sensor data information distribution along poses A,
B and C, as described in the example presented in Figure 6.2: Fig-
ure 6.4(a), Figure 6.4(b) and Figure 6.4(c) correspond to A, B and C
respectively. This sequence expresses the variation on the probability
of existence of feature points on the 2D reference system. . . . . . . . . 151

6.5 Block diagram summary for the EKF-based visual SLAM approach,
with GP regression and Information-based view initialization for the
uncertainty reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.6 Evolution of the uncertainty along the robot’s path. Different threshold
values for γ are shown and compared to the uncertainty obtained with
the former initialization ratio (4.4), employed in Chapter 4. . . . . . . . 154

6.7 Evolution of the mean uncertainty accumulated on the total map. Dif-
ferent threshold values for γ are shown and compared to the uncer-
tainty obtained with the initialization ratio (4.4) employed in the former
SLAM approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.8 RMS error for different initialization ratios γ. The RMS value obtained
with the former SLAM approach has been also plotted for comparison. . 155

6.9 RMS error for different grid size resolutions. The grid size resolutions
are expressed up to the scale factor of the current map. The RMS value
obtained with the former SLAM approach has been also plotted for
comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.10 Figure 6.10(a) presents real data results obtained with uncertainty re-
duction in the EKF-based SLAM approach. The map of the environ-
ment is formed by N=12 views. The position of the views is presented
with error ellipses. Figure 6.10(b) shows the estimation and the odom-
etry error in X, Y and θ at each time step. . . . . . . . . . . . . . . . . 158

6.11 Figure 6.11(a) presents real data results obtained with uncertainty re-
duction in the EKF-based SLAM approach. The map of the environ-
ment is formed by N=28 views. The position of the views is presented
with error ellipses. Figure 6.11(b) shows the estimation and the odom-
etry error in X, Y and θ at each time step. . . . . . . . . . . . . . . . . 159

6.12 Figure 6.12(a) presents real data results obtained with the former EKF-
based SLAM approach, detailed in Chapter 4. The map of the environ-
ment is formed by N=11 views. The position of the views is presented
with error ellipses. Figure 6.12(b) shows the estimation and the odom-
etry error in X, Y and θ at each time step. . . . . . . . . . . . . . . . . 160

6.13 Main details of the large scenario where the last dataset was acquired.
The layout of the building, real path followed by the robot and some
omnidirectional views of different areas are indicated. . . . . . . . . . . 161

6.14 Real data results obtained with uncertainty reduction in the EKF-based
SLAM approach for a large scenario presented in Figure 6.13. The map
of the environment is formed by N=41 views. The position of the views
is presented with error ellipses. Figure 6.14(b) shows the estimation
and the odometry error in X, Y and θ at each time step. . . . . . . . . 162

6.15 Evolution of the pose and map uncertainty for the large scenario pre-
sented in presented in Figure 6.13. . . . . . . . . . . . . . . . . . . . . . 163

xxviii



List of Algorithms

1 Odometry model 1 algorithm . . . . . . . . . . . . . . . . . . . . . . . 39
2 Data Association algorithm . . . . . . . . . . . . . . . . . . . . . . . . 95
3 Proposed SGD algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 127

xxix





Contents

List of Tables xix

List of Figures xxi

List of Algorithms xxix

Contents a

1 Introduction 1
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Set of Publications Supporting this Thesis . . . . . . . . . . . . . . . 10
1.4 Additional Publications . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 Grants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.2 Research Stays and Collaborations . . . . . . . . . . . . . . . 14
1.5.3 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Omnidirectional Vision 19
2.1 Catadioptric Projection . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Omnidirectional Calibration . . . . . . . . . . . . . . . . . . . 23
2.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Omnidirectional System . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Robot Pioneer P3-AT . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Epipolar Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 Computing Motion Transformation . . . . . . . . . . . . . . . 43
2.3.2 Visual Odometry . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Simultaneous Localization And Mapping - SLAM 69
3.1 SLAM Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1.1 Bayesian Considerations . . . . . . . . . . . . . . . . . . . . . 71
3.2 Extended Kalman Filter - EKF . . . . . . . . . . . . . . . . . . . . . 72

3.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.2 State Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.3 Observation Measurement . . . . . . . . . . . . . . . . . . . . 75
3.2.4 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



3.2.5 Matrix Notation . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3 Stochastic Gradient Descent - SGD . . . . . . . . . . . . . . . . . . . 77

3.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Gaussian Processes - GP . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.1 General Notation . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5.2 Information Gain . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 EKF-based SLAM Contributions 87
4.1 Map Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.1 View Initialization . . . . . . . . . . . . . . . . . . . . . . . . 89
4.1.2 Observation Model . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.3 Data Association . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.4 Enhanced Matching . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.1 Simulation Dataset . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.2 Real Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5 SGD-based SLAM Contributions 123
5.1 Proposed SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1.1 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2.2 Real Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Information-based SLAM Contributions 145
6.1 Sensor Data Distribution . . . . . . . . . . . . . . . . . . . . . . . . 146

6.1.1 Uncertainty Reduction . . . . . . . . . . . . . . . . . . . . . . 149
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2.1 Initialization Ratio and Sampling Resolution . . . . . . . . . 152
6.2.2 Map Building with Uncertainty Reduction . . . . . . . . . . . 157

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7 Conclusions and Future Work 165
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8 Appendix: Set of Publications 169
A Creación de un modelo visual del entorno basado en imágenes om-

nidireccionales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

b



B A modified stochastic gradient descent algorithm for view-based
SLAM using omnidirectional images . . . . . . . . . . . . . . . . . . 183

C A comparison of EKF and SGD applied to a view-based SLAM
approach with omnidirectional images . . . . . . . . . . . . . . . . . 197

Bibliography 211

c





1 Introduction

Robotics has shown an important proliferation in the recent days. Robots have been
present in our society for several decades, however, the first generation were only in-
troduced in the industrial sector, where the main purpose was the optimization of
operators’ tasks and their safety. Another common example in its early days is the
humanoid robot, being at first instance a mere machine with human resemblance and
appearance, in shape and movement. However, during the last decade remarkable
advances have been achieved. The fusion of Artificial Intelligence within the field of
robotics has allowed to provide powerful autonomous systems with an endless list of
possible applications. Their incipience started at military applications, but they were
rapidly extended to a diverse range of tasks which sustain the tremendous growth
experienced by robotics nowadays. Some examples are: space robots, rescue robots,
medical and assistance robots, domestic robots, education and entertainment robots,
manufacturing and agricultural robots. Special mention must be made of the commer-
cial boost in the sales of drones. These promising UAVs demonstrate capabilities to
meet the requirements established by almost any of the possible field of applications
mentioned above. Besides these, another interesting aspect that stands out is the re-
cent trend of research towards total autonomous vehicles, as well known as self-driving
cars. Figure 1.1 graphically synthesizes all these examples.

In general, any robot targeted at any of the possible field of applications should
comprise an overall capability balanced between autonomy, environment perception,
decision-making and adaptability. In this sense, the sensors of a robot represent a key
aspect to finally determine its possible capabilities, assets and final purpose. Among
the most common sensors, we can find: laser, sonar, encoders, pressure sensors, capac-
itive sensors, GPS, IMU, etc. In this thesis we have relied on another sort of sensors,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.1: Different robotics applications. Figure 1.1(a) shows the Mars Rover, a NASA
explorer. Figure 1.1(b) shows the da Vinci surgical system. Figure 1.1(c) shows a Samsung
autonomous cleaning robot. Figure 1.1(d) shows a shipping drone used by Amazon. Figure 1.1(e)
shows the self-driving car developed by Google. Figure 1.1(f) shows an agricultural robot by
Bosch. Figure 1.1(g) shows the Nitrofirex, a firefighting UAV. Figure 1.1(h) shows a the AUV
Sirus. Figure 1.1(i) shows the JJCR H20, a domestic mini-drone.
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1.1. Scope

the visual systems. To date, most of the approaches have extensively used the for-
mer sensors, certainly due to their precision, robustness and maturity. However, more
recently the tendency has turned to the use of visual information by means of digital
cameras. Many applications benefit from the use of these sensors, whose characteris-
tics outperform the previous sensors such as lasers in terms of the amount of usable
information from the environment, but also due to their low cost, light weight and low
consumption principally.

The next big challenge for an autonomous robot is to identify the paradigm
and algorithms to process the information gathered. This is essential when it comes
to decision and action-related situations. The robot must be autonomous in order to
determine its own understanding of the environment, its current position inside this
environment and the way to traverse it while interacting with the elements of such
workspace. This exposition leads to the formulation of three fundamental concepts
in mobile robotics: Localization, Mapping and Path Planning. The three of them
directly translate the ideas exposed above. Their interrelation generates the most es-
sential paradigm in such context: the problem of SLAM, (Simultaneous Localization
And Mapping). Such problem poses a non-trivial challenge since it involves a laborious
process to simultaneously deal with the Mapping and the Localization of the robot.
This fact brings a challenge with regard to complexity, as the procedure is expected to
work incrementally and to return a coherent representation of the environment. More-
over, the starting point assumes a void knowledge of the environment. Besides, the
existence of noise sources becomes accountable for undesired effects which aggravate
and jeopardize the final estimation. The Path Planning poses an extra challenge since
it adds another decision stage to the previous process. As a result, different patterns
arise. We can differentiate between Classic Exploration and Active Localization. The
first one is referred to the navigation task conducted by the robot while it explores an
environment and constructs a map simultaneously. The second term corresponds to
the disambiguation needed when the robot already possesses a map estimation. Here,
the robot keeps moving in order to get a more accurate localization with similar data
measures from the environment. Figure 1.2 presents the integration of the previous
terms and the resulting interrelations. Having presented these terms, we can situate
the work conducted in this thesis within the research area of SLAM.

1.1 Scope

In the field of mobile robot applications, as already commented, the problem of SLAM is
a crucial aspect to deal with, due to the necessity for a complete map of the environment
which aids in the simultaneous localization of the robot. Thus this becomes the major
expected capability in order to designate a robot as autonomous.

To date, SLAM approaches have been differentiated according to several fac-
tors, such as the way to estimate the representation of the map, the main algorithm
for computing a solution and the kind of sensor to extract information from the envi-
ronment. For instance, several map models were obtained thanks to the extensive use
of laser data range [22] and sonar [54, 79]. Similar examples are extended to 3D [131]
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Figure 1.2: Integrated exploration and its relations within the framework of SLAM.

(a) (b)

Figure 1.3: Figure 1.3(a) shows an example of a laser sensor. Figure 1.3(b) shows an example
of a sonar sensor.

and [3], where they use laser data in the first case, and laser combined with orientation
data in the second. Laser approaches are commonly more precise than sonar [145] to
these purposes. Figure 1.3 presents two examples of such sensors. In this sense, maps
were principally generated by two representation models [127] and [94], corresponding,
respectively, to 2D occupancy grid maps based on raw laser, and 2D landmark-based
maps focused on the extraction of features, described from laser data measurements.
Again, these models were rapidly extrapolated to 3D [36], [63]. Figure 1.4 shows
several examples of these kind of maps.

More recently, visual sensors have reached a great emergence as the main tool
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(a) (b)

(c) (d)

Figure 1.4: Occupancy and landmark maps. Figure 1.4(c) and Figure 1.4(d) present 2D and
3D landmark maps, respectively. Figure 1.4(a) and Figure 1.4(b) present 2D and 3D occupancy
maps, respectively.

for collecting information for these map models. They represent a promising alternative
to the classic sensors such as later or sonar in terms of the amount of usable information
they can provide for the mapping tasks. Many approaches have concentrated on the
use of two calibrated cameras, commonly known as stereo cameras, in order to extract
sets of 3D visual landmarks with their visual description [43]. Other approaches merely
exploit a monocular camera to estimate 3D visual landmarks [20, 69, 27]. They initialize
the coordinates of each 3D landmark relying on an inverse depth parametrization, since
there exists lack of scale on the distance to each landmark. Omnidirectional cameras,
have especially proven the quality for collecting large amounts of visual information.
They have been used solely [152, 106], and some others have even arranged two
omnidirectional cameras, in order to take the best advantage of their wider field of
view [112].

Another crucial aspect is the sort of estimation algorithm used as the kernel
of the SLAM system. The most extensively used are online methods such as the
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Extended Kalman Filter (EKF) [26], Rao-Blackwellized particle filters [94, 133, 93]
and offline algorithms, such as the Stochastic Gradient Descent (SGD) [53], Multi-
Level Relaxation [39] or Levenberg-Marquardt [87]. Over the last years, great efforts
have been made on the study of the EKF-based SLAM methods sustained by visual
sensors [26, 25, 20] and [43, 105, 55]. They all coincide on the position estimation
of 3D visual landmark sets in a common reference system. The first cited group used
monocular cameras with similar parametrization whereas the second group focused on
larger layouts. These approaches are liable to encounter difficulties in assuring the
convergence of the solution, particularly in the presence of non-linear errors.

A last mention has to be made of the applications focused on a different manner
to process the visual information, that is, the appearance-based approaches. Contrarily
to feature point methods (landmark-based), the latest group exploits the visual infor-
mation in the form of an image as a whole. Each computed visual description consists
of information processed from a specific image. This line is followed in approaches
such as [37]. In general, these techniques reveal more efficient results, aiming at time
reduction, but at a significant cost of precision.

Synthesizing, within the main field of mobile robotics, we can identify the scope
for the major research of this thesis as the visual SLAM with feature point information
provided by omnidirectional cameras.

1.1.1 Motivation
Having briefly introduced the scope of this thesis, a deeper contextualization level has
to be exposed in order to justify the main reason which drove us to conduct the research
under the framework of this thesis.

As commented above, we can assume three main factors which determine the
final behaviour of a SLAM system. Therefore these factors become liable to be analyzed
in depth so as to outline the motivation of this thesis:

1. Map model.

2. Sensors used.

3. Estimation algorithm.

Focalizing on these points, we encounter that one of the most precise solutions is
provided by those map models consisting of a 3D estimation of visual landmarks [139],
as physic points in the environment [59]. The visual approach for such maps demon-
strate a better efficiency in terms of the final representation, since they can effortlessly
encode the environment by means of a set of visual landmarks. In contrast, occupancy
maps require more expensive computational resources to process and store the infor-
mation, with high dependance on the resolution of the grid. Consequently, here we
target the map model based on feature points information.
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The key for such visual landmarks approaches relies on an accumulative esti-
mation of the landmarks as long as the robot explores the environment [26]. Thus,
whenever new information of the environment is discovered, it has to be incrementally
added to the procedure by which the environment is re-estimated. In the end, the final
map comprises the total set of estimated landmarks and the path followed by the robot
referred to that map. Not to mention that the localization within this map has to be
performed simultaneously. All together pose a real challenge, since the complexity of
the problem escalates dramatically with the number landmarks, that is, with the num-
ber of variables. Moreover, some other aspects may intensify this complexity escalation.
Acknowledged estimation algorithms such as the EKF evidence complexities with order
O(N2), being N the number of variables representing the landmarks estimated in the
map. This issue may be aggravated to the extent of considering a combination of
diverse sensors with high computational requirements such as laser [56]. As a result,
this issue affects negatively to the dimension of the map and the complexity of the
entire process, which finally becomes critical when there is a high rate of re-estimation.

Despite the fact that complexity reduction and similar optimization contribu-
tions might be the obvious solution to work on, there are many authors who already
concentrated on such approaches [57, 15]. Contrarily to this, here we find a challenging
motivation to establish a research line on the definition of a novel map approach. We
strongly believe that a compact representation of the environment can be proposed by
means of a reduced set of images. The projection nature of omnidirectional cameras
allows us to encode large amounts of visual information in a single image. Therefore
this led us to devise a map composed by views, and consequently, a localization model
in accordance to such map model. It is worth highlighting the relevance of a well-
designed observation model in order to provide a feasible localization, especially with
light computational requisites. The main purpose is to encode the environment with a
reduced number of variables.

Regarding the kind of visual sensors, firstly we justify this election due to their
powerful advantages in contrast to laser and sonar:

• Low weight and dimensions.

• Low cost.

• Low consumption.

• High amount of information in a single image.

• High level of processing tasks such as recognition.

Two approaches can be used in order to process the visual information provided
by these sensors: feature-based and appearance-based. We opt for the extraction
of feature points as they represent a mature and robust solution for the precision
requirements we are dealing with in this thesis. We consider a sort of environments
where there are distinctive physic details to be detected, as well as noticeable changes in
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the point of view. Besides we intent to provide with a feasible observation model which
relies on well-defined geometric relations, based on the information gathered extracted
from the feature points. These facts suggest that feature methods are a robust option
for such context. On the contrary, appearance-based methods, despite the fact that
provide speeded-up results, are less precise under such circumstances. They encode a
whole image in an only visual descriptor, thus dismissing valuable information about
the scene. They also suffer from visual aliasing, that is, they fail to discern between
similar visual information. However, on the feature methods downside, we have to deal
with the calibration estimation and its associated errors, but also with problems such
as the invariance to image changes, in terms of the type of visual descriptor chosen. In
this sense, there are some methods which stand out from the others, as SIFT [86] and
SURF [7]. When dealing with a general movement where relevant changes in the point
of view are expected, and therefore a significant robustness in the detection is required,
studies such as [44] demonstrates that SIFT fails to extract robust feature points when
there are distance and orientation changes to these points. The results presented in [42]
suggest that SURF provides a balanced solution in terms of efficiency and precision.
According to this, SURF represents the visual description method employed in the
framework of this thesis.

As for the estimation algorithm, as recently mentioned, the EKF has demon-
strated its large acceptance in the community, as one of the best exponent of solver
methods in the visual SLAM field. Nevertheless, these methods are troublesome in the
presence of non-linear errors as they present difficulties in maintaining the convergence
of the estimation. This situation normally appears in the presence of non-Gaussian
errors introduced by the observation measurement, which usually causes data associ-
ation problems [89]. Such errors are usually provoked by sensory input, in particular,
omnidirectional sensors are significantly susceptible to cause this issue [137], due to its
high non-linear nature. Other offline algorithms [151, 148, 128] emerge as alternatives
to enhance stability under non-linear circumstances. Within this last group, specific
techniques are defined in order to take advantage of different optimization techniques
embedded in the core of the estimation algorithm [76, 33].

The main consequences in terms of non-linearities and instabilities, made us
state a new research branch on the algorithm side. Here we seek to evaluate different
estimation methods from the most typically employed. In this sense, we researched on
a new estimation algorithm and devised several considerations when assuming the new
map model sustained by omnidirectional images.

Another recognized drawback of former approaches is the management of the
uncertainty of the system. This is generally derived from the same non-linear sources
which mainly originate the sensor data. Taking no action on the uncertainty may
severely compromise the convergence [64] of many estimators. This fact led us to
outline a research line on the uncertainty reduction in compliance with real time oriented
applications
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1.1.2 Objectives
According to the motivation introduced in the previous section, the main objective of
this thesis is to design a new map model, as the core of a view-based SLAM approach,
based on a reduced set of omnidirectional images acquired with a single camera, from
which certain visual information associated with a set of feature point is employed. To
that final purpose, several goals have to be established in relation to:

• New map model proposal

– Review the state of the art.
– Study on the possibilities provided by monocular cameras, omnidirectional

in particular, to represent the environment in a simpler and more compact
manner with less number of variables.

– Propose a new observation model to compute the motion transformation
between poses, using omnidirectional views, as the key parts of the map.

– Adapt the reference system to the omnidirectional geometry.
– Extract preliminary visual measurements usable in a real time context.
– Devise a reliable image initialization procedure for the variables of the map

model.
– Real data set acquisition and image processing.
– Test the validity, efficiency, and general performance of the new map ap-

proach.

• Robustness against non-linearities

– Overcome typical drawbacks presented by traditional map approaches.
– Study on the different core estimation algorithms available.
– Enhance the motion transformation computation.
– Study on the improvements of the feature matching process.
– Validation and comparative tests definition.

• Uncertainty reduction

– Aid in the convergence assurance.
– Study on the Bayesian techniques to obtain a probabilistic distribution of

the visual information of the environment.
– Study on the Information-based techniques to interrelate to the uncertainty

of the system.
– Propose a robust initialization view strategy based on the uncertainty re-

duction.
– Validation and comparative tests, including larger scenarios.
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1.2 Contributions

All the research conducted towards the achievement of the previous objectives resulted
in several major contributions, which can be chronologically listed according to their
development and implementation as follows:

• Implementation of a motion transformation model between poses at which om-
nidirectional images are acquired: performance results and a visual odometry
approach were proposed.

• Definition and implementation of a new representation of the environment: map
model based on a reduced set of omnidirectional views. This represents the basis
for our view-based SLAM approach.

• Enhancement of the matching process within the observation model. Achieve-
ment through the propagation of the uncertainty of the system.

• Implementation of a modified SGD solver algorithm, adapted to the omnidirec-
tional geometry of our view-based SLAM approach, so as to enhance robustness
against non-linearities, in contrast to traditional solvers.

• Implementation of a new view initialization mechanism which accounts for infor-
mation gain and losses within the SLAM system. As a result, the uncertainty of
the system is reduced and the convergence of final estimation assured.

1.3 Set of Publications Supporting this Thesis

The major implementations and contributions made in this thesis are supported by a set
of publications in journals ranked in the JCR Science Edition. The following journal
papers support the work conducted in this document, which represent the result of
the research under the scope of this thesis, with direct relation to the motivation and
objectives already established:

• Creación de un modelo visual del entorno basado en imágenes omnidireccionales.
[46]
A. Gil, D. Valiente, O. Reinoso, J.M. Marín
Revista Iberoamericana de Automática e Informática Industrial, RIAI. Vol
9. pp. 441-452. 2012
ISSN: 1697-7912. Ed. Elsevier.
JCR-SCI Impact Factor: 0.475, Quartile Q4.

• A modified stochastic gradient descent algorithm for view-based SLAM using
omnidirectional images. [136]
D. Valiente, A. Gil, L. Fernández, O. Reinoso
Information Sciences. Vol 279. pp. 326-337. 2014.
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ISSN: 0020-0255. Ed. Elsevier.
JCR-SCI Impact Factor: 3.364, Quartile Q1.

• A comparison of EKF and SGD applied to a view-based SLAM approach with
omnidirectional images. [135]
D. Valiente, A. Gil, L. Fernández, O. Reinoso
Robotics and Autonomous Systems. Vol 62. pp.108-119. 2014.
ISSN: 0921-8890. Ed. Elsevier.
JCR-SCI Impact Factor: 1.618, Quartile Q2.

The first article focuses on the main proposal made in this thesis. The new map model,
consisting of a reduced set of omnidirectional images is presented. The results of this
publication confirm the validity of this approach which is established as an EKF view-
based model. Chapter 4 comprises the extended explanation and further details of this
contribution. Next, the second article presents all the work done on the adaption of the
SGD structure to the omnidirectional geometry, but also to the new map representation
proposed in this thesis, represented by the recently commented EKF view-based SLAM
approach. Efficiency and accuracy comparison experiments with the standard SGD
are presented to confirm the benefits provided by this contribution in terms of non-
linearity mitigation. Additional details about this implementation are presented in
Chapter 5. Then, the third article concentrates on a comparative study between two
of the main contributions made under the framework of this thesis: the EKF view-
based SLAM model which contains the new map model consisting of a reduced set
of views and the modified SGD algorithm which was adapted to the omnidirectional
geometry. Both contributions are presented in the two previous articles, and thus lead
to the introduction of this third article. The results show that, despite the fact that
the SGD is an offline method, it reveals to be a reliable alternative in order to deal
with the non-linear effects which are very likely to compromise the EKF convergence.
Chapter 4 and Chapter 5 provide further details about all these developments and the
corresponding comparison results.

These articles presented above are appended in Appendix 8. The main con-
tributions and conclusions extracted from the articles are related to the structure of
this thesis along each specific chapter. Moreover, a brief synthesis is presented as a
section in this introductory chapter. In addition, their contents coincide in terms of
scope with other of the additional publications which are going to be listed in the next
section. Some were produced either as continued or former work within the same lines
of research.

Apart from the set of journal articles supporting this thesis, a special mention
has to be made of two other two articles which complement the backbone of this
thesis. The first presents the latest implementation of a new view initialization mecha-
nism which accounts for information gain and losses in order to bound the uncertainty
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of the system. The combination of Gaussian Processes with Information-based tech-
niques demonstrate an improvement in our view-based SLAM approach to deal with
the convergence issues. Here, several comparative results are presented to confirm the
suitability of the novel approach but also its powerful advantages in contrast to the
former approach, initially proposed in this thesis. All the fundamentals of these con-
tributions are detailed in Chapter 6. Finally, the last manuscript presents an approach
to visual odometry which benefits from the uncertainty propagation to the matching
process. Here, the adoption of the epipolar constraint to the omnidirectional geometry
is presented in order to define the motion transformation model, but also to design
an enhanced matching process. As a result, this approach provides an improved and
reliable feed-forward input for our view-based SLAM system. A set of real data experi-
ments confirm the validity of this contribution and it assesses its performance. Further
details are provided in Chapter 2.

• Information-based view initialization in visual SLAM with a single omnidirectional
camera. [138]
D. Valiente, M. G. Jadidib, J. Valls, A. Gil, O. Reinoso
Robotics and Autonomous Systems. Vol 72. 2015.
ISSN: 0921-8890. Ed. Elsevier.
JCR-SCI Impact Factor: 1.618, Quartile Q2.

• Visual odometry with a single omnidirectional camera for the view-based SLAM
problem.
D. Valiente, A. Gil, L. Payá, D. Úbeda, O. Reinoso
Submitted to Information Fusion.
ISSN: 1566-2535. Ed. Elsevier.
JCR-SCI Impact Factor: 4.353, Quartile Q1.

1.4 Additional Publications

Besides the main publications supporting this thesis, as a result of the research period,
a list of additional publications which have been produced under the framework of this
thesis is presented:

Journal Publications

• D. Valiente, L. Fernández, A. Gil, O. Reinoso. Visual odometry through appearance-
and feature-based method with omnidirectional images. Journal of Robotics. Ed.
Hindawi Publishing Corporation. ISSN:1687-9619. 2012.

Book Chapter Publications
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• D. Valiente, A. Gil, L. Fernández, O. Reinoso. Visual SLAM Based on Single
Omnidirectional Views. Informatics in Control, Automation and Robotics. Series:
Lectures Notes on Electrical Engineering. ISBN:978-3-319-03500-0.

International Conference Publications

• F. Amorós, L. Payá, O. Reinoso, L. Fernández, D. Valiente. Towards relative
altitude estimation in topological navigation tasks using the global appearance
of visual information. VISSAP: International Conference on Computer Vision
Theory and Applications. Lisbon, Portugal, 2014.

• D. Valiente, A. Gil, F. Amorós, O. Reinoso. SLAM of View-based Maps using
SGD. ICINCO 2013 International Conference on Informatics in Control, Automa-
tion and Robotics. Reykjavik, Iceland, 2013.

• D. Valiente, A. Gil, L. Fernández and O. Reinoso. View-based SLAM using
Omnidirectional Images. ICINCO 2012. International Conference on Informatics
in Control, Automation and Robotics. Rome, Italy, 2012.

• L. Fernández, L. Payá, D. Valiente, A. Gil, O. Reinoso. Monte Carlo Localization
using the Global Appearance of Omnidirectional Images Algorithm Optimization
to Large Indoor Environments. ICINCO 2012. International Conference on In-
formatics in Control, Automation and Robotics. Rome, Italy, 2012.

• A. Gil, D. Valiente, O. Reinoso, L. Fernández, J. M. Marín. Building Visual
Maps with a single Omnidirectional Camera. ICINCO 2011. International Con-
ference on Informatics in Control, Automation and Robotics. Noordwijkerout,
Netherlands, 2011.

• A. Gil, D. Úbeda, O. Reinoso, L. Payá, D. Valiente. Creación de un laboratorio
remoto para la docencia del lenguaje C/C++. Conferencia Internacional de
Ingeniería Mecánica y Energía 2010. Santiago de Cuba, Cuba, 2010.

National Conference Publications

• C. Parra, L. M. Jiménez, M. Ballesta, O. Reinoso, D. Valiente. Localización
de robots móviles con 4 gdl mediante visión omnidireccional. XXXVII Jornadas
Automática. Madrid, 2016.

• F. Amorós, L. Payá, D. Valiente, L.M. Jiménez, O. Reinoso. Estimación de
altura en aplicaciones de navegación topológicas mediante apariencia global de
informaciŮn visual. XXXV Jornadas Automática. Valencia, 2014.

• L. Fernández, L. Payá, O.r Reinoso, A. Gil, D. Valiente. Visual Hybrid SLAM: An
Appearance-Based Approach to Loop Closure. First Iberian Robotics Conference
Advances in Robotics. Madrid, 2013.
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• D. Valiente, A. Gil, M. Juliá, L. Fernández, O. Reinoso. Solución al problema
de SLAM empleando SGD con imágenes omnidireccionales. XXXIV Jornadas de
Automática. Terrassa, 2013.

• A. Gil, A. Peidró, J. M. Marín, O. Reinoso, D. Valiente, L. Miguel Jiménez, M.
Juliá. Laboratorio Virtual y Remoto de robots paralelos. XXXIV Jornadas de
Automática. Terrassa, 2013.

• M. Juliá, A. Gil, L.M. Jiménez, D. Valiente, O. Reinoso. Exploración teleoperada
de entornos desconocidos mediante un conjunto de robots móviles. ROBOT
2011, Robótica Experimental. Sevilla, 2011.

• D. Valiente, A. Gil, J. M. Marín, L. Fernández, O. Reinoso. Construcción de
mapas visuales con imágenes omnidireccionales. XXXII Jornadas de Automática.
Sevilla, 2011.

• M. Juliá, L. Payá, D. Valiente, L.M. Jiménez, D. Úbeda, O. Reinoso. Labo-
ratorio Virtual de exploración de entornos mediante sistemas multirobot. XXXII
Jornadas de Automática. Sevilla, 2011.

• L. Fernández, O. Reinoso, L. Payá, D. Úbeda, D. Valiente. Creación de Ma-
pas Topológicos Incrementales mediante métodos basados en apariencia global.
XXXI Jornadas de Automática. Jaén, 2010.

1.5 Framework

This thesis has been developed under a framework sustained by different research-
related branches, such as grants, projects and collaborations.

1.5.1 Grants
The main support of this thesis has been a FPI grant given by the Ministry of Science
and Innovation of the Spanish Government, with reference BES-2011-043482 and du-
ration of 4 years. In addition, two other short-term grants were given by the Valencian
Regional Government, the BAF/2011, and the Santiago Grisolía 2011 program, both
for 3 months.

1.5.2 Research Stays and Collaborations

• A short research stay was supported by the grant given by the Ministry of Science
and Innovation of the Spanish Government, with reference EEBB-I-14-08104.
This grant made possible a 4 months stay in 2014 at the Centre for Autonomous
Systems in the Faculty of the Engineering and IT at the University of Technology
Sydney, Australia.

• A short research stay supported by the Teaching Staff Mobility Program given
by the Miguel Hernández University. This grant allows to collaborate with Q-bot
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Ltd, an Imperial College spin-off settled in London, UK. The research framework
is strongly related to the topic of this thesis. The stay will take place in the last
trimester of 2016.

1.5.3 Projects
Several projects have included the work of this thesis within their wider scopes and
research contents. They were all connected by general objectives on the mapping and
localization tasks through visual information acquired by cameras. The following list
describes the projects given to the ARVC research group of the Miguel Hernandez
University, where this thesis was hosted:

• Project: Integrated Exploration of Environments by means of Cooperative Robots
in order to build 3D Visual and Topological Maps intended for 6 DOF Navigation.
Supported by: CICYT Ministry of Science and Innovation
Duration: 01/01/2011 to 31/12/2013
Description: While a group of mobile robots carry out a task, they need to find
their location within the environment. In consequence a precise map of a general
and undetermined environment has to be known by the robots. During the last
decade a series of methods have been developed that allow the construction of
the map by a mobile robot. These algorithms consider the case in which the
vehicle moves along the environment, constructs the map while, simultaneously,
computes its location within the map. As a result, this problem has been named
Simultaneous Localization and Mapping (SLAM). This research project focusses
thus on the construction of visual maps in 3D general unknown environments
by using a team of mobile robots equipped with vision sensors. In this sense,
we propose to undertake, among others, the following lines: 6 DOF cooperative
visual SLAM, in which the robots move following general trajectories in the
environment (with 6 degrees of freedom) instead of the classical trajectories
in which it is assumed that the robots navigate on a two-dimensional plane;
integrated exploration, where the exploration paths of the robots consider to
maximize the knowledge of the environment and, at the same time, take into
account the uncertainty in the maps created by the robot(s); map alignment and
map fusion of local maps created by different robots; and finally, the creation
of maps using the information based in the visual appearance that allows the
construction of high-level topological maps.

• Project: Cooperative Mobile Visual Perception Systems as support for tasks
performed by means Robot Networks.
Supported by: CICYT Ministry of Science and Innovation
Duration: 1/10/2007 to 30/09/2010
Description: Performing tasks in a coordinated manner by means of a team of
robots is a topic of great interest and allows to improve the results compared
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to the single-robot case. The current research project focuses on this particu-
lar field and proposes the need to use different vision systems distributed along
the mobile agent network that gather a precise and complete description of the
environment. To cope with the proposed goals it will be necessary to tackle
with different research lines, in consequence, we worked on the following sub-
jects: Cooperative map building and localization using particle filters, Visual
landmark modeling: Improving data association in visual SLAM, development of
cooperative exploration strategies using the information provided by each robot,
cooperative reconstruction of environments using appearance based methods.

• Project: Robotic Navigation in Dynamic Environments by means of Compact
Maps with Global Appearance Visual Information. Supported by: CICYT Min-
istry of Science and Innovation

Duration: 01/09/2014 to 31/08/2017

Description: Carrying out a task by a team of mobile robots that move across an
unknown environment is one of the open research lines with a higher scope for a
large development in the mid-term. In order to accomplish this task it has been
proved necessary to possess a highly detailed map of the environment that will
allow the localization of the robots as they execute a particular task. During the
last years the proposer research team has worked with remarkable results in the
field of SLAM (Simultaneous Localization and Mapping) with teams of mobile
robots. The work has considered the use of robots equipped with cameras and
the inclusion of the visual information gathered in order to build map models.
So far, different kind of maps have been built, including metric maps based on
visual landmarks, as well as topological maps base on global appearance-based
information extracted from images. These maps have allowed the navigation
of the robots in these maps as well as the performance of high level tasks in
the environment. Nonetheless, there exists space for improvement in several
areas related to the research carried out so far. Currently, one of the important
problems consists in the treatment of the visual information and the updating
of this information as the environment changes gradually. In addition, the maps
should be created considering the dynamic and static part of the environment
(for example when other mobile robots or people move in the environment),
thus leading to the creation of more realistic models, as well as strategies to
update the maps as changes are detected. A different research line considers
the creation of maps that combine simultaneously the information about the
topology of the environment, as well as semantic and metric information that
will allow a more effective localization of the robot in large environments and,
in addition, will enable a hierarchical localization in these maps. The proposed
research project considers to tackle the aforementioned lines, thus considering
the task of developing dynamic visual maps that will incorporate the semantic
and topological structure of the environment, as well as the metric information
when the robots perform trajectories with 6 degrees of freedom.
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1.6 Structure

This document has been structured as follows:

• Chapter 2 provides a general overview to the omnidirectional system and its cal-
ibration. The particular setup configuration and specification of the equipments
are also presented. In addition, the essential of the epipolar geometry and its
adaption to our omnidirectional reference system are described. Consequently, a
motion transformation model is devised. This allows to propose a visual odom-
etry approach, which represents a preliminary result, as a feed-forward input for
a SLAM application. These results assess the performance and efficiency of the
motion transformation proposed.

• Chapter 3 introduces the fundamentals of SLAM problem, as an approach to
the theoretical background required in this thesis. Firstly, it concentrates on
the Bayesian considerations. Next, it specifies on the several algorithm-specific
methods, which are selected in this thesis to develop and implement new con-
tributions to the framework of SLAM. Then an overview to Gaussian Processes
(GP) is included, as a necessary tool for inference tasks. Similarly, a brief in-
troduction to Information-based techniques is provided, as it is required for the
work developed on the uncertainty reduction of the SLAM system. These two
last techniques are combined in order to deal with the uncertainty of the system.

• Chapter 4 contains the development and implementation details of the first major
contribution: a new map model based on a reduced set of omnidirectional views.
This approach is sustained by an EKF-based method. Its modified structure
is presented by the following division: map building process, view initialization,
data association and observation model. Next, an enhancement of the matching
process is described. Finally, real data results are included in order to validate
the suitability and the benefits of this approach to work with real data scenarios.

• Chapter 5 describes the contribution to the robustness of the previous SLAM ap-
proach presented. Here a modified SGD algorithm, adapted to omnidirectional
geometry is introduced. All the details regarding this implementation are pre-
sented. In addition, a comparative set of real data results is included in order to
test the validity of the approach, but also to compare its efficiency and accuracy
with the standard method, and with the previous contribution presented in this
thesis.

• Chapter 6 presents the improvements devised in order to provide with a contri-
bution aiming at the uncertainty reduction of the system. In this sense, a new
view initialization model is described. All the basis of this approach is defined,
in terms of the GP and the Information-based implementations. Several experi-
mental sets are also presented in order to demonstrate the improvements against
non-linear effects which cause uncertainty increases and thus convergence risks.
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2 Omnidirectional Vision

In the field of mobile robotics, the incipient growth of visual sensors has led to an
impressive increase in the use of cameras as the principal sensor in autonomous vehicles,
especially in those aimed at navigation purposes. Catadioptric sensors have been on
top of the trend. They consist of a combined system composed by a camera and a
mirror which significantly outperform basic cameras due to its great ability to encode
high amounts of information of the current scene of view [98]. The classification for
this kind of visual systems is normally established by the physical characteristics of the
mirror and the procedure to project the rays on the image frame.

The catadioptric sensor employed in the framework of this thesis is an omnidi-
rectional sensor. The major potential of such sensors is that they allow to take profit
of their favorable capability to gather scenes with 360◦ degrees. This is possible thanks
to the high field of view that these sensors provide in comparison with planar cameras.
Another promising aspect in contrast to traditional cameras is the invariance to orien-
tation changes [83], which is highly valuable in order to avoid undesired obstruction
effects on the image. Under the presence of obstructor elements, there is always infor-
mation collected from the rest of relative angles to the vehicle. In addition to this, an
omnidirectional sensor also delivers interesting features such as low battery consump-
tion, good resolution, lightness, high acquisition rate, and low price in comparison with
other sort of extensively used sensors such as laser [22] or sonar [17].

The approach here presented is cataloged as a catadioptric visual system since
it builds an omnidirectional image from the reflection on an hyperbolic mirror. The
process by which the image is generated may be observed in Figure 2.1. The rays
coming from the acquired scene are reflected on the surface of the mirror and then
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Figure 2.1: Generation of an image point p(u, v) in pixels from its corresponding 3D point X.
The center of projection of the camera coincides with the focus of the hyperboloid.

projected towards the image plane. Note that the center of projection of the camera
coincides with the focus of the hyperboloid. Theoretically, this coincidence is the basis
for the camera to focalize the 3D scene that is finally digitalized. This procedure
was carried out for the first time in 1970, [113]. Other authors proposed conical
mirrors [149], spherical [62], parabolic [99], eliptical [107] and hyperbolic [14]. In [5]
diverse catadioptric systems with only one center of projection were presented, where
the incident rays projected all onto that central point. Some others [10, 150, 50, 73]
experienced with different catadioptric systems and published a wide variety of results.
Notice that there is an evident necessity to define a new projection model, as for these
cases, the pinhole model does no longer apply, since the non-linear transformation
introduced by the geometry of the mirror has to be taken into consideration. This last
consideration suggests that we present our catadioptric system and also that we deal
with a series of definitions about its physics, its main characteristics and features, but
especially its non-linear nature for the projection of a 3D point on the image plane.
Consequently, in this chapter we proceed according to the following structure:

• We provide a general overview about the projection model of the omnidirectional
systems and their calibration.

• Then we present the setup specifications, the obtained calibration and general
information about the real omnidirectional equipment we used in this work.

• Next we introduce the essentials of the epipolar geometry as the fundamental tool
to obtain a motion transformation model which only requires visual information
as input data.
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2.1. Catadioptric Projection

• In consequence with the previous point, we propose an adaption of the planar
epipolar geometry to the non-linear model stated by our omnidirectional sensor.
It is worth noting that epipolar geometry has been extensively studied in planar
cameras by using the standard perspective model, but there is a wide field of
research yet to be done in terms of omnidirectional models. We provide further
detail about this contribution that allows us to define a motion transformation
model which is crucial for the latter design of a robust observation model within
our problem of SLAM.

• Finally we present some real results that assess the performance and efficiency
of our motion transformation model. We exploit the implementation of a visual
odometry approach to such purpose.

2.1 Catadioptric Projection

According to [60] any standard perspective camera model can be used to project points
from a 3D general reference system named X, to an associated image reference system,
seen as x on an image plane. The following equation reflects the process by which an
optical ray draws an arrow through the optical center of the camera to an image point
x.

λx = PX (2.1)

being X = [X,Y, Z] and x = [x, y, 1] the normalized image coordinates respectively,
where P ∈ R3x4 is the projection matrix, that can be expressed as P = [R|T ], with
R a rotation matrix ∈ R3x3 and T ∈ R3 expresses the translation between the camera
reference system and the world reference system.

With the structure introduced in (2.1), scene points are always projected into
their corresponding image points regardless they are in front or behind the camera.
That is, only a half-space can be projected on the image.

On the contrary, an omnidirectional camera projects unequivocally points in
front of and behind the camera to their proper points on the image. As a result, an
omnidirectional camera can work with half-lines to represent image points in a spherical
model. This behaviour may be noticed in Figure 2.2, where the two different central
camera models are represented. The first corresponds to a standard perspective model
and the second to a spherical model. The last one is commonly used to simplify the
non-linear projection from 3D to 2D of catadioptric models such as the omnidirectional.
Therefore, in the omnidirectional model, contrarily to the perspective model, an image
point is the representation of all the scene points which coincide on a half-line that
emerges from the camera center. According to this, equation (2.1) needs reformulation:

λq = PX, λ > 0, (2.2)

where q = [x, y, z] encodes the image point, being ‖q‖ = 1.

In the same line, two new assumptions may be taken into account so as to deal
with omnidirectional cameras:

21



Chapter 2. Omnidirectional Vision

(a) (b)

Figure 2.2: Representation of two central camera models. Figure 2.2(a) corresponds to a central
camera model for the standard planar perspective model, which is not able to distinguish opposite
points. Figure 2.2(b) corresponds to the spherical central camera model, valid for omnidirectional
models, where opposite points are distinguishable by half-lines.

• The axis of the mirror supposes a symmetric rotation axis.

• This axis is orthogonal to the image plane.

Focusing on central omnidirectional cameras by using the general model (2.2), an
observed scene point X directs the vector p = (x′′T , z′′) in the same direction as q,
which is projected to u′′ on the image plane, being collinear to x′′. This development
corresponds to the new projection formulation and it can be observed in Figure 2.3,
where the projection procedure is depicted. Note that the sphere in the center of the
hyperbolic mirror represents the spherical model which can be used in order to unify the
notation of the projection vectors. Such spherical model permits to state a standard
generalization for any catadioptric case, regardless the characteristics of the mirror and
its non-linear function. Therefore, in order to move forward, it is required that the
specific non-linearities associated with each mirror are considered. To that end, two
new function expressions have to be defined, namely h and g, which are associated
with the the non-linearities of each catadioptric system:

p′′ =
[
h(||u′||)u′′
g(||u′||)

]
(2.3)
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2.1. Catadioptric Projection

Figure 2.3: Mapping of a scene point X to the point u′′ on the sensor plane, seen on the XZ
plane.

2.1.1 Omnidirectional Calibration
Now it is worth introducing the calibration representation. This concept entails an im-
proved terminology that unifies the expected information so as to model the projection
behaviour of dioptric and catadioptric cameras. We focus on the last updated general
expression (2.3) to reach the calibration of an omnidirectional system.

The unification by means of the term g/h relaxes the constraints and allows to
force h=1, thus g verifies:

λp′′ = λ

[
u′′

g(||u′||)

]
= PX (2.4)

A generalized Taylor expansion can be performed on g so as to balance the misalignment
effects that occur in the focus point of the mirror and in the camera optical center. This
new general parametric form is feasible for any kind of camera sensor and it presents
the following structure:

g(||u′′||) = a0 + a1||u′′||+ a2||u′′||2 + . . .+ an||u′′||n (2.5)

where [a0, . . . , an] are the coefficients of a n-degree polynomial. It is important to
mention that these coefficients act as the calibration of the model, as they encode
the necessary information regarding the projection procedure. In addition to this, the
previous expression can be further simplified if the following assumption for hyperbolic,
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parabolic and elliptical mirrors is applied:

∂g

∂ρ

∣∣∣
ρ=0

(2.6)

being ρ the module of the resulting vector in the image plane as ρ=||u′′||. Then a1=0
in equation (2.5) reduces the expression to:

g(||u′′||) = a0 + a2||u′′||2 + . . .+ an||u′′||n (2.7)

As a result, if we merge (2.7) with (2.4), the final expression for central omnidirectional
cameras can be posed as:

λp′′ = λ

[
u′′

a0 + a2||u′′||2 + . . .+ an||u′′||n
]

= PX (2.8)

In order to obtain the final point projected on the digital image plane, the visual
elements shown in Figure 2.3 have to be determined by proceeding in the following
order:

• On the central projection of the scene, tracing the ray from point X to p′′ .

• Applying the non-perspective mirror reflection in terms of the specific h and g
functions that generates u′′ from p′′ for each particular mirror.

• Digitizing the transformation from u′′ on the sensor plane to u′ on the digital
image plane.

2.2 Equipment

2.2.1 Omnidirectional System
Here we intend to present the real equipment that has been employed for the acquisition
of images, and ultimately for the final purpose of SLAM in this thesis. The catadioptric
system consists of a CCD camera, shown in Figure 2.4, with an hyperbolic mirror jointed
by a specific assembly kit, as observed in Figure 2.5.

We have two different cameras, as well as two different mirrors. This fact allows
us to defined several configurations for testing purposes. The cameras are manufactured
by Imaging Source, with models: DMK-21BF04 [48] and DMK-41BF02 [47]. These
models basically differ in the resolution. As for the mirrors, we mounted a Wide
70 [34], provided by Eizho, and a Super-Wide [1], provided by Accowle. They deliver
high lateral angles of view which are especially useful to gather wider parts of the scene.
The Wide 70 also provides a relevant feature that allows to vary the physical distance
from the mirror to the center of projection. Figure 2.5 shows these two mirrors and
Figure 2.6 two examples of images generated by them. In Table 2.1 we provide a series
of specifications for these two cameras used in this work, and likewise in Table 2.2 for
the mirrors.
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Figure 2.4: Camera CCD FireWire DMK21BF04.

(a) (b)

Figure 2.5: Hyperbolic mirrors used in this work, assembled in their coupling systems. Fig-
ure 2.5(a) presents the Wide 70 manufactured by Eizho. Figure 2.5(b) presents the Super-Wide
manufactured by Accowle.

2.2.2 Calibration
Now we can specifically concentrate on the omnidirectional model employed in the
framework of this thesis. The ultimate calibration is obtained by means of an omni-
directional calibration software [118] that provides the required library components to
estimate the coefficients [a0, . . . , an] above presented.

This library carries out a last simplification to the expression described in (2.8).
Now we assume that p expresses a pixel point on an image, being its coordinates (u, v)
as it is drawn in Figure 2.7. This figure models the projection process of our omnidirec-
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(a)

(b)

Figure 2.6: Example of two omnidirectional images captured with the hyperbolic mirrors: Wide
70 in Figure 2.6(a), and Super-Wide in Figure 2.6(b).
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Camera specifications
Model DFK-21BF04 DFK-41BF02
Video format UYVY/BY8 UYVY/BY8
Resolution 640x480 1280x960
Frame rate 60-3.75 fps 15-3.75 fps
Sensitivity 0.1 lx 0.15 lx
Dynamic range 8 bit 8 bit
CCD Sony ICX098BQ Sony ICX205AK
Pixel size 5.6x5.6 µm 4.65x4.65 µm
Connection interface FireWire FireWire
Power supply 8-30 VDC 8-30 VDC
Current consumption 200µA@ 12 VDC 200µA@ 12 VDC
Dimensions 50.6x50.6x56 mm 50.6x50.6x56 mm
Weight 265 g 265 g
Gain 0-36 dB 0-36 dB
Saturation 0-200% 0-200%
Shutter 1/10000 to 30 s 1/10000 to 30 s
Offset 0-511 0-511
White balance -2 to +6 dB -2 to +6 dB

Table 2.1: Camera specifications

Mirror specifications
Parameters Eizoh Wide 70 Accowle Super-Wide
Geometry Hyperbolic Hyperbolic
Diameter 70 mm 76 mm
Height 35 mm 43 mm
Upside angle of view 60◦ 55◦
Downside angle of view 60◦ 65◦
Mirror-camera distance Variable - Optimum 165mm Fixed - 122 mm
Weight 175 g -

Table 2.2: Mirror specifications

tional system. It can be observed a 3D point X(x, y, z) and its projection on the image
p = (u, v) in pixel coordinates with respect to the center of the omnidirectional image.
P represents the 3D vector from X to the effective viewpoint in the mirror. Consid-
ering that the camera and mirror axes are aligned, then axis X and Y are proportional
to u and v: [

x
y

]
= α

[
u
v

]
(2.9)

It is worth noticing that the misalignment of these axes is one of the main causes
why the image is out of focus since the camera center is not aligned with the focus.
This issue is very likely to appear in almost any real application. Firstly because the
camera image plane is never perpendicular to the sensor axis, and secondly because it
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Figure 2.7: Projection model of an omnidirectional camera with an hyperbolic mirror.

is impractical to maintain the alignment where there always exists mechanical effects
such as external vibrations. For all these reasons it is necessary to take certain actions
in order to mitigate their harmful effects. Therefore we can state a function that may
be estimated by means of calibration, and which transfers the detected point on the
image frame as p = (u, v) into its corresponding 3D vector P in the following terms:

P =

xy
z

 = α

 u
v

f(u, v)

 =

 u
v

f(ρ)

 (2.10)

being ρ =
√
u2 + v2. Please note that P is a vector pointing to the direction of X,

not a 3D point. This is due to the fact that we are dealing with only one image frame,
and thus no information of any baseline is available, neither depth or scale values for
3D points. Furthermore, we can express f in terms of ρ, since the mirror is rotationally
symmetric. That fact makes f only dependent on the distance of a point from the
image center.

Finally the calibration has to seek the coefficients to estimate f in terms of the
polynomial previously presented. In consequence, and according to (2.7):

f(ρ) = a0 + a1ρ+ a2ρ
2 + . . .+ anρ

n (2.11)

Moreover, here we pursue the refinement of the estimated calibration since an overall
deviation is very likely to appear due to the sum of different sources of errors:

• Axes misalignment
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(a) (b)

Figure 2.8: Misalignment effects caused on the image plane. Figure 2.8(a) represents the ideal
case whereas Figure 2.8(b) represents the realistic case where there exists misalignment.

• Distortion

• Digitizing process: pixels are not perfectly squared

Figure 2.8 represents the effects of misalignment that have been commented above.
Nevertheless, we can establish an affine transformation in order to estimate the rela-
tion between the distorted coordinates (u′, v′) and the ideal ones that do not present
distortion, (u, v). [

u′

v′

]
=
[
c d
e 1

] [
u
v

]
+
[
xc
yc

]
(2.12)

2.2.2.1 Calibration Parameters

Once we have introduced the specific procedure to obtain the calibration of our omni-
directional camera, we can present the resulting calibration parameters.

First of all we show in Figure 2.9 the images captured, where the calibration
pattern may be observed as a chessboard. Then we applied a corner detector to
gather reliable points to input in the library of the calibration toolbox. The most
relevant information provided by the calibration toolbox for our purpose is depicted
by Figure 2.10. Figure 2.10(a) draws a representation of the reprojected calibration
images. For each image, the reprojection of each calibration pattern may be observed.
Figure 2.10(b) plots the function f(ρ) retrieved by the calibration toolbox, which allows
us to project/backproject points reciprocally between 2D and 3D spaces. Again, it is
important to clarify that the backprojection only enables the retrieving of a vector that
indicates the direction of a 3D point. This is justified by the lack of knowledge of the
scale factor, since only one image is acquired at each step.

Table 2.3 presents the results obtained in the calibration of both mirrors. We
present the expressions of the estimated polynomial f(ρ), the associated error in the

reprojected pixels, the camera center (xc, yc) and the affine transformation, A=
[
c d
e 1

]
,

by which the misalignments effects can be mitigated as described in (2.12).
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Calibration parameters
Wide 70
Projection func. f(ρ)=-185+2.93× 10−3ρ2 − 9.15× 10−6ρ3 + 1.84× 10−8ρ4

Affine matrix A =
[

9.995× 10−1 2.7701× 10−4

4.1806× 10−4 1

]
Error 0.658 pixels
Camera center (xc, yc) = (3.595 781× 102, 3.591 248× 102)
Super-Wide
Projection func. f(ρ)=55.46+3.78× 10−3ρ2 − 1.96× 10−6ρ3 − 1.12× 10−8ρ4

Affine matrix A =
[

9.993× 10−1 8.7241× 10−4

7.5162× 10−4 1

]
Error 0.453 pixels
Camera center (xc, yc) = (3.595 781× 102, 3.591 248× 102)

Table 2.3: Calibration parameters for the Wide 70 and Super-Wide mirrors.

Image 6 − Image points (+) and reprojected grid points (o)
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Figure 2.9: Chessboard pattern with corner points indicated. These corner points are the
input for the calibration toolbox which returns the projection function f that characterizes our
omnidirectional sensor.

2.2.2.2 Panoramic Conversion

The panoramic view is one of the most used models to present the information gathered
by an omnidirectional camera system, as in [84] and [21]. This transformation provides
a more natural view, since it is easier for the human eye to relate it to the planar view
provided by a pinhole camera. Figure 2.11 presents the projection established by this
type of view, where the information is projected onto a cylindrical surface. As a result,
each panoramic projection depends on the specific hyperbolic mirror associated with
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Figure 2.10: Figure 2.10(a) shows the reprojected chessboard patterns from which the corner
points were detected for the calibration of the Wide 70 mirror. Figure 2.10(b) shows the estimated
f(ρ) obtained with the calibration toolbox for the same mirror. ρ is measured as the distance in
pixels from the center of the omnidirectional image
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Figure 2.11: Projection model of the panoramic view. Point p(u, v)omni converts into
p(x, y)pano.

the omnidirectional system.

The procedure to obtain the panoramic view consists of converting the coor-
dinates from the polar reference system (omnidirectional) to the cartesian reference
system (panoramic). Then, a circular line in pixels on the omnidirectional image
corresponds to an horizontal line on the panoramic view, and similarly a radial line
corresponds to a vertical line. Figure 2.13 shows an example of this conversion from
omnidirectional to panoramic. The projection of the hyperbolic mirror is non-linear,
thus it projects differently the amount of visual information on different areas on the
pixels of the image. Figure 2.12 presents two converted images with the two mirror
available in the framework of this thesis, as introduced in Figure 2.5 and Figure 2.6.
It can be noticed that Figure 2.12(a) induces a vertical distortion and it concentrates
more information on the low areas (corresponding to low radius on the omnidirectional
mirror). In Figure 2.12(b) this distortion is not appreciable. This is the main reason
why our experiments are mainly conducted with the Eizho Wide 70 mirror.

Finally, it is worth mentioning that the feature point extraction provides better
results when the panoramic view is used in order to smooth the non-linear nature
of the hyperbolic mirror. Several feature point detectors have been tested, and the
best solution is provided by SURF, as suggested in [42]. This detector takes the
most of the panoramic projection in order to compute multi-scaled areas to detect
feature points. Despite this fact, the total number of points detected is reduced in
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(a)

(b)

Figure 2.12: Panoramic images converted from the omnidirectional reference system. Fig-
ure 2.12(a) shows the image acquired with the Eizoh Wide 70 while Figure 2.12(b) shows the
image acquired with the Accowle Super-Wide mirror.

the panoramic view. As a consequence, we force an expansion of the vertical axis,
with a corresponding increase in the size of the image, so that more feature points are
detected on the same image. Again, an interpolation is required. In our case, we used
a bicubic resizing. Figure 2.13 shows an example of this situation, where the points
detected on the panoramic image are back-converted to the omnidirectional reference
system. Note that the vertical expansion applied is×2. In this example, the high and
low radius of the omnidirectional image have been discarded as they represent areas
where the mirror presents pronounced non-linear curvature but also there is irrelevant
visual information.

2.2.3 Robot Pioneer P3-AT
The vehicle used in this work is a pre-assembled robot extensively known in this field
of research: the Pioneer P3-AT [2], manufactured by Mobile Robots. It is a small four-
wheel, four motor skid-steer robot, which we have boarded with our omnidirectional
camera system, a laser sensor, LMS-200 [115], provided by the company SICK, an
integrated sonar sensor and a PC. Figure 2.14 shows the robot used in this work with
the mentioned equipment. The communication interface with the robot consists of a
serial I/O bus to the hardware of the microcontroller, and an API framework to interact
with the software of the robot through the PC.

In order to ease the communication process, we have also used the set of APIs
libraries and SDKs provided at the open source project, ROS [125], in particular the
set constituted by ROSARIA [126], which is a bridge between ROS and the API of
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(a)

(b)

Figure 2.13: Conversion from omnidirectional to panoramic view. Feature points are detected
on the panoramic, in Figure 2.13(b), and back-converted to the omnidirectional, in Figure 2.13(a).

the P3-AT, ARIA [114], provided by the manufacturer Mobile Robots and also open
source. We establish access to the data sensors through ROS, so that we can define
custom algorithms to compute a reliable ground truth. For that purpose we rely on the
laser data to act as a reliable input for a gmapping algorithm [127, 51], that ultimately
returns a ground truth estimation.

For further details about specifications of the Pioneer P3-AT, see the Table 2.4.
Likewise, Table 2.5 provides more details about the specifications of the laser SICK
LMS-200.

Another factor to consider is the development of a model for the parametriza-
tion of the internal odometer of the robot. Each motor contains an encoder with a
resolution of 100 ticks per revolution, which should provide enough accuracy for general
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Figure 2.14: Robot Pioneer P3-AT used in this work for the acquisition of omnidirectional
images, raw laser data and odometry data.

Robot specifications
Physics
Weight 12 kg
Dimensions 508x497x277 mm
Payload Tile: 12 kg; Grass: 10 kg; Asphalt: 5 kg
Body 1.6 mm aluminum
Tires Reinforced Pneumatic
Skid Steering Drive
Turn Radius 0 cm
Swing Radius 34 cm
Max. Speed 0.7 m/s
Rotation Speed 140◦/s
Max. Traversable Step 10 cm
Max. Traversable Gap 15 cm
Max. Traversable Grade 35%
Traversable Terrain Asphalt, flooring, sand and dirt.
Power
Run Time 2-4 hours (3 batteries without accessories)
Charge Time 12 hours
Available Power Supplies 5 V - 1.5 A and 12 V - 2.5 A
Batteries
Number Up to 3 at a time
Capacity 7.2 Ah (each)
Composition Chemistry; lead acid

Table 2.4: Pioneer P3-AT specifications
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Laser specifications
Physics
Weight 4.5 kg
Dimensions 156 x 155 x 210 mm
Features
Field of application Indoor
Version Short Range
Light source Infrared (905 nm)
Aperture angle 180◦
Scanning frequency 75 Hz
Angular resolutions 0.25◦; 0.5◦; 1◦
Operating range 0 - 80 m
Max. range with 10 % reflectivity 10 m
Performance
Response time 13-53 ms
Resolution 10 mm
Systematic error +/- 15 mm
Statistical error (1 sigma) 5 mm
Ambient operating temperature 0◦- +50◦C
Scanning range 80 m
Interface Data interface RS-232; RS-422
Data transmission rate 9.6 / 19.2 / 38.4 / 500 kBps
Switching outputs 3 x PNP
Supply voltage 24 V DC +/- 15%
Power consumption 20 W

Table 2.5: LMS200 specifications

purposes. However, most of the experiments conducted in this work have been carried
out at indoor scenarios where the wheels of the robot are prone to suffer steering, and
consequently they tend to corrupt the measures with noise. This fact makes us define
a parametrization for the odometry, so as to obtain a reliable model for its behaviour,
that also permits to tune external noise parameters on this data. This will help out
with the definition of worse case scenarios in terms of noise, that can be used to test
the robustness of the contributions presented in this work.

There are several possible parametrizations to tackle with this point. The most
widely known approaches are based on probabilistic motion models, sustained by some
given proposal distributions [132, 35], and incrementally computed. Figure 2.15 depicts
the corresponding diagrams for two odometry models. We have equally used both
models in the framework of this work with satisfactory outputs for our goals. The
analytical expressions to define the equations for these models look as follows:
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(a)

(b)

Figure 2.15: Figure 2.15(a) represents the diagram for the Odometry model 1. Figure 2.15(b)
represents the diagram for the Odometry model 2.
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Odometry model 1

The equations that relate the prior pose (x1, y1, θ1) and the new pose (x2, y2, θ2)
represent the incremental change as:x2

y2
θ2

 =

x1
y1
θ1

+

cos(δ̂rot1) 0 0
sin(δ̂rot1) 0 0

0 1 1

δ̂transδ̂rot1
δ̂rot2



where δ̂trans, δ̂rot1 and δ̂rot2 are the result of adding a gaussian, zero-mean
random noise to the odometry readings as:

δ̂trans = δtrans + εtrans → εtrans ∼ N (0, σ2
trans) (2.13)

δ̂rot1 = δrot1 + εrot1 → εrot1 ∼ N (0, σ2
rot1) (2.14)

δ̂rot2 = δrot2 + εrot2 → εrot2 ∼ N (0, σ2
rot2) (2.15)

The rest of the parametrization is determined by the following approximated terms for
the standard deviations required above:

σrot1 = α1|δrot1|+ α2δtrans (2.16)
σtrans = α3δtrans + α4(|δrot1|+ |δrot2|) (2.17)
σrot2 = α1|δrot2|+ α2δtrans (2.18)

As an example of implementation, the following algorithm, specified as Algorithm 1,
shows how a new pose, namely (x2, y2, θ2), can be recalculated from a previous one,
(x1, y1, θ1), by overweighting with the noise parameters associated with the odometry,
as described above (α1, α2, α3, α4).
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Algorithm 1 Odometry model 1 algorithm
function out = OdoParam(pose1, pose2)

Require: Inputs: two consecutive odometry readings and noise parameters
(pose1, pose2)={(x1, y1, θ1), (x2, y2θ2)}
param=(α1, α2, α3, α4)

1: δrot1 = atan2(y2 − y1, x2 − x1)− θ1
2: δtrans =

√
((x2 − x1)2 + (y2 − y1)2)

3: δrot2 = θ2 − θ1 − δrot1
4: δ̂rot1 = δrot1 −N(0, α1 · δrot1 + α2 · δtrans)
5: δ̂trans = δtrans −N(0, α3 · δtrans + α4 · (δrot1 + δrot2))
6: δ̂rot2 = δrot2 −N(0, α1 · δrot2 + α2 · δtrans)
7: x2 = x1 + δ̂trans · cos(θ + δ̂rot1)
8: y2 = y1 + δ̂trans · sin(θ + δ̂rot1)
9: θ2 = θ1 + δ̂rot1 + δ̂rot2
10: return (x2, y2, θ2)
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Odometry model 2

In the same manner, the following equations relate the prior and the new pose
by means of an incremental change:x2

y2
θ2

 =

x1
y1
θ1

+

cos(θ + ∆odo
φ

2 ) − sin(θ + ∆odo
θ

2 ) 0
sin(θ + ∆odo

θ

2 ) cos(θ + ∆odo
θ

2 ) 0
0 0 1


∆odo

x

∆odo
y

∆odo
θ


For the covariance, we estimate the variances of the three variables of the odom-

etry increment. We model them as independent, with zero-mean gaussian errors. These
errors are composed by terms which are introduced by imperfections of the odometer,
and also by the resolution of the encoders and by the potential drift effects.

Now we denote σ as the diagonal matrix that contains the three variances of
the odometry, described as:

σ∆odo
x

= σ∆odo
y

= σminxy + α1

√
(∆odo

x )2 + (∆odo
y )2 + α2|∆odo

φ | (2.19)

σ∆odo
φ

= σminφ + α3

√
(∆odo

x )2 + (∆odo
y )2 + α4|∆odo

φ | (2.20)

Therefore, the parametrization can be determined by the following terms:

α1 (meters/meter) (2.21)
α2 (meters/degree) (2.22)
α3 (degrees/meter) (2.23)
α4 (degrees/degree) (2.24)

σminxy (meters) (2.25)
σminφ (degrees) (2.26)

2.3 Epipolar Geometry

In the framework of this thesis, the epipolar geometry represents a fundamental tool
for determining motion transformations in the camera reference system. Particularly,
we propose the extrapolation of the planar epipolar constraint to the omnidirectional
camera reference system. We seek to describe a relation for the motion transformation
between omnidirectional images, which can also be referred as the motion transfor-
mation between poses of the robot. The epipolar geometry is a tool of paramount
importance to ultimately define a robust observation model that allows to perform ef-
ficient matching procedures in order to enhance our SLAM approach. As a result, we
present our contribution to adapt the planar epipolar constraint to the omnidirectional
case.

For planar camera reference systems, the epipolar geometry is an intrinsic pro-
jective geometry between two views which only depends on the camera calibration and
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the relative poses. This intrinsic geometry is encapsulated by the fundamental matrix
F ∈ R3x2 with rank=2. Considering a certain point in the 3D space X, which gen-
erates an image point x in a first view and x′ in a second view, then F reflects the
epipolar constraint to satisfy in the form:

x′TFx = 0 (2.27)

The fundamentals of the epipolar geometry lays on the capability to associate two
views by a mutual epipolar plane and the intersection generated by this plane with
the two image planes. Explicitly, for a X point in 3D space there exists an epipolar
plane that is determined by the baseline axis (line joining the camera centers) and the
two rays that project the point X into the two respective cameras. It is worth noting
that in order to represent the entire 3D space, a beam of planes has to be considered
around the baseline axis. Traditionally, this concept has been extensively exploited for
matching purposes in stereo applications [120] since it facilitates the search of points
in the second view.

Figure 2.16 comprises an example of epipolar geometry applied to a planar
system. A pointX in 3D has its projection on two image planes at x and x′ respectively.
The resulting epipolar plane, π, reveals the existing coplanarity between x, x′, X, and
the camera centers C and C ′. This characteristic brings an important tool for searching
a correspondence. When there is not any knowledge about x′, the plane π constraints
it to lie on the line of intersection l′ that results from the intersection of π with the
second image plane. As a result, the search for corresponding points can be beneficially
restricted to a search over a line.

For a further comprehension of this geometry, it is required to complete the
description of this terminology:

• Epipole, denoted as e, is the intersection of the baseline between the camera
centers with the image plane. Analogously, it can be seen as the image point of
the other camera center. That is, the relation between e and C ′.

• Epipolar plane, denoted as π, is the plane containing the baseline. There exists
a beam of epipolar planes that is parametrized by a linear factor which rotates
around the baseline.

• Epipolar line, denoted as l, is the resulting line of intersection between a π plane
with the image plane. It intersects with the baseline at the epipole. This epipolar
line eventually represents the line where correspondences have to be found.

This last description is comprised by the general expression of the epipolar constraint
in (2.27). Now we can move forward to introduce the essential matrix E [85], that
is aimed at the specialization to the case of normalized image coordinates. The key
point to establish a differentiation between F and E lays on the prior knowledge of a
calibration for the cameras. The essential matrix is less conditioned since it has less
degrees of freedom, but it needs a known calibration matrix K.
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Figure 2.16: Epipolar geometry applied to the standard planar camera system.

The main consideration is that the camera matrix can be specified by P =
K[R|t], with R a rotation and t a translation. Hence the image point is x = PX.
Since K is known, we can obtain the image point expressed in normalized coordinates
as x̂ = K−1x, that is x = [R|t]X. If we assume that the last expression corresponds to
a camera matrix in the form [R|t], where K = I, then K−1P = [R|t] is denoted as a
normalized camera matrix. This abstraction leads to define the essential matrix as the
application of the fundamental matrix to a corresponding pair of normalized cameras
such as P = [I|0] and P ′ = [R|t], where E = [t]xR = R[RT t]x. Finally considering
that x̂ = K−1x, leads to the final definition that states the essential matrix as:

x̂′TEx̂ = 0 (2.28)
E = K ′TFK (2.29)

The structure of E entails two degrees of freedom which are set by a rotation and
three other degrees which are set by a translation. Nonetheless there exists an overall
scale uncertainty. A decomposition of E can be achieved if we consider that:

E = [t]xR = SR =

 0 0 sin(φ)
0 0 − cos(φ)

− sin(φ) sin(φ) 0

cos(β) − sin(β) 0
sin(β) cos(β) 0

0 0 1

 (2.30)

with S skew-symmetric and R a rotation matrix. Then using the auxiliary matrices:

W =

0 −1 0
1 0 0
0 0 1

 ; Z =

0 −1 0
1 0 0
0 0 0

 (2.31)

According to [60], being W orthogonal and Z skew-symmetric, E can be decomposed
by SVD (Single Value Decomposition) as SVD(E)=[U |S|V ], and then the following
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factorization can be verified:

S = UZUT (2.32)
R1 = UWV T (2.33)
R2 = UWTV T (2.34)

Finally, this factorization allows to define four possible combination for the projection
matrix of the second camera, and thus to obtain x′.

P1 = [R1|tx] (2.35)
P2 = [R1| − tx] (2.36)
P3 = [R2|tx] (2.37)

P4 = [R2| − tx] (2.38)

2.3.1 Computing Motion Transformation
Once the epipolar geometry has been presented we can focus on its application to the
approach of this thesis. Assuming the theory for the planar case, we have applied it
to our omnidirectional approach by adapting as well all the considerations presented
above.

We can summarize the adaption to the framework assumed in this thesis by
means of Figure 2.17. Note that here the camera lays on the focus F of the hyperbolic
mirror, so that the concept of epipole does not correspond to the usual and commonly
known in the planar case. Instead, we still have the epipolar plane π. In this case it
is defined by the projection of the point, where rays coming from the 3D point to the
effective viewpoint of the mirror are finally projected towards the camera centers C
and C ′ respectively. It is also worth noticing that the epipolar lines are shaped into
ellipses. This is again due to the fact that the intersection of π has to be calculated
against the mirror surface, and then projected onto the image plane, which results
at last instance into the epipolar lines l and l′, turned into elliptical curves. Note
that this elliptical lines are the result of the intersection of the epipolar plane with
the hyperboloid of two sheets that models our hyperbolic mirror. Its projection on
the image plane has the form represented by the dark lines. The infinite intersections
generate the final image as expressed by the limits of the dark blue area. This new
definition implies a contribution which will allow us to exploit several benefits in the
following chapters of this work. The positive outcomes that can be extracted from the
epipolar lines will be taken as important advantages for determining matched points
between images. This aspect is also of paramount importance when dealing with the
computation of motion transformation between poses of the robot, especially when
the transformation is only sustained by visual measurements such as those generated
by our omnidirectional system. This aspect turns to be essential when dealing with
the necessity of robustness when it comes to the observation measurements within a
SLAM approach.

In this context, the final goal is to obtain an only-visual observation model for
the localization of the robot within the process of SLAM. In order to compute a motion
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Figure 2.17: Epipolar geometry applied to the omnidirectional camera system.

transformation between poses we designed the procedure based on the epipolar con-
straints. Figure 2.18 presents the equivalence between two different poses of the robot
and the corresponding images acquired at those poses. The motion transformation is
produced by a certain rotation and translation, precisely determined by two relative
angles: β and φ.

Assuming that (2.30) is accomplished, we can explicitly introduce the condition
of a planar movement on the XY plane. Therefore the camera rotates on the Z-axis
with β, being that axis orthogonal to the XY plane where the robot moves. So that
tx = [cosφ, sinφ, 0], and finally we can extend the matrix into:

E = SR =

 0 0 sin(φ)
0 0 − cos(φ)

− sin(φ) sin(φ) 0

cos(β) − sin(β) 0
sin(β) cos(β) 0

0 0 1


The assumption of planar movement relaxes the problem and then the resolution of
x′TEx = 0 becomes less strict as now the essential matrix can be posed as:

E =

 0 0 e1
e3 0 e2
e4 0 0

 (2.39)

Therefore the epipolar equation (2.28) can be linearly expressed as De = 0, with
e = [e1, e2, e3, e4] being the variables of this linear system, and D the coefficients. In
other words, D contains the coordinates of points in the two image systems, namely
x = (x0, y0, z0) and x′ = (x1, y1, z1) for two corresponding points between views. Note
that the dimension of D is Nx4, with N the total number of correspondences found.
Nevertheless, the minimum number of points to solve the problem is only Nmin = 4.
Each i row of D for each pair of correspondences has the following form:

Di =
[
x0z1 y0z1 z0x1 z0y1

]
(2.40)
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According to the decomposition of E by means of SVD, now we can extract the set
of rotation and translations shown in (2.32) in the same manner by applying SVD(D).
Then it is straightforward to recover the relative angles of the motion transformation
from the inspection of the elements of E as follows:

φ = arctan −e1

e2
= arctan sin(φ)

cos(φ) (2.41)

and thus the two possible translations as:

tx1 = [cosφ, sinφ, 0] (2.42)
tx2 = [cosφ+ π, sinφ+ π, 0] (2.43)

Likewise:
β = arctan e3

e4
+ arctan −e1

e2
= (β − φ) + φ (2.44)

and finally the two possible rotations as in [13]:

R1 =

cosβ − sin β 0
sin β cosβ 0

0 0 1

 (2.45)

R2 =

2 cos2 φ− 1 2 cosφ sinφ 0
2 cosφ sinφ 2 sin2 φ− 1 0

0 0 −1

R1 (2.46)

A last mention has to be made of the other investigated techniques to estimate
E. Diverse optimizers were also tested in this thesis, as Lagrange multipliers, Gauss-
Newton and Levenberg-Marquardt. However, for our purpose, SVD provides the best
balanced solution.

2.3.1.1 Selecting the Solution

The last step to take into consideration is the interpretation of the four possible solu-
tion pairs: In (2.35), (2.36), (2.37) and (2.38) these four candidates where compressed
into a projection matrix. The interpretation of these solutions is sustained by the possi-
bility of the existence of four different relative positions between cameras, all of which
conform a set of angles that accomplish with (2.28) as they are either complemen-
tary or supplementary angles. In other words, the four coupled matrices P = [R|t],
as seen in (2.35), (2.36), (2.37), (2.38), which can be expressed by the combination
of (2.42), (2.43), (2.45) and (2.46), and all satisfy the epipolar constraint.

It is obvious that the spatial interpretation comes from applying the four com-
bination to the relative position between two camera poses, or two robot poses either
way. Hence, in Figure 2.18, if we concentrate on Figure 2.18(b), we can distinguish
the optical rays to later apply the four possible transformation, and finally select the
valid solution amongst them. To do that, it is necessary to determine the combination
that finds the point X in front of both cameras. This requires that we backproject x,
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(a)

(b)

Figure 2.18: Motion transformation parameters between poses A and B, with relative angles
indicated. Figure 2.18(a) shows the relative transformation, whereas Figure 2.18(b) shows the
transformation in the camera reference system. A 3D point, X(x, y, z) is indicated with its image
projection on both cameras, denoted as pA(u, v) and pB(u, v).
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which may also be seen as p(u, v), to 3D in order to extract the sign of the rays (r and
r′). In other words, we have to recover the direction of these rays so that we get their
sign. We can recover the proper solution as that one which produces r>0 and r′>0
(positive sign implies intersection in front of both cameras) if we consider the motion
transformation between poses, X and X ′, as:

X = tx +RX ′ (2.47)
rx = b+ r1Rx

′ (2.48)

where the second is upscaled and projected on the image frame. We can express it as
a least square system in the form:

[
x1 −b

] [r/r′
1/r1

]
=
[
Rx′

]
(2.49)

Then the correct positive pair r >0 and r′ >0 ideally describes the correct rotation and
translation which finally determines the real motion transformation between the two
poses of the robot, as observed in Figure 2.18(a). However this process has to be carried
out with more than one corresponding point. In our approach we set up an histogram
with the matched points so that we avoid false correspondences at first instance, but
also points that may have rays nearly parallel to the baseline and thus a negative
solution. Figure 2.19 represents the four possible combinations. Figure 2.19(a) is the
valid solution where both rays intersect in the positive half of both camera systems.
Note that between them there exists a certain rotation and translation that we can
consider as R1 (2.45) and tx1 (2.42). Then it may be noted that Figures 2.19(a)
and 2.19(b) are related by a translation tx2 (2.43), and Figures 2.19(c) and 2.19(d)
by a rotation R2 (2.46). Although all provide the same mathematical result that
satisfy the epipolar constraint, the only valid is the one represented in Figure 2.19(a).
Therefore, our algorithm retrieves it thanks to a process of histogram voting so as to
avoid the false correspondence appearance.

2.3.2 Visual Odometry
Once we have presented in the previous section our proposal for computing a motion
transformation, the most straightforward application we can think of is an approach
to visual odometry. Therefore, in this section we intend to exploit the previous motion
transformation model to define our custom application of visual odometry, which can
also serve as a validation tool for such model. Besides, we set up an experimental set
that permits to extract results which are useful for the establishment of a performance
analysis of the motion transformation model.

Approaches to visual odometry have been extensively developed in the field of
mobile robotics. They can be classified according to the kind of data sensor used to
estimate the trajectory of the robot, such as [103, 95, 88, 101] with stereo cameras.
However, monocular visual sensors, have also achieved successful results despite the
fact that they can only recover a 2D relative motion [91, 102], and [129, 117] for omni
cameras.
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(a) (b)

(c) (d)

Figure 2.19: Interpretation of the four possible solutions on the plane XY, given a computed
rotation R1, and translation tx1, after applying epipolar constraints. Figure 2.19(a) represents
the valid solution where rays intersect in front of both cameras. For each figure, the relative
pair of angles that determine the transformation between views is: (R1, tx1) in Figure 2.19(a),
(R2, tx1) in Figure 2.19(b), (R1, tx2) in Figure 2.19(c) and (R2, tx2) in Figure 2.19(d).
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Figure 2.20: Diagram for the visual odometry approach.

Regarding the visual odometry that we define in this section, it entails a feature-
based method, which makes use of the matched points between consecutive images at
t and t+ 1. Some work in this field has been already conducted as in [23, 116, 90, 45].

The main idea lies on the extraction of a motion transformation from two con-
secutive omnidirectional views at t and t+ 1, with poses: (x1, y1, θ1) and (x2, y2, θ2)
respectively. We can extract the relative angles β and φ from the set of matched points
between images, as stated in (2.41) and (2.44) by following the procedure presented in
Section 2.3.1. Then, assuming that the distance between poses is the value returned
by the odometer, we can proceed similarly to the schemes presented in Figure 2.15(a)
and Figure 2.15(b) to describe in the same manner the relations between (x1, y1, θ1)
and (x2, y2, θ2), as it can be seen in Figure 2.20. Note that we have used a variation
of Algorithm 1, where we can assume its motion parameters as:

• Pose at time t: (x1, y1, θ1)

• Pose at time t+ 1: (x2, y2, θ2)

• δtrans: δodo; distance between consecutive poses at t and t+ 1.

• δrot1: φ

• δrot2: β

• α1=α2=α3=α4=0

2.3.2.1 Visual Odometry Results

First of all it is necessary to present the kind of environment where we have conducted
the experiments. The defined scenarios correspond with real indoor environments, ac-
quired at office-like spaces. In Table 2.6 we synthesize the main characteristics of these
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Dataset characteristics
Dataset No. images Distance Figures Mockup
Dataset 1 858 85.8 m Figures: 2.23 and 2.24 Figure: 2.21
Dataset 2 121 48.4 m Figures: 2.25 and 2.26 Figure: 2.22

Table 2.6: Dataset characteristics

Figure 2.21: Mockup for the Dataset 1. Two examples of views of the environment are indicated.

environments and we associate them with a corresponding dataset of omnidirectional
images. Note that we include the references to specific result figures for each dataset.
There is also a column that refers to the synthetic mockups that depict the layout of
each real scenario.

Dataset 1

The equipment used for the acquisition of data is the same presented in Sec-
tion 2.2.3. The Pioneer P3-AT allows us to gather omnidirectional images with its
corresponding odometry and ground truth. The last one is processed from the raw
laser data by means of a gmapping algorithm [127, 51]. According to the results shown
in [42], the feature points chosen to compute the motion transformation are SURF [7].

The Dataset 1 corresponds with one of the worst-case scenarios in mobile
robotics. Figure 2.21 presents an approximation of the real layout of this scenario.
The experiment was conducted while the robot was turning around its own position
permanently. The intention was to accumulate a high error on the odometry. This sort
of movement usually accomplishes that purpose. We force the robot to maintain a
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Figure 2.22: Mockup for the Dataset 2. Six examples of views of the environment are indicated.
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constant turn that makes the wheels slide most of the time, and therefore the odome-
ter introduces considerable errors. Figure 2.23 presents the visual odometry results for
this scenario. The ground-truth is drawn in continuos line, the odometry in dashed
line, and the visual odometry estimation in dash-dotted line. It can be observed how
the estimation resembles the ground truth. Figure 2.24 presents the obtained errors.
Figure 2.24(a) compares the error in X, Y and θ for the visual odometry estimation
and the regular odometry of the wheels. Please note that compared to odometry, the
best results are obtained by the presented approach. Odometry is prone to increase
the error without bounds. Figure 2.24(b) represents the RMS (Root Mean Square)
error that has been generated at the final pose of the robot against the number of
matched points used to compute the motion transformation. It is important to point
out that the computation was carried out 100 times, aiming at the retrieval of robust
results. For this reason, the figure shows the mean value and the standard deviation.
The tendency of the RMS reveals that the higher number of matched points, the more
accurate results. It is obvious that low amounts of matched points may lead to harmful
effects in case that few false positives are not filtered and input into the system.

Dataset 2

Similarly to the first dataset, the Dataset 2 consists of an office-like scenario with
the addition of a corridor that introduces a changing effect on the lighting conditions.
This also poses a challenge for the experiment. Figure 2.22 presents an approximation
of the real layout of this scenario. In this experiment, we did not make use of the P3-AT
robot. Here, an omnidirectional dataset was manually acquired over a grid conformed
by 381 positions. The grid step is 40 cm. The goal is to prove the feasibility of the visual
odometry estimation in a more realistic situation than in the previous dataset. Here the
robot traverses a narrow corridor with windows on the one side until it enters a second
room and it finally returns over the same trajectory. Following the same statements
than in the previous dataset, the experiment has been repeated 100 times so as to
ensure robust results in terms of error. Figure 2.25 presents the results. The ground-
truth is drawn in dash-dotted line and the visual odometry estimation in continuos line.
Note that there is not odometry values as the experiment has been developed by using
a grid of images. Thus in this dataset we assume δtrans=δodo as the value extracted
from the grid step. Again, the topologic shape of the estimation demonstrate high
resemblance with the ground truth. Figure 2.26 presents the obtained errors for this
scenario. Figure 2.26(a) compares the error in X, Y and θ for the visual odometry
estimation and the regular odometry. Figure 2.26(b) represents the mean RMS error
at the last pose of the robot over the 100 repetitions of the experiment. A similar
conclusion may be extracted here, since the evolution of the RMS also proves that the
more number of matched points, the more accurate results.
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Figure 2.23: Results of visual odometry obtained in the Dataset 1. The estimated visual
odometry is drawn in dash-dotted line, the odometry in dashed line and the ground truth in
continuous line.

As a preliminary output extracted from these experiments, this visual odometry
approach demonstrates that the relative angles β and φ obtained by means of the
motion transformation, are valid for real applications in the field of mobile robotics.

2.3.3 Performance
The definition of the previous experimental setup led us to consider a further study on
the results in order to extract conclusions about the precision of the measurements. For
this reason, we analyze the performance provided by the computation of the motion
transformation described in Section 2.3.1. The accuracy on the extracted values (φ,
β) needs to be studied under different conditions. The most relevant factors to take
into account are the variation on the number of matched points and its dependency
on the computational load.

Taking advantage of the datasets acquired in the previous section, we make use
of the Dataset 1 and Dataset 2 in order to establish a series of performance experiments.
We present the different results that have been obtained by using several variants of the
solver algorithm embedded by the motion transformation computation. In particular,
we have defined different kernels for the former SVD solver method, which was initially
introduced to solve the equation system characterized by the coefficient matrix D, as
expressed in (2.40). Note that a minimum number of 4 corresponding points between
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Figure 2.24: Error results obtained in the Dataset 1. Figure 2.24(a) represents the error at each
step in X, Y and θ. Figure 2.24(b) presents the mean RMS error and standard deviation against
the number of matched points.
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Figure 2.25: Results of visual odometry obtained in the Dataset 2. The estimated visual
odometry is drawn in continuous line and the ground truth in dash-dotted line. The dark dots
represent the rest of images that conform the grid.
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Figure 2.26: Error results obtained in the Dataset 2. Figure 2.26(a) represents the error at each
step in X, Y and θ. Figure 2.26(b) presents the mean RMS error and standard deviation against
the number of matched points.
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views is required to extract the motion transformation for a certain observation model,
as zt(φ, β). However we have set up three different schemes (Scheme 1, 2 and 3) to
compute these values, which are defined as follows:

Scheme 1

A set with the total number of matched points detected between images, N , as
the inputs for the SVD solver. Figure 2.27 depicts the block diagram for this scheme
where I1 and I2 are two views to extract matches from, p and p′, and DNx4 the
coefficient matrix that contains the input set for the SVD solver with the total N
matched points found. Figure 2.30 presents results of accuracy for this first scheme,
which is sustained by a method based on the SVD solver. The error is calculated as
the absolute deviation from the real value in radians, though in the figure is converted
to degrees for a simpler observation. Each bar represents a bin with the number of
matched points that input the SVD solver. The frequency for each bin is represented
by the height of the bar as a % out of the total number computed for the bins, that is:

%i = frequencybini
n∑
i=1

frequencybini

For this method, the total number of matched points are introduced via the
coefficient matrix D (2.40), as the only input set for the solver. That is, the final
solution is obtained in a single step with the total number of matched points detected
between images. Nevertheless the experiments have been repeated 100 times so as
to avoid biased dependencies. As a result, we can plot mean values and standard
deviations for the error on the computed measures.

Figure 2.27: Block diagram for the Scheme 1.
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Figure 2.30(a) presents the evolution on the error in β against the number of
matched points and their frequency of repetition. Figure 2.30(b) presents the same
terms for φ. Again, the mean values and standard deviation have been plotted. The
precision on the estimated angles confirms the expected behaviour: the higher number
of matched points the better retrieval of results. Despite this last fact, it also can
be proved that the precision of these results is acceptable even when the number of
matched points are relatively low. Notice that values obtained with 15 matched points
provide a tolerable estimation for its use in a real application.

Scheme 2

Different n-subsets of matched points as the inputs for the SVD solver, being
n = N/k, where N still represents the total number of matched points and k the
desired size for the subsets. Thus the solution consists of n-pairs of values for β and φ,
namely βn and φn. Then an histogram voting with mean values is needed to reach
a final solution. Note that each subset generates a matrix Dn with size of k-by-4.
Figure 2.28 depicts the block diagram for this scheme, where I1 and I2 are two views
to extract matches from, p and p′, and Dn

kx4 all the coefficient matrices into which
the n-subsets are divided to input separately the SVD solver.

Figure 2.31 presents the same results of accuracy for the second variant of
the solver. Here, we have divided the total number of matched points of each bin,
into several different n-subsets as inputs for the SVD. In consequence, the number of
solutions depend on the total number of matched points detected, N , and the value of
k, which determines the size of Dkx4 and also the number of subsets, since n = N/k.
Then an histogram voting is applied in order to return a mean value for the final
solution. Figure 2.31(a) presents the evolution on the error in β against the number
of matched points and their frequency of repetition. Figure 2.31(b) presents the same
terms for φ. In this case, the results provide a more accurate estimation than in the
previous scheme. It is worth noticing that values obtained with 9 matched points can
be acceptable for its use in a real application. The key point lays on the subdivision
of the total number of matched points for the obtention of several n-solutions. This
means that possible false positive that the system was not able to reject at first stages
are now spread along the subsets, and their harmful effects attenuated. Then, false
positive bias the solution only for a limited number of subsets, instead of the entire
input as it would happen in the previous scheme. In this way, the effect of damaged
solutions is diminished. Finally an histogram voting computes a mean value with all the
possible solutions provided by all the subsets. However, it is evident that this scheme
consumes more computation time. The next scheme even demands more time efforts.

Scheme 3

Different randomly permuted n-subsets of matched points as the inputs for the
SVD solver: This strategy is quite similar to the previous one, but it uses a combinatorial
histogram voting instead. This permits to randomize and obtain a considerable high
number of possible combination for the n-subset of matched points to input the solver.
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Figure 2.28: Block diagram for the Scheme 2.

Figure 2.29: Block diagram for the Scheme 3.

Figure 2.29 depicts the block diagram for this scheme, where I1 and I2 are two views
to extract matches from, p and p′, and Dn

kx4 all the coefficient matrices generated
from the combinational randomization of the n-subsets to later input the SVD solver
separately.

Finally, Figure 2.32 presents the results of accuracy for the third variant of the
solver. Here the procedure is quite similar to the previous one. The difference is
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introduced by a combinatorial permutation redistribution. For each bin, this technique
randomly permutes the n-subset of matched points that input the solver, and allows
to calculate all the possible combinations. Again, the final solution is extracted after
applying histogram voting and a mean estimator.

Similarly to previous figures, Figure 2.32(a) presents the evolution on the error
in β against the number of matched points and their frequency of repetition. Fig-
ure 2.32(b) presents the same terms for φ. In this case, the results provide the most
accurate estimation. Despite this fact, the results are very close to the previous ones
and do not make a big difference. Here, we propose a randomization over the number
of matched points to construct the different n-subsets. This allows us to reutilize the
same data and to spread even more the possible presence of false positives. Therefore,
computing a higher number of possible subsets makes the effect of wrong correspon-
dences more irrelevant. Nonetheless, the time consumption may become totally inviable
for a normal use in an application. Higher number of matched points implies a com-
putation effort for the generation of the combinational permutation, which is definitely
not worth it if we consider a balance between accuracy and time consumption.

Lastly, it is worth noticing that several selections of the value k that can be
made. However, we conducted this analysis with the minimum number k = 4. Higher
values imply that observations with a total number of matched points lower than k,
cannot be evaluated with all the variant methods presented above, as some subsets
would not have been filled due to the lack of points, and thus the comparison would
have not be carried out.

The experiments presented above suggested that the computational costs should
be determined so as to provide a complete analysis of the schemes. Therefore, now
we pursue to describe the time requirements for the motion transformation model
presented in this chapter. To that end, Figure 2.33 divides the different contributions
to the final time consumed in Scheme 1. In particular, Figure 2.33(a) represents the
time spent by the matching process to detect points and the time spent by the SVD
solver to provide the final solution. The sum of these two contributions is represented
as the total time consumption. Note that the matching is a limiting stage in this sense.
Even for higher number of matched points, and although the time consumed by the
SVD grows with higher steep, it never reaches the time consumed by the matching
process.

Figure 2.33(b) provides an outline for the comparison between the error obtained
in β and φ with the total time consumption in the framework defined by the Scheme 1.
Inspecting this figure makes even more evident that a high number of matched points
to retrieve an accurate solution is not necessarily required. Similarly, Figure 2.34 and
Figure 2.35 provide time results for the Scheme 2 and Scheme 3 respectively. These
figures show the total time consumed.

The last set of results demonstrate the first evidences on the time consump-
tion. It is clear that the more number of matched points, the more accuracy on the
estimation. However, the solver methods proposed in Scheme 2 and Scheme 3 may be
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Figure 2.30: Scheme 1: Former SVD solver. Evolution of the error in β and φ (deg) against the
number of matched points. The bins represent different subdivisions for the number of matched
points detected. The frequency is presented as a % out of the total.
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Figure 2.31: Scheme 2: SVD solver with n-subset inputs and histogram voting. Evolution of
the error in β and φ (deg) against the number of matched points. The bins represent different
subdivisions for the number of matched points detected. The frequency is presented as a % out
of the total.
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Figure 2.32: Scheme 3: SVD solver with n-subset inputs selected by combinational permutation,
and histogram voting. Evolution of the error in β and φ (deg) against the number of matched
points. The bins represent different subdivisions for the number of matched points detected. The
frequency is presented as a % out of the total.
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only valid for certain applications. In a platform with real-time requirements, the best
trade-off solution between accuracy and computational cost is given by the Scheme
1, which is paradoxically the simplest. The Scheme 2 and Scheme 3 are capable to
compute relative angles with an error close to the tenth of a degree, but at an expensive
time cost over a second.
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Figure 2.33: Scheme 1: Time consumption and error. Figure 2.33(a) shows the time consumed
by the SVD, the matching process and the total time consumption. Figure 2.33(b) shows the
error in β and φ against the total time consumption.
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Figure 2.34: Scheme 2: Error in β and φ against the total time consumption.
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Figure 2.35: Scheme 3: Error in β and φ against the total time consumption
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2.4 Conclusions

In this chapter we have provided an outline of the essentials for the catadioptric sensors,
paying special attention to the omnidirectional visual sensor. In this context, we have
described in detail the fundamentals of the projection model of our omnidirectional
system, which represents the key mechanism for gathering visual data within the field
of this thesis.

During the exposition of these fundamentals, we have dealt with different tasks
that had to be implemented in the code framework of this thesis. The embedding of an
omnidirectional calibration is one of them. Another development carried out was the
definition of the motion transformation model for the extraction of a relative translation
and rotation between two poses of the robot. This contribution is of paramount impor-
tance for its later application to the observation model when dealing with SLAM tasks.
We have implemented it thanks to certain epipolar geometry considerations. However,
a previous stage required that this epipolar geometry was precisely defined and adapted
to our omnidirectional system, since the regular case is normally addressed for planar
camera models. Furthermore, this contribution also allows to improve the observation
model for our SLAM problem, since it may reduce the search for corresponding points
in the second image. We have also included further details about the implementation
of this motion transformation model.

Finally, the last subsections in this chapter have been aimed at the practical
evaluation of the initial proposals and contributions. We have conducted experiments
for a visual odometry platform, since generally, it only makes use of the motion trans-
formation measurements. These results confirmed the reliability of the measurements
in order to operate with real system applications. Moreover, we have defined a bench-
mark configuration which allows to assess the performance of the approach in terms
of accuracy and computational requirements. We can conclude that this approach
provides results that are usable by real-time applications, since they do not need an
excessively powerful system to produce a good trade-off solution between performance
and accuracy.

These results establish the starting point for the research and development of
our observation model within the problem of SLAM. Further information about this
line of research is given in the next chapters.
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3 Simultaneous Localization And
Mapping - SLAM

Navigating in unknown environments inherently couples the task of building a map
and the computation of the relative robot’s location referred to the map. This state-
ment is the first and most straightforward interpretation inferred from the acronym of
SLAM (Simultaneous Localization And Mapping). As it has been primarily detailed
in Chapter 1, in this field of mobile robotics there is a crucial paradigm which the
SLAM process has to deal with. After the former developments on SLAM [124], the
last decade has witnessed a tremendous advance in obtaining a solution for the SLAM
problem with different propitious implementations. Besides the possible designs for the
sensor system and the representation of the environment, these implementations rely
heavily on the kind of algorithm to provide a trustworthy backend core for any SLAM
system application. In this sense, different SLAM algorithms have been extensively
used, which can be principally distinguished by the sort of algorithm, such as online
algorithms [25, 20, 94] and offline algorithms [53, 40].

Historically, the major research has concentrated on improving the computa-
tional efficiency [32, 123, 57, 29], assuring at the same time consistency and ac-
curacy for the estimation of the map and vehicle pose [31, 80, 16, 56, 147, 28].
However, nowadays the tendency of research has deviated towards issues with regard
to non-linearities [66, 70], data association [122, 119, 6, 25] and landmark recogni-
tion [78, 109, 26, 105]. All of which are crucial to outline the new milestones for
polishing the theoretical and practical implementation of a robust SLAM model.

This chapter intends to provide with a general overview of the basis of a SLAM
problem. Then its analytic fundamentals are object of in-depth analysis so as to provide
the reader with sufficient background on the main algorithms and methods which are
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later needed to implement and develop the new contributions proposed in the framework
of this thesis. Consequently, we have designed the structure of this chapter to fulfill
the main theoretical aspects involved in this thesis as follows:

• First, we introduce the fundamentals of the problem of SLAM. We focus on its
probabilistic nature, initially defined through Bayesian considerations and mate-
rialized by the integration of probabilistic methods in the field of robotics and
artificial intelligence sciences.

• Next we concentrate on the basis of several algorithm-specific methods we se-
lected in this thesis to develop and implement new contributions to the framework
of SLAM. In particular, we introduce the essentials of the Extended Kalman Filter
(EKF) and the Stochastic Gradient Descent (SGD).

• Then we present an overview to Gaussian Processes (GP), as they are later
needed in order to produce some contributions to keep the uncertainty of the
system bounded.

• In consequence with the previous point, we provide a brief introduction to information-
based theory, as it is required to work on the uncertainty considerations.

Therefore this chapter constitutes the theoretical framework which sustains all the later
development of contributions and implementations carried out in this thesis. In conse-
quence, it will be implicitly referenced in all the work, contributions and publications
presented along this thesis document.

3.1 SLAM Definitions

Generally, a preliminary approach to the essentials of the SLAM problem can be de-
picted by the schematic presented in Figure 3.1. A mobile robot is expected to move
through a certain environment while it acquires relative observations of a number of
unknown landmarks by means of a specific sensor. This permits that the simultaneous
estimation of the robot and landmark locations is accomplished. Please notice that the
true locations are never available either measured at any time. Finally, observations are
considered relative between the real path followed by the robot and the landmark loca-
tions. Assuming the scheme stated above, the following bullet points list the different
variables as function of the time instant, t.

• Index t: Temporal instant.

• xt: State vector that describes the location and orientation of the robot.

• ut: Control vector that drives the robot to the next state at time t. It is applied
between consecutive time steps, that is t and t+ 1.

• li: Vector that describes the location of the i− th landmark, whose true location
can be assumed as invariant.
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Figure 3.1: The colored items represent the real position of both, the path followed by a vehicle,
denoted by its state vector xt, and the set of discovered landmarks as li. The same variables are
estimated by the SLAM algorithm and represented with blank items. The observation measure-
ment between the vehicle and the landmarks are expressed by zt,i, while the control input which
drives the vehicle from consecutive states is indicated by ut. Note that the true locations are
never known or measured directly. Observations are made between true vehicle and landmark
locations.

• zt,i: Observation vector computed at the current robot’s location, at time t.
Index i expresses the observation to the i− th landmark. Whether there are
multiple landmark observations at time t or the specific landmark is not relevant,
the observation will be simply written as zt.

In order to keep record of the previous variables, the next subsets are defined:

• X0:t={x0, x1, · · · , xt}={X0:t−1, xt} ⇒ History of vehicle location.

• U0:t={u0, u1, · · · , ut}={U0:t−1, ut} ⇒ History of control inputs.

• l0:t={l0, l1, · · · , lk} ⇒ Set of landmarks.

• Z0:t={z0, z1, · · · , zt}={Z0:t−1, zt} ⇒ Set of observations.

3.1.1 Bayesian Considerations
The Bayesian approach is crucial when dealing with variables associated with random
noise. Bayesian filtering is one of the most accepted solutions in this sense, since it
provides the fundamentals for the later state estimations of dynamics models [4, 130,
49, 38, 97, 110]. Based on Bayes theory, the probability density distributions of such
variables has to be introduced so as to build a state vector that accounts for all the
statistical information.
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According to Bayes theory, the problem can be extended to a general case where
probabilistic formulation leads to:

P = (xt, l|Z0:t, U0:t, X0), (3.1)

being l = l0:t. Equation (3.1) represents the SLAM problem expressed as a probability
distribution, which is successively computed at every time t. Given the set of control
inputs and recorded observations, this probability distribution characterizes the joint
posterior density for the vehicle’s state vector and the landmark locations. It considers
probability up to time t, but it also includes the initial state of the vehicle.

Regularly, a recursive solution is desirable. The starting point is established
by an initial guess (global or local) as an estimation for the distribution, that is
P (xt−1, l|Z0:t−1, U0:t−1). Here Bayes theorem is utilized to compute the joint pos-
terior, following an observation zt and a control input ut. Notice that it is important
to define a state transition model and an observation model to bear in mind the effect
of the control input and observation respectively.

The observation model determines the probability of performing an observation
zt by assuming the vehicle and landmark locations as known. It may be stated as:

P (zt|xt, l) (3.2)

It is feasible to assume that observations are conditionally independent given the map
and the current vehicle state already defined. Thus the motion model for the vehicle
can be addressed in terms of the probability distribution associated with the state
transitions:

P (zt|xt, l)P (xt|xt−1, ut) (3.3)
That is a Markov assumption by which the corresponding state transition considers
the next state xt being only dependent on the immediate preceding state xt−1 and
the control ut. Conversely, it may be considered independent of both the map and
observations. Therefore, the SLAM algorithm is expected to be deployed in a recurrent
two-stage process, which is triggered by observations: prediction and update. Fig-
ure 3.2 represents a graph that depicts the Markov model for the SLAM problem.
Nonetheless, the discussion stated above can be simplified and the conditioning on
historical variables in (3.1) eventually dropped. Now, the required joint posterior on
map and vehicle location can be rewritten as P (xt, l|zt), or even P (xt, l) at certain
contexts. The observation model P (zt|xt, l) explicitly expresses the dependence of
observations on both the vehicle and landmark locations. As a result, the resulting
joint posterior cannot be easily disconnected in the known form:

P (xt, l|zt) 6= P (xt|zt)P (l|zt) (3.4)

3.2 Extended Kalman Filter - EKF

The Extended Kalman filter is an extensively employed representation in the form
of a state-space model with additive gaussian noise, which also integrates Bayesian
considerations to deal with such noise [92, 72].
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Figure 3.2: Markov model for the SLAM problem, where the observation measurements are
assumed conditionally independent. xt and ut represent the state vector and control inputs
respectively, meanwhile li and zt are the landmark locations and their pertinent observation
measurements. Note that zt at each t comprises the whole set of observation measurements to
all the visible landmarks.

The solution for the SLAM problem was first introduced by Smith et al. in [124,
123], who utilized the EKF [30] as the basic kernel for the system. Most of the research
on this technique concentrated on approaches which relied on artificial landmarks [27,
67, 24, 58, 20]. Although in general, any sort of landmarks in the environment may
be considered. As per the sensor to get observation measurements of these landmarks,
the most commonly used was laser [44, 140, 143, 12, 81]. The EKF is able to process
jointly the observation measurements for the landmarks and the control inputs in order
to retrieve a map of the environment and an estimation for the robot’s pose.

An actual problematic of using this filter comes tied to computational require-
ments. It exists a critical dependence on the number of landmarks, namely N , and
the speed of convergence, expressed by O(N2). In addition, non-linearities introduced
into the system compromise gravely the filter’s behaviour, which commonly diverges
under non-linear conditions. In particular, these conditions imply that achieving a pre-
cise data association becomes tremendously challenging, since the identification of the
proper landmark is very sensitive to such undesired situations.

The EKF concentrates its operation on the linearization of the probability dis-
tributions of its variables. Hence the filter presents serious drawbacks to deal with
non-linear systems that reveal non-gaussian noise nature. Unfortunately, this situa-
tion corresponds to most of the physical systems in actual science. The linearization
adopted by the filter for those systems comes at a cost: a downside on the performance,
due to the oversimplification of the distributions involved. Then it is not an occasional
fact that its reliability is affected, the final estimation impaired and the ultimate con-
vergence considerably compromised. Nevertheless, despite these last issues, a precise
verification of the appropriateness of the system to be run by an EFK solver, ensures
an optimum operation of the filter with excellent online estimates. With this purpose,
the nature of the input variables and the dynamics of the system has to be studied in
depth.
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3.2.1 Notation
Mathematically, the principle of this filter lays on the estimation of an augmented
state vector which is constantly updated in real time. In the framework presented
above, the variables to estimate conform the map itself. So that the state vector
may be reformulated in order to include both robot’s estimated poses and landmark’s.
Accordingly, the probabilistic notation for the definitions exposed in Section 3.1 can
be transformed to introduce the new augmented state vector for a dynamic system, in
the following form:

x̄(t) = [xv, xl1 , xl2 , · · · , xli ]T (3.5)

which mixes notations so as to express both, position of the vehicle xv and landmarks
xli .

Maintaining the focus on the general probabilistic case introduced above in (3.1),
a slight modification in the structure of the equations (3.1) and (3.2) has to be devised,
so that the following expressions reveal a linearization for the state transition function,
and also consider external inputs such as the control input and noise:

P (xt|xt−1, ut)⇔ x(t) = f(xt−1, ut) + vt (3.6)
P (zt|xt, li)⇔ z(t) = h(xt, li) + wt (3.7)

where f is the function that produces the transition between the previous position
of the robot xt−1 and the current control input ut. Similarly, h exposes the relation
between the previous position and the position of the i-landmark.

Once the state vector has already been defined in (3.5) and fused through
probability notation by the two equations above, the state transition between x̄(t) and
x̄(t+ 1) is:

x̄(t+ 1) = f [x̄(t), u(t+ 1)] + v(t+ 1) (3.8)

where again f synthesizes the information pertinent to the transition between states
and the control vector u(t + 1), which normally represents the movement generated
by the odometer of the wheels of the robot. Then v(t+ 1) acts as the gaussian noise
introduced in the system, being additive, with zero mean and uncorrelated nature.

Equivalently, a linear relation may be defined so as to couple the observation
measurement zi(t) with the current state vector:

zi(t) = h[x̄(t), li] + wi(t) (3.9)

being h the geometric encoding relation between x̄(t), zi(t) and the observed landmark
li. Here, wi(t) represents the random noise generated by the sensors, which is also
gaussian, with zero mean and uncorrelated nature. Its covariance is expressed by R(t).

Then, the filter’s procedure has to be divided into three indispensable stages
which must be well differentiated: State prediction, observation measurement and
update. The following subsections provide with a brief introduction to all of them.

74



3.2. Extended Kalman Filter - EKF

3.2.2 State Prediction
Firstly, meanwhile there is no movement in the system between states, a prediction of
the state, x̂(t), is carried out, and based on it, also a prediction for the observation
measurement, ẑi(t), may be proposed in the following terms:

x̂(t+ 1|t) = f [x̂(t|t), u(t)] (3.10)
ẑi(t+ 1|t) = h[x̂(t+ 1|t), li] (3.11)

P (t+ 1|t) = ∂f(t|t)
∂x

P (t|t)∂f(t|t)
∂x

T

+Q(t) (3.12)

where P (t|t) and P (t + 1|t) are the covariance matrices which reflect the increase in
the uncertainty of the estimation at instants t and t+ 1 respectively. Q(t) represents
the covariance matrix for the noise added by u(t), which specifies the source of noise
for the transition. Note that both Q(t) and f are dependent on u(t), which indicates
the movement of the robot. ∂f(t|t)

∂x is the jacobian matrix of f at the estimated state.

3.2.3 Observation Measurement
The second stage performs the real observation zi(t) at the current instant t, of a
specific landmark i of the map. Now the concept of innovation, denoted as vi(t), has
to be introduced in order to explain the deviation between the prior prediction ẑi(t)
and the current measurement zi(t):

vi(t+ 1) = zi(t+ 1)− ẑi(t+ 1|t) (3.13)

Si(t+ 1) = ∂h(t|t)
∂x

P (t+ 1|t)∂h(t|t)
∂x

T

(t) +Ri(t+ 1) (3.14)

where Si(t + 1) represents the innovation’s covariance that contains the uncertainty
in vi(t+ 1), as the amount by which the real observation measurement deviates from
the prediction. ∂h(t|t)

∂x is the jacobian matrix of h evaluated at the corresponding state
and landmark.

3.2.4 Update
Finally, the third stage takes into account the refinement of the estimation obtained
during the prediction, seen as an updating step. Once a successful observation is
performed, the state estimation becomes more precise and the uncertainty P decreases.
The value of the innovation is significantly relevant in the computation of the final
solution provided by the filter. This solution estimation at instant t + 1, is finally
obtained as:

x̂(t+ 1|t+ 1) = x̂(t+ 1|t) +Ki(t+ 1)vi(t+ 1) (3.15)
P (t+ 1|t+ 1) = P (t+ 1|t)−Ki(t+ 1)Si(t+ 1)KT

i (t+ 1) (3.16)
where in this case Ki(t + 1) plays a role of weighting, and corresponds with the gain
of the EKF. It is calculated in the following manner:

Ki(t+ 1) = P (t+ 1|t)∂h(t|t)
∂x

T

(t)S−1
i (t+ 1) (3.17)
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It is worth mentioning that the matrices referred to as the noise’s covariance Q(t)
and R(t) have to be initialized. Q(t) is established by means of the noise parameters
which characterize the odometer of the wheels of the vehicle. Conversely, R(t) is
determined by experimental accuracy thresholds which are associated with the visual
sensor. The odometry u(t) is required as an initial seed for the prediction generation,
together with the previous state, as deduced from (3.10). The uncertainty matrix
of the map, P (t), contemplates the noise introduced by the odometry in the form
presented in (3.12), and the noise introduced by the visual sensor when carrying out
an observation measurement, as detailed in (3.14) and (3.16).

Assuming a linear model for movement and observation usually leads to an EKF
estimate that shows a monotonically increasing sequence in its convergence, as long
as landmarks are introduced in the map. In the end, its accuracy is determined by the
uncertainty associated with the initial state.

On the other hand, non-linear models pose a significant problem which may
involve inevitable and often severe inconsistency. Convergence and consistency can be
only assured in the linear case. The non-linear case is nonetheless the most common
in reality, and thus the case by which most of the physic’s phenomenon are closely
tied to. This last case is the main consideration taken into account above when the
jacobian expressions for f(t) and h(t) were introduced in their linearized forms.

As for the computational side, there is a high dependency on the number of
landmarks. Each step requires an update for the whole set of landmark’s covariances
and estimations. This means that a great computational effort is needed when the
environment is large, being the dependency O(N2) with the number of landmarks N .

3.2.5 Matrix Notation
The equations presented above are more commonly found in matrix notation. Obvi-
ously, matrix terms aid in the software programming and computation tasks for real
applications. In particular, the matrix for the uncertainty P , defined in (3.12), is truly
important. The corresponding P matrix handled in the software development side
presents the following structure:

P =


Pxvxv Pxvxl1 · · · Pxvxli
Pxl1xv Pxl1xl1 · · · Pxl1xli...

...
...

Pxlixv Pxlixl1 · · · Pxlixli

 (3.18)

and transferring the terms into the elements of the matrix:

P (t+ 1|t) =


∂f(t|t)
∂x Pxvxv (t|t)∂f(t|t)

∂x

T
(t) +Q(t) · · · ∂f(t|t)

∂x Pxvxli (t|t)
∂f(t|t)
∂x

T

Pxl1xv (t|t)∂f(t|t)
∂x

T
(t) · · · Pxl1xli (t|t)...

...
Pxlixv (t|t)∂f(t|t)

∂x

T
(t) · · · Pxlixli (t|t)


(3.19)
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3.2.5.1 Initializing Landmarks

Another important aspect to keep in mind when dealing with matrix notation is the
initialization of new discovered landmarks. The new state vector form is evidently
trivial since it is: x(t)new = [xv, xl1 , · · · , xli+1]T . By contrast P has to initialize the
uncertainty of a new landmark with the current value of the robot uncertainty, that is
the uncertainty of xv:

Pnew =


Pxvxv Pxvxl1 · · · Pxvxv

∂xli+1
∂xv

T

Pxl1xv Pxl1xl1 · · · Pxl1xv
∂xli+1
∂xv

T

...
...

...
∂xli+1
∂xv

Pxvxv
∂xli+1
∂xv

Pxvxl1 · · · ∂xli+1
∂xv

Pxvxv
∂xli+1
∂xv

+ ∂xli+1
∂h R

∂xli+1
∂h

T


(3.20)

3.3 Stochastic Gradient Descent - SGD

This algorithm is commonly sustained by a graph-oriented map which is supported by
the classical statistics concept of a sum-minimization problem. It may be seen as well
as a least squares problem where a maximum-likelihood estimator with independent
observations has to be conducted [9, 77, 11]. All these aspects come up with certain
benefits that reveal a major strength in order to contribute to the mitigation of non-
linear effects in a SLAM system [136].

3.3.1 Notation
In contrast to EKF, the SGD is an offline algorithm which tends to produce better results
when dealing with non-linearities effects caused by the observation measurements [8,
53, 52, 104]. The EKF turns to be very susceptible to these effects and it often shows
serious difficulties to maintain the convergence of the estimation. Nonetheless, this
advantage of the SGD comes at an obvious cost of computation, and not to mention
that the estimation is obtained offline.

In order to provide a brief approach to the background of the SGD, a light
introduction on the structure of its state vector has to be devised similarly to the EKF’s
section above. However, when dealing with an offline algorithm allows to handle the
kind of map differently. Now, it can be seen as a set of nodes defining the poses already
traversed by the robot and the landmarks initialized into the map. Generalizing, a set
of edges corresponds to the relationships between nodes. These relationships may
come either from the odometry of the robot or from the observation measurements.
Figure 3.3 represents this general schema where each edge is marked with different error
terms. For instance, the edge between the two initial poses at t and t+ 1, represents
the error which consists of the difference between the odometry prediction, g(ut+1, xt),
and the real distance, weighted by the noise of the odometry Q by means of its inverse
form Q−1. Likewise, nodes where there are observation measurements available, are
connected by edges with the error between this observation measurement, zt, and the
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Figure 3.3: This diagram represents a general approach for offline graph methods such as SGD.
A set of nodes are included to define both robot’s poses and landmarks’. Each node introduces an
error term which is determined by the error between the odometry prediction, g, and the distance
between nodes, or similarly by the error between the observation measurement to a landmark,
zt, and the prediction based on the state h.

prediction based on the state, determined by h(l, x). In this case, they are weighted
analogously by the inverse of the matrix of noise introduced by the sensor, R−1. Finally,
the solver algorithm intends to minimize the sum of all these error terms, as the main
objective of a Maximum Likelihood Estimation (MLE) method [61]. It is worth noting
that the nodes for the robot’s pose are referred to as xt so that nomenclature with EKF
is maintained. Nevertheless, SGD is an offline algorithm that presents the potential
capability to include any possible relationship between nodes regardless the time. This
fact enhances the accuracy of final estimates since high number of constraints are
taken into account. Here t may be also devised as a linear index to denote nodes in
the graph.

Adapting the former schema to a more practical situation, leads to define a state
vector xt which encodes this representation through a set of variables expressed in the
following manner:

xt =
[
(x0, y0, θ0), (x1, y1, θ1) . . . (xn, yn, θn)

]
(3.21)

being now (xn, yn, θn) the 2D coordinates and bearing in a general reference system
for each pose (namely nodes as introduced above). The general idea presented in
Figure 3.3, can be specifically extrapolated to the SGD. Hence in the same line, the
complementary subset of edges represents the relationships between nodes, by means of
either distance measurements generated by the odometry or observations measurements
provided by the on board sensors. Here, the nomenclature commonly refers to the
measurements as constraints and it denotes them as δji, where j indicates the observed
node, seen from node i. The general objective stated by methods based on standard
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SGD approaches [104, 53, 8] is to minimize the error likelihood expressed as:

Pji(x) ∝ η exp (−1
2(fji(x)− δji)TΩji(fji(x)− δji)) (3.22)

being fji(x) a function dependent on the state, (here the state is expressed as xt due
to encoding considerations) and both nodes j and i. The difference between fji(x)
and δji expresses the error deviation between nodes. Such error term is weighted by
the information matrix:

Ωji = Σ−1
ji (3.23)

where Σ−1
ji is the associated covariance matrix, which considers the uncertainty of the

measurements. The assumption of logarithmic notation in (3.22) leads to:

Fji(x) ∝ (fji(x)− δji)TΩji(fji(x)− δji) (3.24)
= rji(x)TΩjirji(x) (3.25)

being rji(x) the error determined by fji(x)-δji(x), which shows its condition of residue.
Finally, the global problem seeks the minimization of the objective function which
represents the accumulated error:

F (x) =
∑
〈j,i〉∈G

Fji(x) =
∑
〈j,i〉∈G

rji(x)TΩjirji(x) (3.26)

(3.27)

where G = {〈j1, i1〉, 〈j2, i2〉 . . .} defines the subset of particular constraints conform-
ing the map, either pertaining to odometry or observation measurements. Then, the
optimal problem forces to find x∗ = argminr[F (x)].

3.3.2 Estimation
The SGD algorithm implements an iterative procedure to reach a valid estimation for
the SLAM problem. The basis of a SGD method lays on the minimization of (3.26)
through derivative optimization techniques such as mean square estimators, so that
the estimated state vector is obtained as:

xt+1 = xt + ∆x (3.28)

where ∆s expresses a certain update with respect to xt, term which is sequentially
generated by means of the constraint optimization procedure. It is worth noting that
in a general case, this update is calculated independently at each step by using only a
simple constraint, that is to say ∆sn = f(δji). The general expression for the transition
between xt and xt+1 has the following form:

xt+1 = xt + λ ·H−1JTjiΩjirji (3.29)

• λ is a learning factor to re-scale the term H−1JTjiΩjirji. Normally, λ follows a
decreasing criteria such as λ = 1/n, where n is the iteration step. This strategy
pretends to achieve a final estimation by using higher values of λ at first steps,
and presuming that lower values of λ will be useful in preventing from oscillations
around the final solution.
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• Jji(x) is the Jacobian of fji(x) with respect to xt, that is Jji = ∂fji
∂s . It

translates the error deviation into a spacial variation.

• H is the Hessian matrix, calculated as JTΩJ , and it shapes the error function
through a preconditioning matrix to scale the variations of Jji:

H ≈
∑
〈i,j〉

JjiΩjiJTji (3.30)

• Ωji is the information matrix associated to a constraint. Ωji = Σ−1
ji , being Σji

the covariance matrix corresponding with the observation constraints δji.

This procedure updates the estimation by computing the rectification introduced by
each constraint at each iteration step respectively. Despite the fact that the learning
factor reduces the weight by which each constraint updates the estimation, at certain
scenarios the procedure may cause the estimation to diverge due to undesired oscilla-
tions which are interweaved with the stochastic nature of the constraints’ selection.

3.4 Gaussian Processes - GP

In the scope of this work, we have concentrated on Bayesian approaches. Gaussian Pro-
cesses [111] have been traditionally considered as some other kind of these approaches.
At first instance, they appeared as an alternative formula to neural networks. Focusing
on our framework, we can specify up to the extent of considering GP as a regres-
sion technique [146] in order to take the most of data modeling within the field of
SLAM. The observation model in a SLAM problem can be assumed as a dataset prior,
for which the GP generates a posterior distribution with certain set of weights and
hyperparameters rather than a simple induction of an estimation over concrete points.

GP priors outperform neural networks when it comes to analytical treatment,
since the last ones cannot be tackled analytically at least in the lowest level of a Bayesian
hierarchical model [111]. All together with the work proposed in [100], disseminated the
use of these priors to higher complexity scenarios, which have been habitually addressed
with other methods such as neural networks or decision trees [71, 18, 96, 144, 68]. The
results confirm the positive outcomes of GP in comparison with these other methods.

3.4.1 General Notation
The main purpose is to provide with a brief introduction to the main notation of
GPs, which will be later used as a promising tool for determining uncertainty on the
matching detection process, and consequently for bounding the uncertainty on the
estimated map.

Continuing with the introductory line exposed in the previous section, we can
extend the conceptual meaning of a GP to be seen as a predictor that centralizes on
priors over functions rather than on computation in the parameter space. Thus GPs are
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expected to define a distribution over functions. Then these distributions are updated
under the light of the specific training dataset of consideration.

A GP may also be seen as set of random variables, which is fully determined
by its mean function m(x) and covariance function k(x, x0). These parameters are
assumed to be structured in the form of a vector and a matrix, respectively. Hence,
the distribution is over vectors, meanwhile the GPs itself are over functions. This leads
to a formal translation into the following expression:

f(x) ∼ GP(m, k) (3.31)

From now on, a redefinition of terms has to be introduced so as to differentiate between
GP and the former distribution. Thus the formerm and k variables shall be renamed as
µ and σ2 for the latter, which represent the mean and covariance values equivalently.
Now a random vector from this distribution can be generated. Its coordinates are
represented by the function values f(x) for the corresponding inputs x′s:

f(x′) ∼ GP(µ, σ2) (3.32)

This last restructuring allows the GP to be employed as a prior for Bayesian inference.
Though the prior is not dependent on the training data, but indicates some properties
of the functions. As a result, it is necessary to derive the updating process for this prior.
Moreover, computing the posterior has also to be devised in order to make predictions
for unseen test cases. The following expressions represent the final formulation for the
posterior distribution of a specific dataset:

f(x) ∼ GP[m(x), k(x, x′)] (3.33)
f(x′) ∼ N (µ, σ2) (3.34)

µ = E(f ′ | x, y, x′) = k(x′, x)[k(x, x) + σ2
nI]−1y (3.35)

σ = k(x′, x′)− k(x′, x)[k(x, x) + σ2
nI]−1k(x, x′) (3.36)

where, x and x′ can be seen as the training and test (query) input vectors, respectively,
and finally the target data y. f ′(x) indicates the output values at the test points.

The above expressions manifest the statistical inference that is used to learn
dependencies between points in a dataset [40, 41] rather than defining an explicit
relationship between inputs and outputs through a function.

3.4.2 Training
This stage is necessary when there is not enough prior information regarding the dataset
in order to determine the prior mean and covariance functions. A lack of knowledge
on detailed prior data is the most frequently expected situation in the typical practical
case. In order for the GP to succeed, different mean and covariance functions should
be tested in the training stage of the GP model. In this sense, the mean and covariance
functions are parameterized by means of hyperparameters.
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The intent of this assumption is to weight imprecise prior data in a light man-
ner. A simple example is that which shows a known dependency of the function on an
n-polynomial order, but without any detail about the polynomial. That’s the reason
why the inferences over all the hyperparameters is desired. To that end, the probability
of the data given the hyperparameters has to be computed. Then logarithmic notation
is introduced so as to define a marginal likelihood, which accounts for these hyper-
parameters. Finally the values of the hyperparameters which optimizes the marginal
likelihood are retrieved by means of partial derivatives.

However, the behaviour of this likelihood may differ from a parametric model.
Firstly, it is very likely for the model to fit the training data extremely well. Setting a
null noise level leads to a mean predictive function which perfectly follows the training
points. Note that in Figure 3.4(a), three functions are shown from a random GP prior.
The dotted line represents the y values and the colored lines represent a large number of
evaluated points. Meanwhile, Figure 3.4(b) presents random functions from a posterior.
These are actually priors conditioned on several observations without considering noise,
and therefore they match and fit perfectly the data at test points.
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Figure 3.4: Figure 3.4(a) plots three functions at prior GP randoms. The dotted line shows
generated y values, the blue and red lines represent larger set of evaluated points. Figure 3.4(b)
plots the three random functions corresponding to the GP posterior. That is the prior conditioned
on the four indicated observations with crosses, which are free from noise.
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3.5 Information Theory

This section follows the line established in the previous section about GPs. Within
the same context of machine learning now we extend it to information theory-related
content. Being more specific, the combination of GP and information theory will aid
in the modeling of a distribution for the sensor data. This fact is of crucial importance
in order to introduce latter contributions on the uncertainty bounding. Therefore this
is the main motivation to provide a slight approach to its fundamentals.

3.5.1 Entropy
The entropy is a concept settled in information theory to assess the expected value
of the information contained in a certain event within a system. In other words,
the information produced from a data distribution. It represents a useful tool that
performs a model for the uncertainty of the system itself. Its behaviour follows a
simple procedure: the less probability an event has to occur, the more information it
provides when it occurs.

This concept has a highly relevant field of applicability within a SLAM system.
Uncertainty becomes one of the most important focus to concentrate on when dealing
with convergence and consistency. It is known that uncertainty effects usually arise
under non-linear conditions, which is the case of study in the framework of this thesis.
For this reason, information theory notation has to be defined, in order to count on a
helpful tool to assess these effects.

Generally, the entropy is expressed as a negative logarithm of the probability
distribution so as to define the information term. This information term jointly with the
probability distribution of the events, returns a variable with an average that represents
the amount of information, also known as entropy, generated in the distribution stated
by [121].

H(X) = E[I(X)] = E[− ln(P(X))]. (3.37)

where E is the expected value operator, and I is the information content of a random
variable X ∈ (x1, ..., xn). P represents the probability function.

Similarly for a finite sample:

H(X) =
∑
i

P(xi) I(xi) = −
∑
i

P(xi) logb P(xi) (3.38)

3.5.2 Information Gain
In this same context, the information gain, also known as Kullback-Leible diver-
gence [74, 75], plays an important role for determining the uncertainty within a SLAM
system. More specifically, the expected value of the information gain is also known as
the mutual information of a system. And technically, the definition for the expected
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information gain maintains that it is a change in the information entropy, H, from a
prior state to the following as:

IG(A,B) = H(A)−H(A|B) (3.39)

whereH(A|B) is the conditional entropy. In accordance to this, the conditional entropy
shall be defined between two events A and B, taking values ai and bj respectively as:

H(A|B) =
∑
i,j

p(ai, bj) log p(aj)
p(ai, bj)

(3.40)

where p(ai, bj) is the probability that A equals ai and B equals bj . This term is
essential to asses uncertainty within a random variable, given that a certain value for
such variable has been previously known.

One of the most straightforward examples of application of information theory
to the SLAM framework is the Extended Information Filter (EIF). This filter is a
conversion of the EKF which seeks to characterize the system from an information
point of view [134, 65, 142]. Analytically, the EKF and the EIF might be seen as the
same, since the conversion applies to the following parameters as follows:

•
∑

= σ−1 ⇒ σ =
∑−1

• µ = σ−1ε ⇒ ε =
∑−1

µ

As a general convention, the usual notation for the covariance matrix and the
mean vector for EIF are translated to canonical notation.

Some other considerations have to do with efficiency. Although the EIF is
analytically equivalent to the EKF, it shows a more efficient update with respect to the
EKF, but at cost of a slower prediction [15]. The inverse covariance matrix simplifies
the procedures to work with, since it is usually sparser than the covariance matrix [141].

3.6 Conclusions

In this chapter we have addressed an overall overview to the theoretical backbone
sustaining the operation of a SLAM system. In this sense, within the framework of
this thesis, we have concentrated on the analytics of the main algorithms and methods
involved in the proposal and implementation of new contributions. As a result, we
have approached to the background of the Bayesian nature of the SLAM problem.
Subsequently, we have detailed the essentials of its kernel algorithms such as EKF and
SGD. It is worth noticing the main difference that exists between such techniques. We
have concentrated at first instance on the EKF, due to the fact that it provides a
valid framework for online SLAM approaches. Conversely, the SGD entails an offline
technique, which offers certain benefits against system instability and non-linear effects,
such as those rather likely to appear on the EKF side. And finally, we have also provided
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with a brief introduction to regression techniques and information theory such as GP
and information-based aspects, as they are greatly profitable in this thesis to come up
with contributions that enhance the uncertainty bounds of our SLAM system.

As a summary, this chapter represents the basic frame structure to describe
and sustain all the theoretical framework for the later development of the approaches
proposed in this thesis and all the specific implementations associated with the pub-
lications presented. In consequence, it will be necessary and repeatedly referenced
along this document in order to list and detail all the theoretical side of the research
conducted under the context of this thesis.
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4 EKF-based SLAM Contributions

The purpose of this chapter is to present all the details regarding the major contribu-
tions made in this thesis in terms of the implementation of a specific SLAM approach.
More specifically, our proposal consists of an EKF-based visual SLAM approach that
we have intentionally customized to embed our omnidirectional camera system. This
implementation aims to fit in the field of application of visual SLAM with single cam-
eras. As a result, a new map model is proposed. To date, most of the work done
in the visual SLAM framework has been supported by EKF developments which have
dealt with the estimation of a set of 3D visual landmarks, such as [27, 26, 25, 20],
where those landmarks are actively discovered with a monocular camera, or with stereo
systems [43, 44, 105], or even throughout artificial environments, for both planar and
catadioptric camera sensors in [67, 24] and [58] respectively. Generally, the utilization
of EKF implies that computation efforts might increase considerably in large scenarios
due to the continuos re-estimation. Thus this issue is extended to the dimension of
the map and to the complexity of the entire process, which finally becomes critical.

Conversely, in this thesis we suggest a different representation of the environ-
ment in order to simplify the computation of the map and to provide a more compact
representation of the environment. Particularly, the map is sustained by a reduced set
of omnidirectional images, denoted as views, which are acquired at certain poses of the
environment. The information gathered by these views allows to encode it for large
environments, and at the same time they ease the observation process by which the
pose of the robot is retrieved. Moreover, we embed in this EKF-based visual SLAM
approach the concept proposed in Chapter 2 for matching feature points based on the
adaption of the epipolar geometry to the scope of omnidirectional images. This contri-
bution is enhanced by the integration of the current uncertainty at every EKF iteration
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step. Its basis relies on the generation of a gaussian distribution which propagates
the current error and the uncertainty to the the matching process. As a result, this
consideration produces an improved matching procedure. It certainly becomes more
robust and presents a trustworthy capability for mitigating the troublesome issue of
finding correspondences in a non-linear system affected by noise.

As a summary, we can list the following features and contributions that are
going to be illustrated throughout this chapter:

• Proposal of a new representation of the environment: map model based on a
reduced set of omnidirectional views.

• Essentials of the map building process: exploiting the potential of our omnidi-
rectional system. The design of the observation model takes the most of the
definitions proposed in Chapter 2.

• Enhancement of the observation model by means of a redesigned matching pro-
cess, through the propagation of the uncertainty of the system.

• Experimental results: validating the appropriateness and suitability of this ap-
proach to deal with real data in a real scenario and application.

4.1 Map Building

Here we address the main purpose of a visual SLAM scheme, which basically entails the
retrieval of a feasible representation of the environment explored by the robot, as well
as the position of this vehicle. In this approach, the map of the environment is defined
by a set of omnidirectional images acquired from different poses of the robot along
the environment, denoted as views. These views do not express information about any
physical landmarks as it might have traditionally expected in the field of vision-based
SLAM. By contrast, a view n consists of a single omnidirectional image captured at a
certain pose of the robot xln = (xl, yl, θl)n and a set of interest points extracted from
that image. Such arrangement, allows us to exploit the capability of an omnidirectional
image to gather a large amount of information in a simple image, due to its large field
of view. Thus, an important reduction is achieved in terms of the number of variables
to estimate the solution.

The position of the mobile robot at a certain time, t, is denoted as:

xv = (xt, yt, θt)T (4.1)

Each view n is constituted by the pose where it was acquired, with n ∈ [1, . . . , N ],
being N the total number of views constituting the final map. Then the view is
represented by its pose as:

xln = (xl, yl, θl)Tn (4.2)

together with its uncertainty Pln and a set of m feature points pnm , expressed in image
coordinates. Each point is associated with a visual descriptor dm.
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Therefore, according to (3.5) these are the variables which compose the aug-
mented state vector:

x =
[
xv xl1 xl2 · · · xlN

]T (4.3)

where xv = (xt, yt, θt)T is the pose of the moving vehicle and xlN = (xlN , ylN , θlN )
is the pose of the last view N that exists in the map. Please note that the index for
the number of views is n, but we can refer to it as N , in case that we need to indicate
that the entire map is conformed by a total number of N views. Therefore, the state
vector definition sustains the new map representation, which basically consists of the
current pose of the robot xv = (xv, yv, θv)T at each t and the location of the set of
views, which can be indexed as xln = (xln , yln , θln)Tn .

As for the EKF-based implementation, we have dealt with the adaption of a
new omnidirectional observation model which relies on a new map building process in
terms of view initialization but also in terms of data association.

In this sense, the map building task is depicted in Figure 4.1 by a real example
of operation which clarifies the explanation and simplifies its comprehension. It can be
observed how the robot starts exploring the environment at the origin point A, where
it captures an omnidirectional image IA, stored in the map as a view with pose xlA .
This view is representative of the relevant visual information around this position. Now
IA is assumed to be the first part of the map. Then the robot moves towards the
first office room. As long as there is not any major obstruction, the robot extracts
corresponding points between IA and the omnidirectional image at its current pose,
xv. This fact makes the robot able to localize itself. However, once the robot enters
the office room, the appearance of the images varies significantly and consequently
less matches are likely to be found on IA. At this point, there is some uncertainty
to extract a reliable localization. As a result, the robot needs to consciously initialize
a new view named IB at the current robot’s position xlB . Otherwise, the situation
might come to the extend that there is not any correspondence extracted, and then
the robot would be only driven by the control inputs and the internal odometer, being
unable to localize itself by means of the information provided by the feature matching
procedure.

Afterwords, the view xlB aids the robot in localizing itself inside the office room.
Finally, the robot concludes the exploration of the environment with an accumulated
map defined by views IC , ID, IE . The number of views initialized in the map directly
depends on the sort of environment and its visual appearance. Figure 4.1 also provides a
synthesis of the localization procedure. A comparison between IA and IE is presented,
where corresponding points and the motion transformation given by the relative angles
between the pose of the images are indicated.

4.1.1 View Initialization
Once the basis of the map building process has been introduced, the view initialization
stage requires a more detailed explanation. Inclusion of new views in the map have
to come at a trade-off solution. Obviously, the more views stored in the map the
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Figure 4.1: Map building process. First view in the map, IA, is initialized at the origin A,
namely pose xlA . While the robot traverses the environment, correspondences may be found
between IA and the current image captured at the current robot’s pose xv , so that the robot can
extract its location. In case there is not any correspondence found, a new view is initialized using
the current image, for instance IB at point B, namely pose xlB . The procedure finalizes when
the entire environment is represented.

more accurate estimation. On the other hand, computation and memory requirements
may generate an overdimensioned approach which fails to be scalable and feasible in
real applications. The main concern of this work is to limit the view initialization in
parallel with the uncertainty on the estimation. This idea pursues that high values of
uncertainty, which typically make the approach to diverge, can trigger the initialization
of a new view in the map. Thus new observation measurements can be performed and
consequently the uncertainty bounded.

The first strategy tackles this aspect by assessing a pseudo-appearance ratio.
More precisely, a new view is initialized in the map whenever the number of corre-
sponding feature points between images do not surpass a certain threshold. Our first
approach to this idea [135] relies on this relative measurement between images so as
to define an initialization ratio. This ratio was experimentally defined as:

A = k
c

p1 + p2
(4.4)

being p1 and p2 the feature points detected on each image and c the correspondences
between them. The value of k was aimed at weighting the measurement according
to the visual appearance of each particular scenario. Note that this aims to define a
threshold which assesses the similarity of the visual appearance between two views, but
with special relevance on the number of matches. Please note that we referred to it
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as a pseudo-appearance measurement, and similarity ratio, since it does not use any
appearance-based technique such as [37]. It can be definitely seen as a strategy only
based on feature point information.

As mentioned above, the ratio A represents a measure of similarity and it is the
factor which eases the robot to decide whether to initialize a new view in the map.
High values of A mean that the current robot’s image is similar enough to some view
in the map, so is not necessary to initialize a new one. On the contrary, if A drops
below a certain threshold, the similarity is supposed to be low and also the robot’s
capability to localize itself feasibly. Moreover, the uncertainty expected at this point
should be harmfully high for the system to maintain convergence. Therefore, the most
straightforward solution is to acquire a new view in the map.

4.1.2 Observation Model
In accordance with the view-based representation presented above, the next stage to
formulate is a new observation model. Thanks to the versatility of omnidirectional
images, we can apply epipolar constraints [60] which allows to determine a motion
transformation, and finally at last instance, to extract an observation measurement.
This enables the development of a procedure that determines the motion transforma-
tion between two poses, as we presented in Section 2.3.1. This concept can be noticed
in Figure 4.2. For further detail, a quick look at Chapter 2 provides complete com-
prehension about the formal procedure implemented in this work in order to retrieve
the motion transformation between views. This procedure exploits the visual relation
between views under the epipolar geometry context. In fact, these poses represent the
positions where the robot acquired two images. To that effect, only two images with
a set of corresponding points between them are required to obtain the transformation.
As a result, the observation measurement may be expressed as:

zt =
(
φ
β

)
=
(

arctan
(

yln−yt
xln−xt

)
− θt

θln − θt

)
(4.5)

where φ and β are the relative angles which express the bearing and orientation at
which the view n is observed from the current robot’s pose xv. Please note that the
structure of the view n was presented as xln = (xl, yl, θl)Tn , whereas the pose of the
robot is given as xv = (xt, yt, θt)T . Figure 4.2 graphically exposes the meaning of
these measurements (φ, β) on the image frame. The motion transformation that this
observation model provides us can be noticed in Figure 4.2(a), expressed in the spatial
reference system of the robot, whereas Figure 4.2(b) represents the same transforma-
tion expressed on the image reference system.

4.1.3 Data Association
The data association problem is posed in the following manner: given a set of obser-
vations zt = [zt1 , ..., ztB ] at each t, the views which generate each observation have to
be discerned. In the approach presented here, the data association process is tackled
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(a)

(b)

Figure 4.2: Observation model variables: Figure 4.2(a) represents the motion transformation
between the pose of the robot xv and a certain view xln . Similarly, Figure 4.2(b) depicts the
same transformation represented on the image frame of the two views acquired at xv and xln .
The relative angles of the transformation are indicated as φ, β and the unknown scale factor ρ.
Corresponding points between images are shown by green circles.
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Figure 4.3: Multiple data association with low parallax.

through the computation of the similarity ratio A, described by (4.4). However, before
computing A between views, we need to select a subset of candidate views from the
map, based on the euclidean distance between the pose of the current view acquired
by the robot, that is, at the current robot’s pose, and the position of each candidate.
Then this metric can be posed as Dn =

√
(xv − xln)T (xv − xln), where the notation

corresponds with (4.1) and (4.2).

Once Dn has been defined, we can establish a maximum observation range
at which the robot is capable of performing proper observation measurements. More
distinctly, it represents the maximum distance at which any view can be observed at
each t. Consequently, this maximum range also determines the enablement of the
comparison between views in the map and the current view at the robot’s pose. Hence
it also implies the same assumption for the feature points detection, matching process
and in general, motion transformation computation.

Therefore, after extracting the set of candidates, we can now extract corre-
sponding points between the image acquired at the current pose of the robot and the
rest of the candidate views. This allows to set up a new stage at which the similarity
ratio A (4.4) is evaluated. In this sense, the view which provides the maximum simi-
larity ratio A is eventually chosen as the data association. The view with maximum A
reveals the highest similarity with the current image. However, if none of the candidate
views provide a value for A higher than a predefined threshold, this will mean that the
appearance of the current image of the robot differs substantially from the set of can-
didate views, which ultimately does not encode nor represents the visual information of
the area where the robot currently moves around. Thus it will be necessary to initialize
a new view into the map at the current robot’s position.
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Please note that multiple data association can be performed by simply selecting a
desired number of candidates which surpass certain value of A. We have not dismissed
this option, however, some inconveniences may arise. One of the most usual handicaps
we dealt with is the low parallax error. Figure 4.3 exposes such situation, where
two candidates for the data association could be both assumed as valid, however
the low parallax is very likely to introduce uncertainty and inconsistency in the latter
stage of motion transformation computation. It is worth noticing that our observation
model is entirely angular-based, so we believe it is recommended to avoid this issue by
establishing a threshold angle which prevents from low parallax.

It is also necessary to highlight that the data association is vital within the
SLAM problem. It has a high relevance on the convergence of the system. This task
may become troublesome in the presence of considerable high non-linearities in the ob-
servation. Also under certain circumstances as when there is at short distance between
landmarks and it provokes difficulties to distinguish them. Some work concentrated on
this issue [89], [82]. Conversely, here we define an efficient visual approach based on
the novel representation of the map sustained by views.

As a synthesis of this section, we depict the entire data association and the view
initialization subprocesses with a summarized pseudocode in the terms expressed by
Algorithm 2. It must be noticed that this algorithm returns the view candidate with
highest value of A, however we can easily modify it to return more than one view.
The modification simply implies that these views surpass a certain value of A, which
will be specific for the environment. As a result we could perform several observation
measurements to more than one view at the same time step within the SLAM system.
To conclude with this synthesis, Figure 4.4 presents a diagram with the integration of
the data association and the view initialization within the entire visual SLAM approach
implemented in this work.

4.1.4 Enhanced Matching
Matching exact feature points between images is crucial for retrieving a reliable motion
transformation, and consequently, a consistent observation model. In this sense, as we
have mentioned above, we formerly designed in Chapter 2 the schema for computing
the motion transformation between two poses of the robot by means of certain views
acquired at those poses. Now we move forward to propose a fused implementation.
The goal is to take advantage of the epipolar constraints and to introduce several
uncertainty considerations which help us improve the matching process. This enhanced
model allows to reinforce the matching of feature points since it delimits the search
for correspondences. We achieve this by computing the expected epipolar lines with
the proper uncertainty deviations. This has been materialized thanks to the potential
advantages provided by the EKF to predict the next state. Nevertheless the key point
of this implementation is determined by the consideration of the uncertainty at every
EKF step, that is at t + 1. As a result, the most important outcome of this idea is
a more robust matching process which prevents from false imparity but it also relaxes
the search for points in the second image in terms of computation.
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Algorithm 2 Data Association algorithm
Require: Inputs
xln ∈ x(t) ∀ n, where x(t)=[(xv, yv, θv), (xl1 , yl1 , θl1), . . ., (xlN , ylN , θlN )]
Candidates: Set of candidate views accomplishing the requirements of visual
appearance.
Dassoc: Views accomplishing data association (maximum similarity ratio A).
dmax: Maximum distance at which views are observed.
p1: feature points at x(t).
for i=1:N do
Di =

√
(xv − xli)T (xv − xli)

if Di<dmax then
New candidate to the subset:
Candidates=[Candidate1, Candidate2, . . ., (xli , yli , θli)]

end if
end for
for j=1:length(Candidates) do
Extracting feature points p2 of view candidate Candidatej
if Aj=k c

p1+p2
= max then

Dassoc=[Candidatej ]
end if

end for
return Dassoc

Figure 4.4: Block diagram of the visual-based EKF approach.
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The procedure for computing the motion transformation entails the notation
p = [x, y, z]T and p′ = [x′, y′, z′]T for the same point detected from two different
camera points of view. That is p and p′ are matched points at two different views.
Then, the epipolar condition we use to state the relationship between both 3D points
p and p′ seen from different views is:

p′TEp = 0 (4.6)

where the matrix E is the essential matrix and it can be computed from a set of
corresponding points in two images.

E =

 0 0 sin(φ)
0 0 − cos(φ)

sin(β − φ) cos(β − φ) 0

 (4.7)

being φ and β the relative angles that determine the planar motion transformation (4.5),
as it may be observed either in Figure 4.1 or Figure 4.2.

The fundamentals for the enhanced matching proposal rely on the information
provided by the EKF. Its prediction stage presented in (3.2) aids to devise a realistic
search for valid corresponding points between images. In an idealistic case, the epipolar
constraint defined in (4.6) should equal a fixed threshold, very close to zero, which it
only implies that the epipolar curve defined between images might present a little static
deviation. However, in our approach we consider the propagation of uncertainties in
the map into (4.6) by introducing a dynamic threshold. This implies a more realistic
SLAM approach, since this threshold depends on the existing error on the map, which
dynamically varies at each step of the SLAM algorithm, so that it eventually defines
the current uncertainty in the system.

Notice that the avoidance of false correspondences has been studied extensively
so as to mitigate bad effects on the final estimation for the SLAM problem. For
instance, techniques such as RANSAC [19] and histogram voting [108] have been
widely used, and mainly applied to visual odometry approaches [116]. These examples
are focused on the epipolar constraint (4.6), and they eventually reveal good results
in the achievement of false positive rejection. All of them can be labeled under a
context of visual odometry, with consecutive images are close enough to disregard high
errors in the pose from where the images are taken. They finally conclude with good
results since under these circumstances the epipolar constraint is highly likely to be
satisfied [117].

Contrarily to the last examples, concentrating on the framework of our SLAM
problem, the accumulative uncertainties are substantially higher, either in the pose of
the robot or in the pose of the views which compose the map. This fact requires to
define a reliable strategy to accomplish with a correct data association. Thus we bring
into focus the information provided by the predicted state vector extracted from the
EKF, by which we are able to obtain a predicted observation measurement ẑt, with
the same structure stated in (4.5). Then it is also necessary to consider the current
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map uncertainties so as to deal with a realistic search for valid corresponding points
between images. We can propagate the map uncertainties in accordance with (4.6) by
introducing a dynamic threshold δ. Here we consider δ dependent on the existing error
on the map, which dynamically varies at each step of the SLAM algorithm. Since this
error is correlated with the error on ẑt, we rename δ as δ(ẑt) to express such dependency.
In addition, it has to be noted that (4.7) is defined up to a scale factor, which is another
reason to keep δ(ẑt) as a dynamic value. Therefore, given two corresponding points
between images, they must satisfy:

p′T Êp < δ(ẑt) (4.8)

This approach not only mitigates the undesired harmful effects associated with false
positives, but also simplifies the search for corresponding points between images as
it restricts the area where correspondences are expected. The procedure is depicted
in Figure 4.5, where a detected point in 3D is assumed, P (x, y, z), and represented
in the first image reference system by a normalized vector ~p1 due to the unknown
scale. To deal with this scale ambiguity, we suggest to introduce a point distribution
to generate a set of multi-scale points λi ~p1, being representative for the lack of scale
in ~p1. This distribution considers a valid range for λi according to the predicted ρ̂.
Please note that the error of the current estimation of the map has to be propagated
along the procedure. To that end, we look back into the Kalman filter theory, where
the innovation is defined as the difference between the predicted ẑt and the real zt
observation measurement as stated in (3.13), and the covariance of the innovation
in (3.14). Hence Si(t+ 1) presents the following structure:

Si(t+ 1) =
[
σφ

2 σφβ
σβφ σβ

2

]
(4.9)

If we extend the notation to transform terms into predicted terms, the predicted Ê
can be decomposed in a rotation R̂ and a translation T̂ . Next we make use of these
transformation tools in order to transform the distribution λi ~p1 into the second image
reference system, obtaining ~qi′. The introduction of (4.9) allows to propagate the error,
and thus it redefines a transformation between images through the normal distributions
R̂∼N(β̂, σβ) and T̂∼N(φ̂, σφ). Therefore ~qi′ is a gaussian distribution correlated with
the current map uncertainty. Once obtained ~qi

′, they are projected into the image
plane of the second image, seen as circled points in Figure 4.5. This projection of the
normal multi-scale distribution determines the predicted area. This area is drawn in
blue on the second omnidirectional image. In other words, the epipolar curve defined
in Chapter 2 becomes an elliptical area due to the consideration of the uncertainty.
This area establishes the specific image pixels where correspondences for ~p1 must be
searched for. The shape of this area depends on the error of the prediction, which is
directly correlated with the current uncertainty of the current map estimation. Dashed
lines represent the possible candidate points located inside the predicted area. Hence
the problem of matching is simplified. Now it consists of searching for the correct
corresponding points for ~pi amongst those candidates inside a restricted area, instead
of a global search along the whole image.
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Figure 4.5: Given a detected point ~p1 in the first image reference system, a point distribution
is generated to obtain a set of multi-scale points λi ~p1. By using the EKF prediction, they can be
transformed into ~qi

′ on the second image reference system by means of epipolar geometry with
a rotation R∼N(β̂, σβ), translation T∼N(φ̂, σφ) and scale factor ρ̂. Finally, ~q′

i are projected into
the image plane to determine a restricted area where correspondences have to be found. The
circled points represent the projection of the normal point distribution for the multi-scale points
that determine this area.

Figure 4.6 shows the transformation suffered by the epipolar curve on the the
image plane, which now reveals an elliptical shape, as a consequence of the intersection
generated by an epipolar plane with the hyperbolic mirror. Notice that due to the
propagation of the error, now the epipolar plane varies its position within a range
determined by the gaussian distribution of ~pi and ~qi′. As a result the intersection with
the mirror produces an elliptical area.

Finally, Figure 4.7 presents a diagram with all the stages of the enhanced match-
ing model. Note that this model is embedded within the feature and matching process
shown in Figure 4.4.
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Figure 4.6: Transformation of the epipolar curve into an elliptical area as a consequence of the
propagation of the current uncertainty of the map estimation. A point in the first image lies on
the epipolar line. In the second image it also lies on the epipolar line, which is inside the elliptical
area predicted by means of the uncertainty propagation.

Figure 4.7: Block diagram of the enhanced matching model.

99



Chapter 4. EKF-based SLAM Contributions

4.2 Results

In order to confirm the suitability and effectiveness of the approach exposed in this
chapter, we present a series of real data experiments conducted with the Pioneer P3-
AT robot equipped with the camera DFK-41BF02 and the hyperbolic mirror Eizoh
Wide 70 as the basis of the catadioptric system. The visual SLAM approach is run in the
backend by an EKF-based algorithm which is solely sustained by the visual information
gathered through the omnidirectional views. The entire configuration, physics and
specifications of this equipment have been presented in Section 2.2.3 of Chapter 2.

Besides, in order to obtain a reference for comparison we use a SICK LMS
range finder to generate a ground truth [127, 51], which provides a resolution of 1m in
position. As for the odometry, this has been acquired by the odometer of the P3-AT
robot. Its parametrization has been presented by Algorithm 1 in Section 2.2.3.

We present three different experimental datasets:

• Simulation dataset. Here we intend to evaluate the appropriateness of the ap-
proach. Simulated environments imply a first assessment step to confirm the
theoretical proposals and hypothesis.

• Real dataset. With this experiments we verify the validity of the approach to
provide reliable results in real data scenarios. We present results for the estimated
map and for the pose of the robot, as well as the evolution of the error at every
time instant. We varied the value of different parameters in order to study the
dependencies on the compactness of the representation with the dimension of
the estimated map.

• Finally we quantify the efficiency and accuracy of the final estimation provided
by this approach.

4.2.1 Simulation Dataset
First of all we would like to highlight the importance of assuring the convergence of an
EKF-based SLAM algorithm when a new observation model is introduced. This aspect
is not of trivial assertion due to the fact that the EKF tends to be gravely affected by
noise and non-linearities’ effects, such as those introduced by an omnidirectional sensor.
For this reason, ensuring convergence is of paramount significance in this approach.
To that purpose, we present preliminary results of two simulated scenarios, as detailed
in Figure 4.8 and Figure 4.9 respectively.

The first scenario merely consists of a random trajectory traversed by the robot,
which runs the implementation proposed in this work in order to correct the initial
input of the odometry. Such odometry is obtained with the same model described in
Section 2.2.3. In Figure 4.8(a), the continuous line represents this random trajectory,
whereas the odometry has been plotted with dashed line. A set of views have been
placed randomly along the trajectory and shown with blue dots. Please note that
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the arrangement of the views depends on the randomization of the similarity ratio
A, described in (4.4). Every time the robot moves, it assesses a random value of A
and initializes a new view whenever A<0.3. As for the observation measurements to
these views, zt(φ, β), its generation is also randomized with an added gaussian noise
of σφ = σβ = 0.2rad. The dashed circle represents the maximum range at which the
robot is able to perform observation measurements to the views in the map. These
two variables, the observation range and A, represent the basic parameters to tune and
modify in order to randomize the experiment.

Figure 4.9(a) presents another simulated environment that emulates a typical
indoor environment, where the computation of the observations is restricted by certain
obstructions and obstacles such as walls. Again, we vary the observation range of the
robot so as to analyze the relevance of the number of views observed.

The results for the RMS error with the observation range are presented in both
scenarios by Figure 4.8(b) and Figure 4.9(b) respectively. Standard deviation and
2σ values are included, since the experiments were repeated 100 times with random
datasets. The continuous line shows the mean evolution of the RMS error for the pro-
posed approach, meanwhile the dashed line shows the same evolution in the odometry.
Note that the only observation range for which the solution diverges is 0.5 m, since
it is too short to observe any views in such scenario. Despite this exception, the rest
of observation range values produce acceptable results in terms of error. It is worth
paying attention to the following figures’ output: the higher observation range, the
more number of views observed. Thus the more accurate observation measurement,
the more accurate estimation. Nevertheless, an excessive number of views does not
necessarily imply a significant relevance on the accuracy of the solution, as the error
tends to stabilize. In the following subsections we present an analysis that assesses the
relevance of the number of views with the accuracy and the efficiency of the approach
in terms of time. Overall, we can confirm the preliminary suitability of this approach
to converge to a proper estimation with a reduced error that reveals to outperform the
odometry estimation.
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Figure 4.8: Results obtained in the first simulated scenario over 100 repetitions. Figure 4.8(a)
shows the ground truth in continuous line and the odometry in dashed line. The location of
the views that conform the final map is indicated by blue dots and the observation range by a
dash-dotted circle. Figure 4.8(b) represents the variation of the RMS error on the estimation
against the observation range of the robot. The continuous line represents the mean error on the
estimation and the dashed line the mean error on the odometry.
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Figure 4.9: Results obtained in the second simulated scenario over 100 repetitions. Figure 4.9(a)
shows the ground truth in continuous line and the odometry in dashed line. The location of the
views that conform the final map is indicated by blue dots and the observation range by a
dash-dotted circle. Figure 4.9(b) represents the variation of the RMS error on the estimation
against the observation range of the robot. The continuous line represents the mean error on the
estimation and the dashed line the mean error on the odometry.
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Dataset characteristics
Dataset No. images Distance Figures Mockup
Dataset 3 267 26.7 m Figures: 4.13, 4.14, 4.15 Figure: 4.10
Dataset 4 416 41.6 m Figures: 4.16 Figure: 4.11
Dataset 5 1085 108.5 m Figures: 4.17, 4.18 Figure: 4.12

Table 4.1: Dataset characteristics

4.2.2 Real Dataset
4.2.2.1 Validation

First of all we intend to assess the validity of this approach and its contributions to
work with real data. According to this purpose, we compute the final estimated map,
the position of the views that conform such map and the final pose of the robot along
the traversed path.

As for the kind of environments, here we concentrate on the experiments con-
ducted at indoor environments. The specific scenarios consist of clear spaces with
corridors and large rooms, in either office-like or laboratory-like spaces. Table 4.1
synthesizes the main characteristics of the scenarios in such environments, where the
different datasets were acquired. Note that for each dataset we include references to
the corresponding figures in this document. These figures show the final results for
such scenarios. Besides, each dataset is also associated with a mockup in top view
that synthesizes the layout of the real scenario.

As a general norm for the interpretation of the following figures, the legends
have to be read as follows:

• Ground truth: reliable estimation for comparison matters. It is represented by
a continuous dark line in the figures. It is computed from the raw input data
provided by the SICK-LMS laser boarded on the P3-AT robot. This data is
processed by means of a gmapping technic [127, 51].

• Odometry: representation of the raw input data provided by the odometer of
the robot. It is represented by a dashed red line in the figures. Note that this
data is modeled by the parametrization exposed in Algorithm 1 in Section 2.2.3.
Some experiments present noise terms that have been overweighted with this
parametrization so as to test the behaviour of the SLAM approach under worse
noise-condition scenarios.

• Solution: estimation of the trajectory of the robot and the arrangement of the
views of the map, which are indicated with crosses at their location. The es-
timated solution for the trajectory is computed by the visual SLAM approach
presented in this chapter. It is represented by a dash-dotted blue line.

• Uncertainty: extracted from the covariance matrix P (t), defined in (3.12) and (3.18).
It is represented in two manners:
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– As a set of ellipses on the position of the views of the map, indicated with
crosses.

– As the convergence interval for each experiment, denoted as 2σ and repre-
sented by a continuos dark line in the error figures. This value determines
the confidence interval where the estimation of an EKF-based SLAM model
is expected to converge. It expresses the uncertainty at each time step in
the system.

• Error: computed at every pose of the robot as the difference value between the
ground truth and the estimated solution. It is represented by a dashed red line
for the odometry and by a dash-dotted blue line for the estimated solution. The
error is divided into the X, Y and θ over the y-axis. The x-axis represents the
map step, being the iteration time of the system.

This series of experiments are principally focused on the map building process that has
been previously introduced in Section 4.1. For all the stated scenarios, the robot starts
navigating the environment by capturing an initial view in the map at the origin. As
long as the vehicle moves, it computes its localization thanks to the observation model.
Note that this process entails that the robot simultaneously assesses the value of the
similarity or initialization ratio A (4.4), so as initialize new views in the map according
to the changes in the visual appearance of the environment. Similarly, A has also to
be evaluated in order to obtain the appropriate data association.

Dataset 3

The following figures represent in detail the final estimated map for the Dataset
3 after the map building process finalizes. In particular, Figure 4.13, Figure 4.14 and
Figure 4.15 represent the estimated map and the error on the estimation. Figure 4.10
synthesizes the layout of this real scenario in top view.

Dataset 4

Likewise, Figure 4.16 shows the same results for the Dataset 4. In the same
manner, Figure 4.11 provides further detail on the layout of this real scenario.

Dataset 5

Ultimately, Figure 4.17 presents the results corresponding with the Dataset 5.
Figure 4.12 depicts the layout of this last real scenario.

Generally, in terms of error, we observe that the calculated trajectory provides
satisfactory estimations in all scenarios. In addition, the evolution of the error demon-
strates the convergence of the estimation at all time steps. This fact confirms the
suitability of the solution, not only at the end of the experiment, but also at any time
instant.
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Figure 4.10: Mockup for the Dataset 3. Two views are indicated.

In particular, for the first scenario, Dataset 3, three variants of the final map
estimation are presented by Figure 4.13, Figure 4.14 and Figure 4.15 respectively. The
intention is to establish a benchmark that allows to test the behaviour of the approach
when dealing with different number of views in the map. These three maps have been
estimated over the same scenario presented in Figure 4.10. The main difference consists
of a variation on the value of A within the map building process. The specific values
are A1=0.02, A2=0.05 and A3=0.1, for Figure 4.13, Figure 4.14 and Figure 4.15
respectively. This implies that the system is prone to acquire more views in the map
whenever the values of A are higher and there is not any view within the maximum
observation range of the robot. At first sight, it can be proved that the higher number
of views in the map the better results in terms of error and accuracy.

Note that each scenario presents an arrangement of views which is fully depen-
dent on the visual appearance of the environment, as recently mentioned above. As
introduced in Section 4.1.1 and Section 4.1.3, the data association, and consequently
the initialization of views, are determined by the initialization ratio A (4.4), since this
performs the evaluation of the appearance of the environment. According to this, each
scenario produces a different number of views with a different arrangement.

As a preliminary overview, these results reinforce the validity of the approach
to deal with real data. In the same manner, convergence is ensured as well as feasible
and accurate results for real applications. Secondly, another extracted outcome is that
the more number of views in the map, the more number of observation measurements
are likely to succeed, and consequently the more accurate estimation is obtained. Next
subsection presents a further study on performance, based on the context established
by these results.
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Figure 4.11: Mockup for the Dataset 4. Three views are indicated.
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Figure 4.12: Mockup for the Dataset 5. Five views are indicated.
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Figure 4.13: Results obtained in the Dataset 3 (Figure 4.10) for a final map constituted by
N=7 views with A=0.02. Figure 4.13(a) presents the estimated solution in dash-dotted line, the
odometry in dashed line and the ground truth in continuous line. The location of the views is
indicated by crosses and their uncertainty by error ellipses. Figure 4.13(b) represents the error
at each step in X, Y and θ within convergence intervals of 2σ.
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Figure 4.14: Results obtained in the Dataset 3 (Figure 4.10) for a final map constituted by
N=12 views with A=0.05. Figure 4.14(a) presents the estimated solution in dash-dotted line,
the odometry in dashed line and the ground truth in continuous line. The location of the views
is indicated by crosses and their uncertainty by error ellipses. Figure 4.14(b) represents the error
at each step in X, Y and θ within convergence intervals of 2σ.

110



4.2. Results

0 2 4 6
0

2

4

6

X (m)

Y
 (

m
)

 

 

Solution Odometry G. truth

(a)

0 50 100 150 200 250
−2.5

0

2.5

E
rr

o
r 

X
 (

m
)

 

 

0 50 100 150 200 250
−2.5

0

2.5

E
rr

o
r 

Y
 (

m
)

0 50 100 150 200 250
−2

−1

0

1

2

E
rr

o
r 

θ
 (

ra
d
)

Map step

Solution Odometry 2σ

(b)

Figure 4.15: Results obtained in the Dataset 3 (Figure 4.10) for a final map constituted by
N=19 views with A=0.1. Figure 4.15(a) presents the estimated solution in dash-dotted line, the
odometry in dashed line and the ground truth in continuous line. The location of the views is
indicated by crosses and their uncertainty by error ellipses. Figure 4.15(b) represents the error
at each step in X, Y and θ within convergence intervals of 2σ.
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Figure 4.16: Results obtained in the Dataset 4 (Figure 4.11) for a final map constituted by
N=10 views with A=0.04. Figure 4.16(a) presents the estimated solution in dash-dotted line,
the odometry in dashed line and the ground truth in continuous line. The location of the views
is indicated by crosses and their uncertainty by error ellipses. Figure 4.16(b) represents the error
at each step in X, Y and θ within convergence intervals of 2σ.
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Figure 4.17: Results obtained in the Dataset 5 (Figure 4.12) for a final map constituted by
N=8 views with A=0.02. The estimated solution is presented in dash-dotted line, the odometry
in dashed line and the ground truth in continuous line. The location of the views is indicated by
crosses and their uncertainty by error ellipses.
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Figure 4.18: Error results obtained in the Dataset 5. Figure 4.18(a) represents the error of the
estimation at each step in X, Y and θ within convergence intervals of 2σ. Likewise Figure 4.18(b)
represents the error of the odometry at each step.
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4.2.2.2 Performance Analysis

Once the suitability of the approach and the convergence of the estimation have been
ensured, then it is necessary to establish certain tests that are aimed at the performance
analysis of this approach. In this context we have assessed the relevance of certain
specific variables and their interdependencies through the study of the following aspects:

• Dimension of the estimated map in terms of number of views.

• Time consumption to obtain the estimation of the solution.

• RMS error.

Under these conditions for the analysis benchmark, Figure 4.19 presents results
of the time consumption required by this approach to compute the estimation of the
map and the pose of the robot at a certain instant t. These results intend to analyze
the time dependency with the number of views that are observed at each t. Note that
Figure 4.13(a), Figure 4.14(a) and Figure 4.15(a) already exposed the different results
when the final estimation consisted of a different number of views N . Focusing on the
time study, Figure 4.19(a) divides the total time consumption into observation time
and processing time, plotted with blue and green lines respectively. This separation
implies the following contributions to the final time computed:

• Processing time: consists of the overall time taken by the system in order to deal
with data management, such as memory access, data association, and to compute
the final estimation, after all the observation measurements are performed.

• Observation time: consists of the overall time taken by the system in order to
extract observation measurements to all the views observed at a time t. That
is basically the time invested in computing the motion transformation to all the
views observed, as detailed in Section 2.3.1.

Such differentiation evidences the exponential growth with the number of views
observed, as the expected behaviour in an EKF-based algorithm. Note that the com-
plexity should fit an order O(N2), being N the dimension of the map as defined in
Section 4.1. This fact can be noticed in Figure 4.19(a) by inspection of the green
line that represents the processing time with its time scale on the right-side y-axis,
whereas the observation time is represented by a blue line with its time scale on the
left-side y-axis. The other aspect to point out is the huge growth in the observation
time in comparison to the processing time, when the number of views observed in-
creases. It can be proved by simply observing the gap in the order of their time scales.
For instance, with 80 views observed, the observation time is ∼0.75 s, whereas the
processing time is ∼0.01 s. This reaches such an extent that the observation time
produces a masking effect on the processing time, which turns to be irrelevant when
the total number of views observed is high. That is the main reason why both times
have been plotted separately.
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This experiment has been repeated over 300 times, thus Figure 4.19(b) presents
the standard deviation for the computation of the observation time, as well as its mean
value. The results shown by this figure prove that the time results are considerably
stable within a small range of variation of ∆σ =2 ms. Such variation is due to the fact
that each computation depends on each observation measurement, and so does the
matched points extracted, their robustness and the amount of them, as it was deduced
in Section 2.3.1.

These results reveal that exists an expensive cost on the observation model when
the number of views increases. This aspect may compromise the effectiveness of this
approach to deal with real-time applications. For this reason, we also assess the RMS
error with the time consumption. Figure 4.20 presents this kind of results. Again, a
subdivision has been carried out in order to differentiate the contribution made by the
observation time, denoted in Figure 4.20(a), and by the processing time, denoted in
Figure 4.20(b). Note that the right-side y-axes represent the time scale and the left-
side y-axes the RMS error scale. Again, Figure 4.21 presents the standard deviation on
the RMS error values along the 300 repetitions of the experiment. It has to be noticed
that in this case there exists a higher variation on the RMS error when the number of
views observed is low. The lower number of views observed, the more likelihood for a
less accurate solution in average terms.

Moreover, the results also show a certain dependency with those presented in
Section 2.3.3. Obviously, the time required by the observation model depends on the
number of matched points detected. However, in comparison to those results in former
sections, here we have extended the experimental benchmark to assess the number of
views, since we are dealing with a map building task in SLAM. For that reason, it
is important to highlight that when referring to analysis on the map dimensions, the
concept of number of matched points is not entirely equivalent to the concept of
number of views. Even though they are closely related, the dimension of the map is
expressed by a number of views N . Then, the number of views observed is portion out
of the total N .

Now we can extract further outcomes. Although the approach is liable to gener-
ate a considerably high overload in terms of observation time with the number of views,
it also confirms that a reduced set of views can provide a highly reliable estimation
in an acceptable time to be run on real-time applications. We can observe that for
simultaneous observations up to 10 views observed, the RMS error in the estimation is
lower than 0.4 m, with a total time consumption below 40 ms. This also confirms the
compactness of the representation of the map, which is capable of encoding the most
relevant information of an environment in a map composed by a reduced set of views.
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Figure 4.19: Time consumption against number of views observed. Figure 4.19(a) presents the
total computation time divided into: observation time (blue, left-side y-axis) and processing time
(green, right-side y-axis). Figure 4.19(b) represents with continuous line the standard deviation
in the observation time along the 300 repetitions of the experiment. The mean value is drawn
with dash-dotted line.
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Figure 4.20: RMS error (blue, left-side y-axes) and time consumption (green, right-side y-axes)
against number of views observed. Figures 4.20(a) and 4.20(b) present separately the observation
time and the processing time against the number of views observed, respectively. The times
values and the RMS error are drawn with colored continuous line whereas the mean value for the
RMS error is drawn with dash-dotted line.
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Figure 4.21: Standard deviation for the RMS error in Figure 4.20.
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4.3 Conclusions

In this section we have presented a visual EKF-based approach to the SLAM problem
using a single omnidirectional camera as a visual sensor. We have proposed a different
representation of the environment in terms of the estimated map, which now consists
of a reduced set of omnidirectional views. With that purpose, we have detailed the
essentials of the approach in terms of map building and its associated substages: view
initialization, observation model and data association. The observation model poses
a challenge as we intended to only estimate the pose and orientation of a set of
omnidirectional images that represent part of the map. The motion transformation
scheme defined in Chapter 2 sustains the observation process, by which a set of feature
points associated with each omnidirectional image allow the robot to compute its
localization in the surroundings. As a result, the reduction of elements in the map,
namely views in this approach, permits to provide a compact representation of the
environment.

The initialization stage also implies a significant improvement for the assessment
of a better view initialization according to the visual appearance of the environment.
Whenever the visual appearance differs from the current pose of the robot, the system
triggers the procedure to acquire a new view that encodes the surroundings around the
new area which the robot currently explores.

Another contribution is an enhanced matching scheme to deal with the problem
of finding robust correspondences between images. We exploit the benefits of the EKF
state prediction in order to integrate the current uncertainty of the estimation into the
matching process.

Finally, the visual inspection of the results section provides several evidences that
permit to evaluate this approach but also to draw further conclusions about perfor-
mance. The study of the dimension of the estimation reveals some aspects: the larger
number of N views composing the map provide the more accurate results in terms
of error, since more views are observed and hence more observation measurements are
correctly computed. However, the computational cost produces an exponential increase
with N . The evolution of the RMS error has also been tested.

Overall, these results suggest that a trade-off solution has to be reached, since
generally, SLAM systems are real-time oriented, being the time a limiting factor. De-
spite this fact, the approach presented here maintains accurate results even when using
a reduced set of views, which is an important benefit to consider under circumstances
of limited computational resources. On the other extent, maps with excessive number
of views do not necessarily imply better results. This is a consequence of the results
shown in Section 2.3.3, as the limit factor for the accuracy is established by the quality
of the matched points and the robustness of the motion transformation within the ob-
servation model. This analysis also confirms the compactness of the new representation
of the map based on views. In comparison to traditional EKF-based approaches, we
propose a map that produces an estimation with a huge reduction on the dimensions,
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in terms of views, which stills provides results that prove enough accuracy to operate
at real-time scenarios.

Summarizing, the experimental results provide a satisfactory validation for this
approach to work appropriately in a real scenario under real-time requirements. Nonethe-
less, in this context, during the research and development stages of this implementation,
different drawbacks arose. The main weakness of EKF-based schemes lies on the in-
consistency under circumstances of high uncertainty, due to the presence of non-linear
effects. This reason made us define further lines of investigation. Thus next chapters
present some of the actions taken and further contributions in relation to this last
reflection.
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5 SGD-based SLAM Contributions

This chapter intends to present the design and implementation of a new contribution to
the framework of this thesis, that is, the visual SLAM problem. In particular, we propose
a variant of a SGD solver, adapted to the combination of omnidirectional images with
the map representation already introduced in Chapter 4. In the field of mobile robots
applications, SGD techniques have rarely been evaluated with information gathered by
visual sensors. In this work we define a SGD algorithm for our SLAM system which
profits the beneficial characteristics of a single omnidirectional camera.

The obtention of a feasible map of the environment poses a complex challenge,
since the presence of noise arises as a major problem which may gravely affect the
estimated solution. Consequently, our SLAM algorithm has to cope with this issue
but also with the data association problem. In this sense, some of the outputs we
can extract from Chapter 4 confirm that the EKF is highly sensitive to non-linear
visual observation models, as the omnidirectional. Conversely, the SGD emerges in
this work as an offline alternative to minimize the non-linear effects which deteriorate
and compromise the convergence of traditional estimators.

Generally, EKF methods are usually liable to become troublesome when dealing
with external errors and jeopardize the final behaviour of the system, since they find
difficulties to maintain the convergence of the estimation. The main reasons are the
linearization of the movement and the observation model accomplished by this filter,
especially under such circumstances of non-linearities. This situation normally appears
in the presence of gaussian noise introduced by the observation measurement, fact that
usually causes injurious data association problems [89]. A visual observation model, as
in the case of the omnidirectional model, is susceptible to introduce non-linearities and
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thus it is responsible for those kind of errors. On the contrary, an offline algorithm,
such as SGD [8, 151], provides more robustness to face this issue. Similarly, parallel
approaches [148, 128] confirm parallel its stability under non-linear contexts. Hence,
we rely on the SGD algorithm to outperform the main EKF’s drawbacks in terms of
instability, despite the fact that SGD is an offline method.

The development of this SGD implementation meets with the requirements of
the nature of the omnidirectional sensor, as well as with the associated observation
model. Thus we modify the standard SGD version to adapt it to the omnidirectional
geometry. Besides, the angular unscaled observation measurement needs to be consid-
ered. This upgraded SGD approach intends to minimize the non-linear effects which
impair and compromise the convergence of traditional estimators. Nevertheless, unde-
sired oscillations may occur due to the stochastic nature of the constraints’ selection.
For this reason, an optimization process is also suggested. In contrast to former SGD
approaches, which only process one constraint independently, here we define a strategy
for simultaneous processing of several constraints to overcome these issues.

Traditionally, the better known standard SGD applications [104, 53, 52] use
a different geometric reference, and consider data range observations in a cartesian
measurement system. Instead, we have to deal with a different map and observation
model based on an omnidirectional geometry. Thus it is necessary to establish a
comparative benchmark to assess the feasibility of the results obtained under different
conditions. Therefore, we analyze the behaviour of the standard SGD, the EKF and
this new SGD proposal, all applied to our view-based SLAM approach. Estimation
accuracy, robustness, convergence and performance are the most important terms to
evaluate.

Finally, we can synthesize the main contributions regarding this SGD implemen-
tation through the structure of this chapter in the following terms:

• Proposal of a modified SGD solver algorithm, adapted to the omnidirectional
geometry of our view-based SLAM approach.

• Presentation of the design specifications: state equations and differential equa-
tions for the observation measurement.

• Contribution to improve the performance of the SGD by processing simultane-
ously several constraints into the system, in contrast to the standard SGD.

• Robustness against non-linear effects in contrast to traditional solvers, such as
the EKF.

• Efficiency and accuracy comparison experiments with the standard SGD and the
EKF, in both simulated and real data scenarios.
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5.1 Proposed SGD

This section provides further details about the design and implementation of the pro-
posed SGD algorithm achieved in this thesis. The main features and specifications of
this contribution are addressed here.

In Chapter 3 we provided a brief introduction to the theory fundamentals of the
standard SGD. Then, continuing under the same notation context, at first instance,
we need to consider a redefinition of the standard state vector presented in (3.21)
as xt = [(x0, y0, θ0), (x1, y1, θ1) . . . (xn, yn, θn)], which will be now treated as a set
of incremental variables. Please note that (xn, yn, θn) encodes the 2D coordinates
and bearing in a general reference system for each pose (namely nodes). Contrary
to the incremental representation, this standard global encoding (3.21) has the main
drawback of not being capable to update more than one node and its adjacents per
constraint. This aspect has led us to assume a general agreement in the use of the
incremental representation, now defining the state incrementally encoded as:

xinct =


(x0, y0, θ0)

(dx1, dy1, dθ1)
...

(dxn, dyn, dθn)

 =


(x0, y0, θ0)

(x1 − x0, y1 − y0, θ1 − θ0)
(x2 − x1, y2 − y1, θ2 − θ1)

...
(xn − xn−1, yn − yn−1, θn − θn−1)

 (5.1)

where (dxi, dyi, dθi) encode the variation between consecutive poses in coordinates
of the global reference system. Please notice that, according to the formulation de-
fined in (4.1) and (3.21), xv and each xln would correspond with certain poses ∈
[(x0, y0, θ0), (x1, y1, θ1)...(xn, yn, θn)]. Next, the relation between the global pose
xglobt and incremental pose xinct is:

xglobt =


xi
yi
θi
1

 =


1 0 0 xi−1
0 1 0 yi−1
0 0 1 θi−1
0 0 0 1



dxi
dyi
dθi
1

 (5.2)

Now, the state vector is differentially encoded and each single update has influence on
the whole map reestimation. Nonetheless, this incremental encoding might cause the
appearance of some non-linearities in Jji. However, despite this fact, the possibility to
update every pose from a single constraint is a valuable advantage to take the most
of. Therefore, due to this fact, ∆x (3.28) weights all poses.

It is important to keep in mind that in this approach we are dealing with a visual
observation given by an omnidirectional camera. This fact made us adjust and redesign
the set of equations defined in Chapter 3 for the standard SGD. Now the nature of the
constraints are not only metrical like odometry’s constraints, but also angular. There-
fore, the omnidirectional measurements and the incremental representation require the
reformulation of several terms involved in the estimation. Following, we detail all the
proposed modifications to the terms of the standard SGD. The complete structure for
each derivative equation is detailed in the following subsection.
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• The first modification is referred to fji(x) (3.22), which expresses the observation
as function of the state xt, and nodes j and i. fji(x) has to be differentiated
between odometry and visual observation constraints:

fodoji (x) =

dxjdyj
dθj

+

dxj−1
dyj−1
dθj−1

+ · · ·+

dxidyi
dθi

 (5.3)

where (dxi, dyi, dθi) has been defined in (5.1) as the variation between consec-
utive poses for node i, whereas (dxj , dyj , dθj) represents the same variation for
node j. And for the case of the visual observation constraint:

fvisualji (x) =
(
φ
β

)
=
[

arctan
(

dyj−dyi
dxj−dxi

)
− dθi

dθj − dθi

]
(5.4)

where β and φ are directly computed from the observation measurements, which
express the motion transformation relation between two omnidirectional images,
as detailed in Chapter 4.

• Then a second modification is necessary in order to recalculate Jji = ∂fji
∂x ,

according to the previous reformulation of fji(x). It has to be noticed the
importance of considering the value of each node’s index, being either j > i or
j < i, since the structure of the derivatives differ considerably. Furthermore,
as seen above, the dimensions of fji(x) are different, fact which has also to be
taken into consideration in order to resize appropriately the rest of the terms
involved in the SGD algorithm.

Jji = ∂fji(x)
∂x

=
[
∂fji(φ)
∂x ,

∂fji(β)
∂x

]
(5.5)

• Lastly, we suggest that the estimation of the new state xt+1 reflects the usage
of several constraints at the same time, in contrast to the standard SGD model.
We seek more relevance of constraints’ weight when searching for the optimal
minimum estimation. Obviously, computing more than one constraint at each
step leads to a certain overload. Contrarily, in this approach, we reduce the ex-
pensive estimation of H. In a general case for the standard SGD, H is computed
at every single iteration step. In opposition to this, we only compute H once for
each subset of constraints introduced simultaneously into the system. Hence we
drastically reduce the number of times that H is computed. This succeeds in
performing a more efficient scheme which compensates possible time overloads.

According to such modifications, instead of operating in a one-constraint itera-
tion scheme, such as the standard SGD, this SGD proposal operates as follows:

• At every iteration step t, the robot filters all the poses within its maximum
observation range in order to extract fji(x) and the corresponding constraints
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δji, from the current pose, (namely node j), to the poses under visual range,
(namely node i). Note that each of these poses might be either composed by an
odometry constraint or by a visual constraint too (in case that there is a view
stored in such pose of the map).

• These poses are grouped in subsets cq. The number of subsets, b, is arbitrarily
selected due to experimental testing. We have proved that b provides satisfactory
results when it is set to generate cq with 5 to 10 constraints.

• Once b is selected, the total number of constraints under the visual observation
range are uniformly randomized and divided into each cq, which contain the same
number of constraints (5-10).

• Two loops are implemented: a primary loop which minimizes F (x) and a sec-
ondary loop, with length b, which processes all the constraints divided into sub-
sets cq. That is the approach to input several constraints into the same primary
iteration.

An example of operation would be a certain pose from which 50 other poses
are observed, so that we can select a total number of subsets of b=10, each one (cq)
containing 5 constraints uniformly distributed.

Once depicted the operation of this proposal, Algorithm 3 summarizes the pro-
cedure:

Algorithm 3 Proposed SGD algorithm
Require: δji ∈ C ∀ j, i, where C = [c1, c2, . . . , cq, . . . cb] and cb= {δ11,δ12,. . . }

Each cq represents different subsets of constraints δji simultaneously processed
by the robot.
t: iteration step
ε: threshold for F (x)
while F (x) > ε do
t = t+ 1
for k=1:b do
Extract all δji in cq randomly
Compute the following terms:
fji(x) = [fodoji (x), fvisualji (x)], Jji, Ωji, and rji
∆xq=λ ·H−1JTjiΩjirji
xq = xq−1 + ∆xq

end for
xt = xq + xt−1

end while
return xt = [(x0, y0, θ0), (dx1, dy1, dθ1), . . . , (dxn, dyn, dθn)]
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Jji
∂fji(φ)
∂dxk

∂fji(φ)
∂dyk

∂fji(φ)
∂dθk

j > i / k > i

∂fji(φ)
∂x −

∑j

k=i+1
dyk

q

∑j

k=i+1
dxk

q 0
∂fji(β)
∂x 0 0 1

j > i / k < i
∂fji(φ)
∂x 0 0 -1

∂fji(β)
∂x 0 0 0

j < i / k > i

∂fji(φ)
∂x −

∑j

k=i+1
dyk

q

∑j

k=i+1
dxk

q -1
∂fji(β)
∂x 0 0 -1

j < i / k < i
∂fji(φ)
∂x 0 0 -1

∂fji(β)
∂x 0 0 0

Table 5.1: Equations for Jji.

5.1.1 Equations

Here we append the whole structure for each derivative equation associated with the
redesign of the omnidirectional observation model to fit the SGD specifications. In par-
ticular, Table 5.1 contains the redesigned structure of Jji (5.5) when fvisualji (x) (5.4)
is considered.

5.2 Results

In order to validate the appropriateness of the contributions to the SGD algorithm,
we present a series of experiments obtained with both simulated and real data. We
intend to demonstrate the suitability and reliability of this proposed SGD approach to
support real applications. In addition to this, we establish a comparison framework to
evaluate its performance and efficiency versus a standard SGD, but also versus an EKF
estimator.

5.2.1 Simulation Results

Firstly, we seek to ensure the convergence of the proposed SGD approach. This is
crucial when a new solver is introduced into a SLAM system. Besides this, another
consideration requires evaluation: the performance of the new method when dealing
with a visual observation model, which is a common source of non-linearities. With
such purposes, we present preliminary results in two simulated scenarios, as detailed in
Figure 5.1 and Figure 5.2.
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The first scenario presented in Figure 5.1(a) consists of a random simulated
environment of 20×20 m, where the robot traverses 300 m approximately. The real
path followed by the robot is shown with continuous line, the odometry is represented
with dashed line, whereas the estimated solution is shown with dash-dotted line. A
set of views have been randomly placed along the trajectory. Again, the arrangement
of these views is controlled by the similarity ratio A (4.4), so as to ensure a realistic
placement of each view. Every time the robot moves, it compares a random value of
A and initializes a new view whenever A <0.2. As for the observation measurements
to the views, zt(φ, β), its generation is also randomized with an added gaussian noise
of σφ = σβ =0.2 rad. A grid of circles represents the possible poses where the robot
might move to and gather a new view. The number of iterations for the SGD to get
a valid estimation is 25. As it can be observed in Figure 5.1(a), the final estimation
follows the tendency of the real path. Figure 5.1(b) shows the decreasing evolution
of the accumulated error probability, Pji(x) (3.22), expressed in logarithmic terms as
F (x) (3.26), against the number of iterations. At first sight, these results confirm the
validity of this new approach to work with omnidirectional observations.

5.2.1.1 Comparing Results

Figure 5.2 presents a second simulated scenario. Now the purpose is to extend the va-
lidity of the approach when dealing with an office-like environment, since it is desirable
to emulate a more realistic situation with obstructions, obstacles, etc. In addition, we
present a comparison between our approach and the standard SGD method.

Figure 5.2(a) describes an environment with dimensions 20×50 m, where the
robot moves through. The continuous line represents the real path followed by the
robot, the dash-dotted line shows the odometry, whereas the estimated solution is
shown by a dashed line. Again, the algorithm is able to estimate a rather reliable
solution whose topology follows the real path. Contrarily, the error of the odometry
grows out of bounds.

Next, as a first approach to comparison results, Figure 5.2(b) presents the evo-
lution of the accumulated error, F (x), for both our SGD approach and the standard
SGD algorithm, in the same scenario presented in 5.2(a). Please keep in mind the
main difference between the standard SGD and our proposal. The standard only intro-
duces one constraint per iteration, in contrast to our proposal, which processes several
simultaneously, as depicted in Algorithm 3.

Here we not only confirm the validity of our proposal, but also its improved
capability to speed-up the convergence to a proper estimation, thus involving a better
efficiency. In this particular case, it is worth mentioning that our approach requires
approximately less than 6 times the computational effort of a standard SGD to reach
an optimum value.
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Figure 5.1: Figure 5.1(a) presents the estimated trajectory obtained with the proposed SGD
approach in an environment of 20x20 m. The continuous line shows the real path, the dash-
dotted line the odometry and the dashed line the estimated solution. Figure 5.1(b) shows the
accumulated error probability F (x) along the number of iterations.
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Figure 5.2: Figure 5.2(a) shows SLAM results in an office-like environment of 20×50m. Real
path in continuous line, odometry in dash-dotted line and the estimated solution in dashed
line. Figure 5.2(b) compares the accumulated error probability F (x) of the presented approach
(continuous line), and the F (x) of the standard SGD (dashed line).
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5.2.2 Real Dataset
Once presented the simulation results for validation, here we carry out an experimental
set with real data. We seek confirmation of suitability and reliability of the approach
for a realistic application such navigation. Furthermore, we also show extended com-
parisons with the standard SGD and the EKF algorithms.

Dataset 6

This dataset consists of an experimental set aimed at analyzing the behaviour
of the approach when dealing with one of the most adverse situations, that is to say,
when the robot constantly turns around, as shown in Figure 5.3(a). The real path is
shown with continuous line, the odometry with dashed line and the estimated solution
with dash-dotted line. This situation is seen as one of the worsts case scenarios, since
it introduces a huge noise into the input associated with the odometry. Nevertheless,
it should be noted that the estimation converges to a proper solution, whereas the
odometry estimation differs considerably. Figure 5.3(b) shows the decreasing tendency
of the accumulated error probability, F (x), along the number of iterations, for both
our approach and the standard SGD.

Having tested the validity of the previous experiments, the improved efficiency
of our approach can be now confirmed in terms of speed of convergence, compared
to the standard SGD method. Examining Figure 5.3(b), it can be seen that this
approach reaches optimum values for F (x) in less time than the standard SGD. The
main advantage in terms of efficiency is therefore shown.

Dataset 7

This dataset presents an experiment that aims to support and reaffirm the ben-
eficial results presented above. In this case we conducted an experiment in a large
environment. Here, the robot moves through a real office of 20×50 m. There are ob-
stacles and obstructions such as doors, walls and office furniture. As seen in Figure 5.4
the robot explores the whole environment describing a trajectory of approximately
280 m. Moreover, maps with different number of views N have been constructed to
study its relevance on the estimation of the solution. Figures 5.4(a) and 5.4(b) show
different results when the map is conformed by N=5 and N = 30 respectively. The
real path is drawn with continuous line, the odometry with dash-dotted line and the
estimated solution with dashed line. Some real views have been indicated.

Figure 5.5 shows the accumulated error probability, F (x), for both experiments,
expressing it with continuous line for N = 5 and with dashed line for N = 30. In
addition, to demonstrate the improved efficiency of the method, we compare the values
of F (x) provided by this approach, in blue, with the obtained by the standard SGD,
in red. According to the specific topology of the environment, it is confirmed that the
larger number of views N , the more accurate estimation, since the robot is able to
observe more views. Thus the rectification of the estimation is ensured by a higher
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Figure 5.3: Figure 5.3(a) shows SLAM results in a real office environment. The continuous line
shows the real path, the dashed line the odometry and the dash-dotted line the estimated solution.
Figure 5.3(b) shows the accumulated error probability F (x) along the number of iterations for
our approach and the standard SGD respectively.
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number of constraints. Moreover, our approach still reveals the main favorable features
compared to the standard SGD, regardless of the value of N . As proven in the previous
experiment, the faster speed of convergence is proved by observing Figure 5.5, where
lower optimum values for F (x) are confirmed in considerable less time. This fact shows
the greater efficiency of this proposal compared to former SGD techniques.
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(a)

(b)

Figure 5.4: Figures 5.4(a) and 5.4(a) show SLAM results in a real office environment, with
N=5 and N = 30 views observed respectively. The continuous line shows the real path, the
dash-dotted line the odometry and the dashed line the estimated solution.
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Figure 5.5: Accumulated error probability F (x). Results obtained for the map shown in Fig-
ure 5.4(a) with N=5 views, are compared using dashed lines: the dashed blue line represents
the proposed approach while the dashed red line represents the standard SGD. Results obtained
for the map shown in Figure 5.4(b) with N=30 views, are compared using continuous lines: the
continuous blue line represents the proposed approach whereas the continuous red line represents
the standard SGD.
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5.2.2.1 Comparison Results

In this section we intend to extend the previous results in terms of comparison, under
a real data context.

Proposed SGD vs standard SGD

The following experiments have been conducted in order to compare our ap-
proach with the standard SGD in terms of efficiency. We pursue the evaluation of
our strategy to introduce several constraints simultaneously into the SGD algorithm.
The main goal is to improve the speed by which the method iteratively optimizes until
a final estimation is reached. In this sense, we have performed a SLAM experiment,
where the robot traverses 50 m through a given environment. The same experiment
has been repeated 200 times using the same series of odometry inputs, in order to
provide mean values which express consistent results. The two approaches, ours and
the standard SGD algorithm, have been compared. We have set three experiments
where the number of views N that conform the map differ. The observation range
r of the robot has also been varied. Figure 5.6 presents results for the accumulated
error probability F (x), being the objective function which the SGD algorithm seeks
to minimize. Figure 5.6 compares the solution obtained by our approach, drawn with
continuous line, and the solution obtained with the standard SGD algorithm, drawn
with dashed line. Figures 5.6(c), 5.6(a) and 5.6(b) represent F (x) when the robot
observes N=2, N=4 and N=8 views, respectively.

In terms of efficiency, it may be proved that the solution provided by our ap-
proach outperforms the solution given by a standard SGD at every case, since the
decreasing slope of F (x) is clearly steeper. Hence a faster convergence, and thus a
more efficient method is demonstrated. This is the main advantage achieved by means
of combining several constraints simultaneously at each iteration step, instead of using
only one as a standard SGD does. It is also notable the relevance of the observation
range of the vehicle r. As seen in Figures 5.6(c), 5.6(a) and 5.6(b), longer values of
r provide a better convergence to the detriment of shorter r, since more views are ob-
served. However, when the robot is able to observe a high number of views, a trade-off
solution should be found, since more computation effort is needed in order to process
more visual constraints.
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Figure 5.6: Figures 5.6(c), 5.6(a) and 5.6(b) show the accumulated error probability F (x) in a
SLAM experiment, when the map is composed by N = 2, N = 4 and N = 8 views respectively.
The continuous lines show the results provided by the proposed solution whereas the dashed lines
show results provided by the standard SGD solution. Different lengths for the observation range
are defined: rmin, rinter, rmax.
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Proposed SGD vs EKF

The following results intend to establish a comparison between the two major
contributions made in this thesis in terms of SLAM algorithms, that is, the proposed
visual-based EKF approach introduced in Chapter 4, and this proposal of SGD adapted
to omnidirectional observations. We aim to provide a comparison under different cir-
cumstances in terms of noise so as to prove the robustness of the SGD under non-linear
effects. In this subsection we first test the behaviour of the SGD and the EKF when
working under an idealistic environment, where low non-linear effects are considered.
Next subsection will consider a worse scenario, which is definitely the purpose of this
contribution.

We need to refer to the experiments shown in Chapter 4 with the Dataset 3,
since we use the same dataset as input for the proposed SGD algorithm. We compare
both methods by testing their accuracy and robustness on the estimation. Moreover
we establish another comparison benchmark to assess the behaviour of both, the EKF
and the SGD approaches when data association errors arise.

The main characteristics of the Dataset 3 can be observed in Table 4.1. Here we
run the same experiment with our SGD estimator. Figure 5.7(a) and 5.7(b) represent
two computed maps with N=10 and N=20 views respectively. The key point in the
manner to proceed with respect to EKF is that SGD processes the observations offline.

Next, Figure 5.8 presents general results to establish a comparison between both
methods, where the RMS error along the path is represented against the number of
views N . The continuous line shows the RMS error for EKF while the dashed line
shows the SGD’s. Here it is crucial to remark that we are dealing with an idealistic
situation, where low non-linear effects are considered. This is the main reason why
we observe that the accuracy and time results for the EKF outperforms SGD’s in this
case. Hence it can be confirmed that faster speed of convergence is assured by EKF.

Nonetheless, as mentioned above, this experiment has dealt with a desirable
situation where non-linear errors, if any, were low enough so that the EKF response
was able to ensure convergence. For this reason, the following experiment will show the
results obtained when the visual information is damaged and corrupted by significative
noise errors. As a result, we will assess the robustness of both methods, thus obtaining
a fair comparison.
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Figure 5.7: Figures 5.7(a) and 5.7(b), present results of SLAM using a SGD algorithm with real
data. These map representations are formed by N=10 and N=20 respectively. The dash-dotted
line represents the solution obtained with the SGD approach, the continuous line represents the
ground truth whereas the odometry is drawn with dashed line.
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Figure 5.8: Comparison results between SGD and EKF in a low non-linear noise scenario.
Figure 5.8(a) presents RMS error against number of views N . Figure 5.8(b) presents time con-
sumption against number of views N . The continuous line shows values for the solution provided
by EKF, meanwhile the dashed line shows the error for the solution obtained with SGD.
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Proposed SGD vs EKF under non-linear conditions

Now we intend to compare the behaviour of both methods in a more realistic
situation, that is, when these methods are expected to suffer from non-linear error
effects introduced by the observation measurements. This is one of the main contri-
butions of our SGD proposal to the robustness of the SLAM methods, in contrast to
traditional methods such as the EKF. As seen in 5.8(a), the EKF provides better speed
of convergence and accuracy. Despite this fact, we aim to demonstrate that this SGD
implementation becomes a more robust and stable method to work under worse case
scenarios, such as those severely affected by non-linear noise effects.

Consequently, in this scenario we consider data association errors. We have
conducted the same real experiments but forcing a highly relevant presence of non-
gaussian errors. To that end, we have modeled a random generator scheme which
introduces wrong data associations at each iteration step. Now the robot computes
the observation measurements for the entire set of views which is able to observe, but it
fails to associate the observation measurement with a corresponding view at a certain
probability, meaning that a percentage out of the total data association is wrong.
This fact implies that those observation measurement corresponding with wrong data
associations will be wrong too.

Figure 5.9(a) and Figure 5.9(b) describe the RMS error tendency of both meth-
ods under such non-linear circumstances, which provoke the data association to fail at
a given probability. The experiment has been repeated 200 times in order to retrieve
consistent and coherent mean values. Again, the environment has been represented
with different values of N in order to show differences. The results provided by the
EKF in Figure 5.9(a) reveal that the resultant RMS error grows out of bounds when the
probability of data association error is apparently low. This fact, contrarily to results
shown in Figure 5.8, demonstrates the low reliability of the EKF when it has to deal
with non-linearities and thus non-gaussian errors. Despite the fact that maps with more
views provide a larger number of observation measurements to enable the rectification
of the estimation (different colored lines), the error continuously increases (y-axis).
These results prove that once the solution diverges, the EKF is unable to recover it,
despite the fact that N can be higher. Consequently, the difficulties experienced by
the EKF to keep the convergence of the estimation are evidenced.

Contrary to the EKF’s results, and according to Figure 5.9(b), the SGD provides
a lower RMS error under the same conditions. Moreover, it ensures convergence, as
the RMS’s tendency only increases slightly with the errors on the data association. It is
worth noting the importance of selecting a suitable value for λ, so that new updates to
xt+1 do not lead the estimation to diverge when there is evidence of errors. In this case,
the SGD proves its capability to rectify the solution even in presence of non-linearities
and thus non-gaussian errors. Therefore, and by contrast to the EKF, for the SGD, the
more N views in the map, the more observations gathered, and thus the better results
provided.

Finally, we can confirm the contribution of our SGD to provide a desirable
robust and stable solution when dealing with environments of non-linear nature. As
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for which method to use and its appropriateness, whether a EKF or a SGD, a trade-off
solution must be agreed, depending on the requirements of the particular application,
so as to ensure a balance between robustness against noisy terms (SGD) and speed of
computation (EKF).

5.3 Conclusions

In this chapter we have presented an approach to the visual SLAM problem by intro-
ducing a SGD algorithm adapted to omnidirectional observations. The assumption of
SGD has been aimed at reducing instabilities and harmful effects which compromise
the convergence of the most extended SLAM algorithms, such as the EKF, which is
especially sensitive to these effects. These erroneous circumstances are mainly conse-
quences of the visual nature of the observation, which is non-linear, and particularly
intensified on omnidirectional images. To that end, we have modified the standard SGD
algorithm in order to integrate our unscaled observation model. Our proposed SGD
model becomes more efficient, due to the design of a new strategy that exploits the in-
formation provided by several constraints simultaneously into the same SGD iteration,
in contrast to the standard SGD algorithm.

In order to confirm the validity and reliability of these contributions we have
presented SLAM results with simulated and real data. We have also set a comparison
framework to compare the proposed SGD method with the standard SGD algorithm and
the EKF. The main issue to analyze has been the influence of non-linear errors, which
are a clear indicator of added noise by the visual sensor’s measurements, especially
associated with our omnidirectional observation model.

Bearing in mind the results presented in this chapter, a key aspect to highlight
about the SGD is the confirmation of its reliability to produce robust and stable solution
which prevents the system from diverging. This is crucial when dealing with realistic
environments under non-linear conditions. Despite the fact that the general SGD’s
performance in an idealistic situation is lower than the EKF’s, the results obtained
in presence of non-linear noise effects have evidenced the robustness of the SGD to
provide a reliable situation. On the other hand, the EKF is highly sensitive to these
kind of errors due to the linearization of the variables of the filter.

Therefore it has been proved that the effectiveness of each method depends on
the assumed conditions. As a summary, we can conclude that if we intended to assure
a SLAM approach to achieve the avoidance of the effects of non-linearities and non-
gaussian errors, we would select a SGD method rather than the EKF. Nevertheless, in
case of dealing with a more desirable situation, such as a low-noise environment, that
would indicate that an EKF method would be more appropriated in order to succeed
in providing a more precise solution with a higher rate of convergence.
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Figure 5.9: Figures 5.9(a) and 5.9(b) presents the RMS error (m) against the probability of
data association error (%) for EKF and SGD respectively. Error for maps with different number
of views N are indicated.
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6 Information-based SLAM
Contributions

This chapter follows the line established in the previous chapters of this document,
where new contributions to the field of visual SLAM have been presented. In this
sense, we aim to propose new improvements to the main approach presented in Chap-
ter 4, where we introduced a new map representation which benefits from the use of
omnidirectional images, as an EKF view-based SLAM model. We have repeatedly ex-
posed along this document that the presence of non-linear effects becomes one of the
major risks for the convergence of an EKF-based SLAM system. Despite the fact that
we have already proposed a different kind of solver algorithm in the previous chapter,
here we seek to specifically contribute on the reinforcement of our EKF-based visual
SLAM approach.

Particularly, our omnidirectional observation model induces a great part of such
non-linear errors, thus becoming a potential source of uncertainty. In order to deal
with this issue we propose a novel mechanism for the view initialization process which
accounts for information gain and losses more efficiently. Please note that despite
the fact that our EKF-based approach possesses a strategy to assess the similarity
of the environment, as stated in (4.4), this is empirically suited at a prior stage and
then particularly tuned for certain scenarios. This fact suggested us to seek a more
reliable and general mechanism. Thus we come up with a contribution which confers
a main outcome on the reduction of the map uncertainty. Therefore it achieves a
higher consistency for the final estimation. Its basis relies on a Gaussian Process (GP)
implementation to infer an information distribution model from the sensor data. This
model aids in the representation of the probability of existence of feature points, and
it also produces a specific representation of the visual information content, which is
ultimately employed so as to define the new view initialization scheme, aimed at the
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uncertainty reduction. In particular, the robot will initialize a new view whenever there
is a high change in the inferred information distribution from the sensor data. In other
words, whenever there are enough and relevant changes in the visual appearance of the
environment.

In Chapter 3 we introduced the essentials of GPs as regression technique, to-
gether with information theory in order to support certain information-based aspects.
Both are greatly profitable to enhance the uncertainty bounds of our SLAM approach.
Within this context, the applications of non-parametric methods, such as GPs, have
recently proven great enhancements on the mapping tasks for autonomous navigation.
Continuous frontier maps are obtained by optimizing the process parameters, which
reveal important uncertainty reduction [40, 41]. According to this, we propose the
training of a GP as a tool to establish a bounded uncertainty scheme for our approach.
By adopting such technique, we pursue a positive impact on the uncertainty, which we
intend to minimize. As a result, the harmful effects that are likely to appear under high
uncertainty conditions, such as errors induced by non-linearities and consequently in-
stabilities and convergence difficulties, are mitigated. As a consequence, a more robust
and consistent map and trajectory are obtained for the visual SLAM problem.

Summarizing, the fundamental aspects and contributions of this chapter may
be listed as follows:

• A new view initialization mechanism for the map building process within our EKF
view-based SLAM approach presented in Chapter 4.

• This strategy accounts for information gain and losses more efficiently.

• Probabilistic representation of features points and learning their correlations
through Gaussian Processes regression.

• Bounding the uncertainty to the mitigation of harmful effects induced by non-
linearities in the framework of EKF-based visual SLAM.

6.1 Sensor Data Distribution

GP has been introduced in this work in order to establish a sensor data distribution,
which can be mapped into a global reference system. As already commented, GPs
entail a non-parametric Bayesian regression method, which statistically infer the de-
pendencies between points in a data set [111], in contrast to conventional functions
which analytically relate inputs and outputs. As stated in (3.36), a GP can be denoted
as f(x), constituted by its mean, m(x), covariance k(x, x′), and the training and test
input vectors, x and x′ respectively.

Having presented the fundamentals and the formulation of the GPs, then we
are able to devise a model to represent our sensor data information distribution. The
inference procedure through a GP takes the visual information gathered from the en-
vironment in the form of feature points detected on the image frame. Focusing on
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the map building process described in Chapter 4, while the robot navigates, a certain
observation measurement is performed at time t. Then, the feature points on the
image corresponding with the current robot’s pose are considered as our training data
set, xi, for the GP. The test points x′i are determined by sampling uniformly the space
defined in a global reference system. Finally, the GP returns the mean values µi and
variances σ2

i inferred for these test points, as stated above. The most straightforward
outcome of the GP’s output is the probability of existence of a feature point at the
locations specified by these test points.

There are several steps involved in the construction of the sensor data informa-
tion distribution:

1. The feature points, pn(u, v), are locally processed on the camera reference sys-
tem.

2. Then, pn(u, v) are back-projected into a global reference system, as P (x, y, z),
by means of the calibration parameters of the sensor [118].

3. Next, they become the input to the GP, which returns the probability distribution.

4. Ultimately, when new points are extracted from images acquired at new poses,
the distribution is fused into the general information reference system.

At certain instant during the exploration tasks, we can expect relevant variations
on the visual appearance along the environment. This fact implies the detection of
new feature points which produce substantial changes on the information distribution
representation. This poses a crucial point to be analyzed so as to assess the uncertainty
variations. Hence our first intention was to apply this advantage to optimize the
matching process, since feature points may be dealt with probability measurements
as target (even combined with visual descriptors). However, this promising idea was
refused due to reasons such as:

• Expensive computation resources to apply GP regression over images with large
number of feature points.

• Lack of scale. The matching is carried out on the image plane (up to a scale
factor). However, GP regression intends to return probability on the XY plane
of the 2D general reference system.

As a consequence, we redirected our work to the implementation of GP re-
gression exclusively aimed at obtaining a bounded uncertainty scheme for the map
representation.

Figure 6.1 shows a real data example for this sensor data distribution. The GP
produces such distribution in terms of probability of existence, which is associated to
a bunch of feature points. In particular, it represents the 2D spatial coordinates of
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Figure 6.1: Sensor data information distribution: probability of existence of feature points on
the 2D reference system.

Figure 6.2: Map building process. The robot explores the environment while simultaneously
initializes image views in the map at poses A, B and C.

a certain scenario. After GP regression, µi and variances σ2
i are inferred for the test

points. This permits to represent the probability distribution, where each feature point
may be identified by its probability of existence, expressed in the normalized range
[0-1], as indicated in the legend.

In addition to the last example, Figure 6.2 presents another explicative illustra-
tion where the robot explores the environment, whilst the visual information varies along
the trajectory. This causes that new feature points are detected and so the GP output
varies too. It can be seen that poses A(xA, yA, zA) and B(xB , yB , zB) are relatively
close enough so that the scene should be quite similar, and thus many feature points
are matched between images, since they remain invariant to these poses. Contrarily,
when the robot approaches the second room, the visual appearance of the environ-
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ment is very likely to change substantially. In consequence, at pose C(xC , yC , zC),
new feature points are detected with respect to images at poses A and B.

A further description to the last example is provided in Figure 6.3. Figure 6.3(a)
represents the motion transformation between poses A, B and C, while Figure 6.3(b)
shows the images acquired at these same poses. The feature points are projected on the
image plane and indicated with crosses. The green crosses mark the matched points
between images and the blue crosses the new feature points detected. These new
points evidence the variation on the visual appearance of the environment at pose C.
Figure 6.4 illustrates this last fact as a variation on the information distribution on the
GP framework. Figure 6.4(a), Figure 6.4(b) and Figure 6.4(c) represent the probability
of existence of feature points at poses A, B and C respectively. Thus the evolution of
the sensor data information distribution along these poses can be noticed. Please also
note that a noticeable variation appears between poses B and C. By contrast, between
A and B the visual information has remained similar. Therefore there are overlapped
areas with high probability between Figure 6.4(a) and Figure 6.4(b), which mean that
some feature points have been repeatedly detected from these poses.

6.1.1 Uncertainty Reduction
Once established the information distribution of our sensor data, we can exploit this tool
in order to maintain the uncertainty bounded. In the previous example, the key idea to
highlight is that, the visual information at the current’s robot pose and at a new pose,
is more likely to overlap when these poses are close. This implies that a larger number
of feature points are observed and matched from these poses, and so the probability of
existence is definitely high. Thus the information distribution remains mostly unvaried.
By contrast, the information varies considerably when the robot discovers unknown
areas, and then the corresponding points decrease dramatically, due to the fact that
the visual appearance differs considerably between images.

According to this, we can propose an efficient map building process in terms
of uncertainty. We seek to analyze these variations of visual information in order to
decide the initialization of new views in the map. Hence we intend that every new view
encodes the most relevant visual changes in the environment, according to their visual
informative characteristics. So that the main contribution expected is the reduction of
the total uncertainty of the estimated map.

Once said that, the objective is to propose a metric which accounts for these
effects. So the arrangement of new views will be efficiently accomplished by means of
the definition of a new initialization ratio, formerly named similarity ratio and presented
in (4.4). In order to define the new ratio, we adopt the tool known as Kullback-Leibler
divergence (KL) [74], already presented in (3.39) and (3.40), which is also sustained
by the concept of entropy (3.38). KL is commonly known as Information Gain within
the probability theory field, since it expresses the mutual information of a system, that
is, the change in the information entropy from a prior state to the following. Thus its
purpose is to evaluate the fluctuation expected in the entropy when a new sample set
is introduced to a certain distribution.
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(a)

(b)

Figure 6.3: Detailed description of example presented in Figure 6.2: Figure 6.3(a) represents
the motion transformation between poses A, B and C. Figure 6.3(b) shows the images acquired
at A, B and C, where the projection of P (x, y, z) on every image is indicated as pA(u, v), pB(u, v)
and pC(u, v) respectively. Feature points matched between images are plotted with green crosses
whereas the new feature points are plotted with blue crosses.
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(a) (b)

(c)

Figure 6.4: Evolution of the sensor data information distribution along poses A, B and C, as
described in the example presented in Figure 6.2: Figure 6.4(a), Figure 6.4(b) and Figure 6.4(c)
correspond to A, B and C respectively. This sequence expresses the variation on the probability
of existence of feature points on the 2D reference system.

In this context, we use the entropy to measure the uncertainty associated to the
feature points given by our GP in terms of probability of existence. The KL divergence
represents the change of entropy between the information distribution of the current
feature points, observed until pose at t, F1, and the new inferred feature points in
the next pose at t + 1, F2, from new images. In other words, the higher value of KL
divergence means that the newly introduced feature points are less similar, due to a
considerable different visual appearance. Thus there is a higher amount of new visual
information discovered by the robot. Consequently, the uncertainty on the estimated
map will increase too. The structure to evaluate the KL divergence is:

H(F1) = −
∑
i

F1(i) logF1(i) (6.1)

KL(F1 ‖ F2) = H(F1, F2)−H(F1) =
N∑
i=1

F1(i) log F1(i)
F2(i) (6.2)
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where H(F1) is the entropy of the information distribution of the current feature point
set at time t, with the index i ∈ [1, . . . , N ], being N the total number of feature
points. F1(i) represents the probability of existence of the current i-feature points at
time t and so does F2(i) with new points added at time t+ 1 from a new image. The
relevance of their information contribution is directly proportional to 1/σ2

i .

The strategy to initialize a new view seeks to define an upper bound for the
uncertainty, so as to get an efficient map in this sense. To that aim, since we keep
the information distribution of the points referred to a global system, we consider the
KL value in its accumulative format. Then, we accumulate measurements, given by
the addition of new visual information at new poses. Finally, we can define the new
initialization ratio as:

γ =
∑
t

KL(Pt ‖ Pt + 1) (6.3)

where Pt refers to the data information distribution obtained up to time t and Pt + 1
refers to the new data information, which is fused into the global reference system at
time t+ 1. Note that both express probability of existence of feature points.

Establishing different thresholds for γ leads us to obtain different view initial-
izations and thus different map estimations. Obviously, the associated uncertainty also
fluctuates differently depending on the placement of the views. Whenever γ exceeds
a certain threshold, a new view is initialized. A more detailed explanation with real
results is presented in the next section.

In the end, with this approach, the final estimation benefits from this idea since
any new view is initialized at an optimum pose in terms of uncertainty. The arrange-
ment of new views now assures that the uncertainty of the estimation is bounded.
This proposal reinforces the value that comes along with our view-based approach:
major information changes on the environment are encoded by new views in the map.
Figure 6.5 presents the implementation of this new contribution, embedded in the
EKF-based approach presented in Chapter 4. The following section presents real data
results to confirm the benefits of this approach.

6.2 Results

We have performed two different sets of real data experiments in an office-like envi-
ronment in order to examine the behaviour of this proposal in terms of its associated
uncertainty. We also provide different map solutions obtained with this enhanced EKF-
based visual SLAM approach. All the set of results presented here are also compared
with our former SLAM approach, detailed in Chapter 4, which does not use GP nor
data information distribution in order to initialize views.

6.2.1 Initialization Ratio and Sampling Resolution
The first experimental set intends to evaluate under different conditions the new mech-
anism of view initialization. The first parameter to study is the threshold value for the
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Figure 6.5: Block diagram summary for the EKF-based visual SLAM approach, with GP
regression and Information-based view initialization for the uncertainty reduction.

new initialization ratio γ (6.3). Intuitively, the higher threshold for γ, the less views
are initialized in the map. Thus implies that huge changes on the visual environment
are encoded by less views, without inducing any new initialization. Please note that,
from now on, uncertainty values have been computed as:

σ2
experiment = trace[P (t) · P (t)T ] (6.4)

where P (t) is the current covariance matrix at time t.

A real experiment has been conducted in a scenario with dimension 25×25m.
Figure 6.6 presents the current uncertainty along the path followed by the robot at
each time step. It can be confirmed that low values of the initialization threshold aid
in the reduction of uncertainty. It is worth noting that the results provided by this
proposal outperform the uncertainty associated with the former visual SLAM approach
at every case. The main reason for this to be a more feasible mechanism is that we
account for information gains and losses rather than the amount of feature points
matched, as in the former initialization ratio (4.4). Figure 6.7 shows the mean value
of the uncertainty accumulated over the total map, at each time step. Obviously, the
shape and the evolution is quite similar, however the map uncertainty is very likely
to be higher than the poses’, since it computes the mean values of the entire set of
uncertainties associated with all of the variables of the map, up to time t. That it is to
say, the current uncertainty of the set of views stored in the map, and the trajectory
traversed by the robot.

The results obtained with this approach confirm a better performance with
regards to the uncertainty. This means that the view initialization strategy accomplishes
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Figure 6.6: Evolution of the uncertainty along the robot’s path. Different threshold values for γ
are shown and compared to the uncertainty obtained with the former initialization ratio (4.4),
employed in Chapter 4.

with the proposed scheme for obtaining a bounded uncertainty. Nonetheless, it is worth
mentioning that low uncertainty values imply larger number of views in the map, and
obviously a higher computational cost. Hence a trade-off solution is needed, which
usually depends on the specific application.

Secondly, it is necessary to state the same analysis but aiming at the accuracy.
To that purpose, we extract values of RMS error. Figure 6.8 plots RMS values asso-
ciated with the different initialization ratios γ tested. Once again, the obtained error
with this contribution is lower at any case, in contrast to the former approach.

Finally, another parameter which has a considerable importance on the efficiency
of this approach is the sampling size for the test points selection. The global refer-
ence system is sampled uniformly by means of these test points x′. Then, the data
information distribution inferred by the GP have a specific resolution which is directly
linked with this sampling size, which is determined by x′. Now, Figure 6.9 represents
the RMS error when the sampling size is varied. It can be observed that higher reso-
lutions ensure better results since the probability areas are more precisely determined.
However, a high resolution inference from the GP becomes very expensive in terms of
computation. It is worth noting that the dimension of the grid is up to scale, according
to the scale factor of the map.
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Figure 6.7: Evolution of the mean uncertainty accumulated on the total map. Different thresh-
old values for γ are shown and compared to the uncertainty obtained with the initialization
ratio (4.4) employed in the former SLAM approach.
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Figure 6.8: RMS error for different initialization ratios γ. The RMS value obtained with the
former SLAM approach has been also plotted for comparison.
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Figure 6.9: RMS error for different grid size resolutions. The grid size resolutions are expressed
up to the scale factor of the current map. The RMS value obtained with the former SLAM
approach has been also plotted for comparison.

156



6.2. Results

6.2.2 Map Building with Uncertainty Reduction
After having assessed the behaviour of γ and the RMS obtained, we can assume that
a trade-off threshold must be set from a study, such as the one just presented. Hence
now we can carry out a complete SLAM experiment. Figure 6.10 shows the final map
and path estimation for an office-like environment. Figure 6.11 presents a different
solution for the same scenario, where a different initialization ratio is considered. In
order to compare and prove the benefits of this proposal, Figure 6.12 presents results
obtained with our former EKF-based SLAM approach. Inspecting Figure 6.10(a) and
Figure 6.11(a) confirms that lower thresholds for the initialization ratios ensure a more
robust solution with a larger number of views in the map, but obviously at a higher
computational cost. Figure 6.10(b) and Figure 6.11(b) show the behaviour of the error
along the path. Both estimations confirm their improvements in comparison with the
former approach, as seen in Figure 6.12(a) and Figure 6.12(b). An important reduction
in terms of uncertainty is achieved.

Finally, the method has been used in a larger scenario with the aim of testing
its robustness and feasibility in large environments. Figure 6.13 provides the details of
this scenario, which corresponds to an indoor trajectory of 180 m. The areas where the
robot navigates consist of office-like rooms, laboratories, corridors and open spaces.
The main challenge is to deal with the big changes on the visual appearance between
rooms, but also with the lighting changes on the images. Some omnidirectional images
are also presented, as well as the real path followed by the robot. Figure 6.14 provides
results for this scenario presented in Figure 6.13, when using the proposed approach.
Again, the estimated path and map reveal their accuracy and similarity to the real
path, but also its reduced uncertainty. Figure 6.15 illustrates the evolution of the pose
and map uncertainty respectively.
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Figure 6.10: Figure 6.10(a) presents real data results obtained with uncertainty reduction in
the EKF-based SLAM approach. The map of the environment is formed by N=12 views. The
position of the views is presented with error ellipses. Figure 6.10(b) shows the estimation and
the odometry error in X, Y and θ at each time step.
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Figure 6.11: Figure 6.11(a) presents real data results obtained with uncertainty reduction in
the EKF-based SLAM approach. The map of the environment is formed by N=28 views. The
position of the views is presented with error ellipses. Figure 6.11(b) shows the estimation and
the odometry error in X, Y and θ at each time step.
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Figure 6.12: Figure 6.12(a) presents real data results obtained with the former EKF-based
SLAM approach, detailed in Chapter 4. The map of the environment is formed by N=11 views.
The position of the views is presented with error ellipses. Figure 6.12(b) shows the estimation
and the odometry error in X, Y and θ at each time step.
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Figure 6.13: Main details of the large scenario where the last dataset was acquired. The layout
of the building, real path followed by the robot and some omnidirectional views of different areas
are indicated.
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Figure 6.14: Real data results obtained with uncertainty reduction in the EKF-based SLAM
approach for a large scenario presented in Figure 6.13. The map of the environment is formed by
N=41 views. The position of the views is presented with error ellipses. Figure 6.14(b) shows the
estimation and the odometry error in X, Y and θ at each time step.
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Figure 6.15: Evolution of the pose and map uncertainty for the large scenario presented in
presented in Figure 6.13.
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6.3 Conclusions

In this chapter we have presented a new contribution consisting of a mechanism for
the view initialization within the map building process of our EKF-based visual SLAM
approach supported by omnidirectional views. This contribution has proven a more
feasible strategy which accounts for information gain and losses so that the harmful
effects suffered by visual SLAM approaches are mitigated. Particularly, we tackled the
non-linearities and undesired effects induced in the observation and movement, which
jeopardize the convergence of traditional EKF-based SLAM approaches. The strategy
achieves the uncertainty reduction to deal with these issues.

In this implementation we have focused on encoding information gain and losses
to define the proposed mechanism to improve the view initialization stage. This new
contribution has been achieved by means of the a data information distribution in-
ferred with a Gaussian Process. This distribution represents a probability model for
the existence of feature points, and it is exploited from an informative point of view.
Thus an Information Gain method has been finally introduced to come up with the
desired initialization process, which confirms its capability to bound the uncertainty
and to efficiently initialize new views in the map. The results presented have proven
the validity of this proposal and the expected benefits with regard to uncertainty re-
duction. Thus implies a more robust and consistent map and trajectory estimation.
Similarly, these results demonstrate the effectiveness of this approach to set limits to
the error. In order to reinforce the value of these results and the contributions made
in this chapter, we have also compared them with the results obtained by our former
EKF-based SLAM approach, presented in Chapter 4, which employs a more empirical
initialization mechanism.
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Having detailed in the previous chapters all the work conducted under the framework of
this thesis, now this chapter summarizes the main contributions that can be extracted
from this research. In consequence, some possible future work can be also listed.

7.1 Contributions

Nowadays, research on mobile robotics has concentrated on several challenges of
paramount importance for this field. Building visual maps is crucial in order to provide
the robot with a balanced capability between autonomy, perception, adaptability and
decision-making. Such task to obtain a feasible map estimation implies a real and
complex challenge, with incremental and simultaneous nature: the SLAM (Simultane-
ous Localization And Mapping) problem. This thesis establishes its motivation under
this framework. Accordingly, the main objectives were aimed at the development of
a visual SLAM solution which exploits the benefits of an omnidirectional camera and
the feature point information, extracted from the corresponding images. According to
these objectives, different advances and contributions were derived, as presented sep-
arately in each chapter of this document. The general target points were divided into:
new map representations, non-linearities mitigation, and uncertainty reduction. This
section includes a synthesis with the most relevant contributions and achievements
accomplished during the research period:

Chapter 2

• Adoption of the epipolar constraint to the geometry of our omnidirectional cam-
era. This first accomplishment allows to design a motion transformation model.
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• Development of the motion transformation model, solely based on omnidirec-
tional images. It aids to define a simple angular observation model which is able
to extract the localization of the robot by means of a pair of images, correspond-
ing to physical poses of the robot.

• Performance and accuracy results that validate the motion transformation model.
Besides they allow to provide with a reliable visual odometry approach, as a visual
feed-forward input for a real time application.

Chapter 4

• Compact map representation to encode the environment with a reduced set of
omnidirectional views, contrarily to traditional approaches which accumulate and
re-estimate large amounts of visual landmarks. This represents the core of our
view-based SLAM proposal.

• Enhanced observation model thanks to the motion transformation contribution,
but also achieved with an improved matching process which accounts for the
current uncertainty of the system.

• Map building design based on the information provided by the omnidirectional
views and adapted to this geometry: view initialization and data association
redesign.

• Acquisition of real datasets as a consistent background for testing and ensuring
validity of the contributions made in this work.

Chapter 5

• Alternative offline core algorithm implementation. A modified SGD solver is
adapted to the omnidirectional reference system. In contrast to former solvers,
this contribution reinforces the robustness against non-linearities.

• Simultaneous processing of several constraints at the same time step. This
improves the convergence and robustness of the SGD estimation, in contrast
to standard SGD approaches.

• Comparison results to demonstrate the improvements under non-linear noise con-
ditions.

Chapter 6

• View initialization mechanism based on an Information-based scheme that ac-
counts for information gain and losses within the SLAM approach. It is sustained
by Bayesian techniques such as GP in order to obtain a probabilistic distribution
of our sensor data. Information theory complements this contribution.

• Bounded uncertainty system, in consequence with the previous point. The robust
view initialization assures a limited uncertainty which prevents the system from
diverging. Thus harmful noise effects are mitigated.
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7.2 Future Work

Following, we describe possible future research lines which emerge as a consequence
of the contributions and results presented in this work:

• Further study on this map approach when it is driven by different sort of algo-
rithms. A comparison benchmark would be necessary in order to assess possible
benefits from the use of particle filters, non-linear solvers and maximum likelihood
optimizers.

• Analysis on the visual feature detectors and descriptors when they operate em-
bedded in a final SLAM application. The conclusions extracted would help in the
definition of a fused method which optimizes the final path and map estimation.

• Extension of the motion transformation in a 6 degrees of freedom (6 DOG)
context. In general, these kind of models considerably increase the complexity
of the problem. Nonetheless, extending our motion transformation to 3D would
represent a simple and powerful tool to come up with a reliable and robust 6
DOG movement model.

• According to the last point, 3D visual map estimations would be the next line
to work on. A 6 DOG movement model permits to devise a 3D representation
of the environment. This task implies that the robot is enabled with a proper
acquisition platform.

• Map building at large outdoor scenarios. The emergence of drones represent a
great choice to easily acquire real outdoor datasets. GPS and IMU data pro-
vide a feasible input in order to be combined with the visual information of an
omnidirectional camera.
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Appendix: Set of Publications

The major implementations and contributions made in this thesis are supported
by a set of publications in journals ranked in the JCR Science Edition. The following
journal papers support the work conducted in this document:

Journal Paper 1
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Creación de un modelo visual del entorno basado en imágenes omnidireccionales
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Resumen

En este artı́culo abordamos el problema de la construcción del mapa visual de un entorno mediante un robot móvil, ubicándose,
por tanto, en el ámbito del problema de SLAM (Simultaneous Localization and Mapping). La solución presentada en este artı́culo
se fundamenta en el uso de un conjunto de imágenes para representar el entorno. De esta manera, la estimación del mapa se plantea
como el cálculo de la posición y orientación de un conjunto de vistas omnidireccionales obtenidas del entorno. La idea desarro-
llada se separa de la concepción habitual de mapa visual, en la que el entorno está representado mediante un conjunto de puntos
tridimensionales definidos respecto de un sistema de referencia. En el caso presentado, se considera que el robot está equipado con
un único sensor visual omnidireccional que permite detectar un conjunto de puntos de interés de las imágenes que, a continuación,
son representados mediante un descriptor visual. El proceso de construcción del mapa se puede resumir de la siguiente manera:
cuando el robot se mueve por el entorno captura imágenes omnidireccionales y extrae un conjunto de puntos de interés de cada una
de ellas. A continuación, se buscan correspondencias entre la imagen capturada y el resto de imágenes omnidireccionales existentes
en el mapa. Si el número de correspondencias encontradas entre la imagen actual y alguna de las imágenes del mapa es suficiente,
se calcula una transformación consistente en una rotación y translación. A partir de estas medidas podemos deducir la localización
del robot con respecto a las imágenes almacenadas en el mapa. Se presentan resultados obtenidos en un entorno simulado que
validan la idea presentada. Además, se han obtenido resultados experimentales utilizando datos reales que demuestran la validez de
la solución presentada. Copyright c© 2012 CEA. Publicado por Elsevier España, S.L. Todos los derechos reservados.

Palabras Clave: SLAM, robótica móvil, visión omnidireccional

1. Introducción

La construcción de mapas es uno de los problemas funda-
mentales en el área de la Robótica Móvil, ya que una gran canti-
dad de aplicaciones se fundamentan en la existencia de un mapa
(Aracil et al., 2008). Para construir el mapa, el robot debe des-
plazarse por el entorno mientras adquiere información de él.
Frecuentemente, la información de la que dispone el robot para
realizar el mapa consiste en un conjunto de lecturas de odo-
metrı́a y un conjunto de poses. La naturaleza acumulativa del
error existente en la odometrı́a implica un problema de loca-
lización, en consecuencia, se genera el problema de construir
un mapa mientras, simultáneamente, el robot se localiza dentro
de él. Por tanto, el conjunto de algoritmos desarrollados para

∗Autor en correspondencia.
Correos electrónicos: arturo.gil@umh.es (A. Gil),

dvaliente@umh.es (D. Valiente), o.reinoso@umh.es (O. Reinoso),
jmarin@umh.es (J.M. Marı́n)

URL: arvc.umh.es (A. Gil)

esta tarea se agrupan bajo las siglas de SLAM (Simultaneous
Localization and Mapping).

En la literatura existen un gran número de trabajos que pro-
ponen la utilización de cámaras para la construcción de ma-
pas. Estas soluciones se denominan generalmente SLAM vi-
sual. A su vez, en este grupo podemos encontrar diversas alter-
nativas que se diferencian en aspectos como el tipo de cámara
utilizada, ya sea una única cámara, un par estéreo o una única
cámara omnidireccional. Otro factor diferenciador es el tipo de
información visual extraı́da de las imágenes. También se cla-
sifican según extraigan landmarks visuales de las imágenes o
utilicen un descriptor de apariencia global de las imágenes. En
el caso de descriptores visuales, se encuentra un gran núme-
ro de soluciones basadas en descriptores SIFT (Lowe, 2004)
y SURF (Bay et al., 2006) en el ámbito del SLAM visual. La
representación utilizada para definir el mapa: en este caso, se
encuentran métodos que representan la posición 3D de un con-
junto de landmarks visuales (Civera et al., 2008; Andrew J. Da-
vison et al., 2004), o bien métodos que estiman un subconjunto
de las poses del robot (Paya et al., 2009). El algoritmo de SLAM
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utilizado: principalmente se encuentran soluciones basadas en
el filtro de Kalman, filtros de partı́culas. Por ejemplo, en (Gil
et al., 2006) se utiliza un par estéreo de cámaras calibradas para
obtener medidas relativas de distancia a un conjunto de marcas
visuales. El mapa está definido por un conjunto de marcas vi-
suales, estando cada una acompañada de un descriptor visual
basado en la transformada SIFT (Lowe, 2004). Se emplea un
algoritmo basado en un filtro de partı́culas Rao-Blackwell para
estimar el mapa y el camino seguido por el robot (Montemerlo
et al., 2002). Una solución diferente la encontramos en (Civera
et al., 2008), donde se utiliza una única cámara para construir
un mapa tridimensional del entorno, constituido por un conjun-
to de puntos de interés extraı́dos con el detector de esquinas
de Harris (Harris and Stephens, 1988) y descritos por una sub-
ventana de niveles de gris. Se capturan imágenes con gran fre-
cuencia mientras la cámara es movida a mano. Cada uno de los
puntos 3D detectados se representa mediante un vector adimen-
sional y una escala. La posición 3D de los puntos se estima con
bastante precisión en base a un filtro EKF al observar las mar-
cas visuales desde puntos de vista separados por una lı́nea base
suficiente. Debido a que una única cámara no nos permite ob-
tener observaciones de la distancia hasta los puntos detectados,
la inicialización de la posición tridimensional de las landmarks
plantea un problema. Este hecho inspiró una parametrización
inversa de la profundidad para representar los puntos en el fil-
tro de Kalman (Civera et al., 2008). Según (Andrew J. Davi-
son et al., 2004) los resultados de SLAM visual utilizando una
única cámara son mejores cuando se utiliza una óptica con un
gran ángulo de visión, hecho que sugiere la utilización de una
cámara omnidireccional para la creación del mapa, ya que, en
este caso el ángulo de visión horizontal es máximo. Sin em-
bargo, el empleo de cámaras omnidireccionales en aplicaciones
de SLAM visual no es demasiado frecuente. Por ejemplo, (Joly
and Rives, 2010) estiman con una única cámara omnidireccio-
nal y una variación del Information Filter estando cada punto
modelado mediante una parametrización inversa de la profun-
didad (Civera et al., 2008). En (Jae-Hean and Myung Jin, 2003)
dos cámaras omnidireccionales se combinan para obtener un
sensor estéreo con un gran ángulo de visión. Las medidas de
distancia obtenidas se integran en un filtro EKF para construir
el mapa. En (Scaramuzza et al., 2009) se presenta un método
para extraer el movimiento relativo entre dos imágenes omni-
direccionales. En este caso, los resultados no se emplean para
construir un mapa sino para estimar una odometrı́a visual.

En el caso presentado aquı́, consideramos el caso en el que
un único robot explora el entorno. El robot está equipado con
una única cámara omnidireccional, según se muestra en la Fi-
gura 1(a). Cuando el robot se mueve por el entorno, captura
imágenes omnidireccionales y extrae un conjunto de puntos de
interés de ellas. A continuación, busca correspondencias con
el resto de imágenes omnidireccionales existentes en el mapa.
Si se encuentra un número suficiente de correspondencias en-
tre las imágenes, se calcula una rotación y translación (salvo
un factor de escala) entre ambas imágenes (Scaramuzza et al.,
2009). Estas medidas se integrarán en un filtro de Kalman ex-
tendido (EKF) para deducir la localización del robot en el mapa,
ası́ como la posición del robot cuando capturó cada una de las

imágenes. El cálculo de la rotación y translación se detalla en el
apartado 3. En la Figura 1(b) se presentan dos imágenes omni-
direccionales donde se han indicado un conjunto de correspon-
dencias. El cálculo de transformación consiste en la obtención
de los ángulos (φ, β) indicados a partir de las correspondencias
de puntos entre ambas imágenes, quedando el factor de escala
en la transformación ρ indeterminado. El proceso de cálculo y
la integración de las medidas obtenidas entre imágenes se pre-
senta en el apartado 2.

En la mayorı́a de los trabajos de SLAM visual que se en-
cuentran en la literatura, el mapa se representa mediante un con-
junto de puntos tridimensionales que representan elementos del
entorno (Gil et al., 2006, 2010; Civera et al., 2008; Davison and
Murray, 2002; Ballesta et al., 2010). Tı́picamente, estos puntos
son obtenidos mediante un algoritmo de detección de puntos de
interés como, por ejemplo, Harris (Civera et al., 2008) y suelen
acompañarse de un descriptor visual más o menos invariante de
la apariencia visual del punto. Al conjunto del punto y del des-
criptor se le denomina visual landmark en la literatura anglo-
sajona y se traduce al castellano como marca visual. Indepen-
dientemente del algoritmo de SLAM utilizado, en los trabajos
mencionados el proceso de cálculo del mapa implica la estima-
ción de la posición de cada una de las marcas del mapa. En
contraposición con este tipo de mapa, en este artı́culo expone-
mos una concepción del mapa diferente. El mapa está formado
por la posición y orientación de un conjunto de vistas del en-
torno. Cada vista se define como la posición y orientación de
la cámara cuando esta capturó la imagen en el entorno, junto
con un conjunto de puntos de interés y descriptores visuales. El
proceso de cálculo plantea la estimación de la posición y orien-
tación de todas las vistas del mapa. La construcción del mapa
se resume a continuación: supóngase que el robot parte desde el
origen del sistema global de referencia. En ese instante, captura
una vista inicial. Mientras el robot se mueve en las cercanı́as de
esta vista inicial captura imágenes y encuentra puntos corres-
pondientes entre la imagen actual y la vista inicial, calculando
una rotación y translación y localizándose respecto de la vista
inicial. Cuando el robot se aleja de la vista inicial, no será ca-
paz de encontrar puntos correspondientes. En este momento ini-
ciará una nueva vista en el mapa. Esta nueva vista permitirá la
localización del robot en su cercanı́a.

La solución presentada en este artı́culo presenta algunas
ventajas si la comparamos con otras soluciones de SLAM visual
previas. La ventaja principal radica en la compacidad de la re-
presentación del entorno. Soluciones como (Andrew J. Davison
et al., 2004; Civera et al., 2008) estiman la posición de las land-
marks visuales, ası́ como la posición y orientación de la cámara,
utilizando 6 variables para tal fin, con lo que el vector de esta-
do del problema de SLAM crece rápidamente con el número de
landmarks almacenanadas en el mapa. Este hecho plantea un
problema para la mayorı́a de algoritmos de SLAM, haciendo
que los tiempos de cálculo aumenten de forma cuadrática con
el número de landmarks en el mapa. En la solución presentada
en este artı́culo, únicamente se estima la posición de un redu-
cido conjunto de vistas. Cada vista encapsula información de
un área del entorno en forma de un conjunto de puntos de in-
terés. Según se demostrará mediante experimentos reales y en
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(a) (b)

Figura 1: La Figura 1(a) muestra la configuración del sensor usado en los experimentos. La Figura 1(b) presenta dos imágenes omnidireccionales reales, con varias
correspondencias indicadas.

simulación, esta representación del mapa es más eficiente y re-
quiere de un menor coste computacional para su cálculo, aún
ası́ permite una localización precisa del robot.

A pesar de que el coste computacional sea un factor restric-
tivo, en el apartado 3 detallamos un algoritmo que puede ser
utilizado para calcular la observación con una frecuencia alta y
permite la realización de SLAM en tiempo real. En este caso, el
cálculo de la transformación entre dos imágenes depende sólo
del número de correspondencias encontradas en las imágenes y
no del número de vistas existentes en el mapa, con lo que es un
tiempo constante en cada iteración del filtro.

Durante los experimentos se han utilizado las caracterı́sticas
SURF para la detección y descripción de los puntos. La solu-
ción presentada no está limitada al uso de este detector y des-
criptor visual. El fundamento del uso de este descriptor se basa
en un estudio anterior sobre detectores y descriptores visuales
en su aplicación al SLAM visual (Gil et al., 2010; Ballesta et al.,
2010), donde las caracterı́sticas SURF presentaron muy buenas
cualidades para esta tarea.

Se presentarán un conjunto de resultados obtenidos en si-
mulación y utilizando datos reales que permiten demostrar la
validez de la solución de SLAM visual presentada.

El resto del artı́culo se organiza de la siguiente manera. Pri-
mero, el apartado 2 se describe el proceso de SLAM. A conti-
nuación, se describe el algoritmo usado para estimar la transfor-
mación entre imágenes omnidireccionales en el apartado 3. Se-
guidamente se aborda el problema de la asociación de datos en
el apartado 4. El apartado 5 presenta los principales resultados
experimentales. Finalmente, las conclusiones más relevantes se
exponen en el apartado 6.

2. Construcción de mapas (SLAM)

En el método de SLAM (Simultaneous Localization and
Mapping, o construcción de mapas y localización simultánea)
que se presenta aquı́, cada imagen omnidireccional integrada
en el mapa se denominará vista, para diferenciarla del concepto
de landmark visual utilizado comúnmente en este ámbito. Es
importante recalcar que una landmark visual corresponde a un
punto fı́sico en el entorno, como, por ejemplo, una esquina so-
bre una pared. Sin embargo, una vista representa la información

visual obtenida desde una pose en particular del entorno. En
consecuencia representamos una vista mediante una pose don-
de se capturó la imagen en el entorno, acompañada de la posi-
ción bi-dimensional de los puntos detectados en dicha imagen
junto con sus descriptores visuales. El mapa estará integrado
por un número finito de vistas capturadas por el robot desde po-
ses diferentes. Cuanto mayor es el número de vistas utilizadas,
más completa será la representación del mapa, pero mayor el
número de variables a estimar. Según se demostrará en la parte
experimental, un conjunto reducido de vistas permite modelar
la mayorı́a de entornos, ya que cada vista permite al robot loca-
lizarse en un área cercana. En nuestro caso, según se indicará en
el apartado 2.3, se incluyen nuevas vistas cuando la apariencia
global de la imagen actual capturada por el robot difiere en gran
medida de la apariencia de cualquiera de las vistas existentes en
el mapa.

Consideramos que esta representación del entorno se pue-
de emplear para la estimación de un mapa mediante algoritmos
de SLAM diferentes, bien métodos online como EKF, FastS-
LAM o bien offline, como, por ejemplo, Stochastic Gradient
Descent (Grisetti et al., 2007). En este artı́culo presentamos co-
mo ejemplo la estimación del mapa mediante un filtro EKF y
probamos que se pueden obtener resultados correctos con datos
reales.

Igualmente, esta representación del mapa y el modelo de
observación pueden ser utilizados para la creación de un mapa
basado en vistas capturadas mediante una única cámara estándar.
La razón fundamental que justifica el empleo de una cámara
omnidireccional es la habilidad de adquirir una visión global
del entorno con una única imagen.

2.1. Representación y Estimación del Mapa mediante EKF
A continuación definimos con precisión la representación

utilizada para la estimación del mapa del entorno mediante un
filtro EKF. La pose del vehı́culo en el instante t se indicará co-
mo xv = (xv, yv, θv)T . Cada vista i está representada por su pose
xli = (xli , yli , θli )

T , su incertidumbre Pli y un conjunto de M
puntos de interés p j expresados en coordenadas de imagen. Ca-
da punto de interés esta asociado con un descriptor visual d j,
j = 1, . . . ,M. En total, consideramos que en el instante t exis-
ten N vistas xli incluidas en el mapa, por tanto i = 1, . . . ,N.
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En la Figura 2 se ilustra este tipo de mapa, donde se indica
la posición de un conjunto de vistas. Por ejemplo, la vista A se
capturó desde la pose particular xlA = (xlA , ylA , θlA )T en el ma-
pa y tiene un conjunto de M puntos de interés asociados. En el
caso presentado, la vista A permite la localización del robot en
sus inmediaciones. La vista B se utiliza para modelar una de las
estancias y permitirá la localización del robot en sus cercanı́as.
Finalmente, las vistas C, D y E modelan el resto de estancias
del entorno. Lógicamente, se deberá establecer un método para
la inicialización de las vistas cuando el robot no sea capaz de
establecer correspondencias con ninguna de las vistas existen-
tes en el mapa, o bien cuando las vistas existentes no le permi-
tan localizarse con exactitud. En el apartado 2.3 se presenta un
método sencillo para realizar esta tarea.

Para la estimación del mapa y de la posición del vehı́culo
en el instante t, definimos un vector de estado para el filtro EKF
como:

x̄(t) = [xv, xl1 , xl2 , · · · , xlN ]T (1)

donde N es el número de vistas que existen en el mapa, xv la
pose del robot y xli la pose de la vista i.

La relación entre el estado en el instante t + 1 y el estado
actual es la siguiente:

x̄(t + 1) = F(t)x̄(t) + u(t + 1) + v(t + 1) (2)

donde F(t) contiene la información relativa a la transición entre
estados, u(t + 1) es el vector de control del movimiento que
genera la odometrı́a del robot y v(t + 1) es el ruido que se añade
al sistema, el cual es de tipo gaussiano y con correlación nula.

Del mismo modo puede definirse una relación lineal entre
la observación realizada por el sistema sensorial en un instante
t de una vista i, zi(t), con la variable de estado.

zi(t) = Hi(t)x̄(t) + wi(t) (3)

donde Hi(t) representa la relación entre x̄(t) y zi(t), y wi(t) es el
ruido aleatorio que se genera en el proceso, el cual es gaussiano
y de covarianza R(t).

A continuación hay que diferenciar las tres etapas funda-
mentales del procedimiento de filtrado. En primer lugar se lleva
a cabo una predicción del estado a estimar x̂(t), y en base a ésta
se obtiene la predicción de la observación ẑi(t):

x̂(t + 1|t) = F(t)x̂(t|t) + u(t) (4)
ẑi(t + 1|t) = Hi(t)x̂(t + 1|t) (5)

P(t + 1|t) = F(t)P(t|t)FT (t) + Q(t) (6)

donde P(t|t) y P(t + 1|t) son matrices de covarianza que repre-
sentan la incertidumbre de la estimación en t y t + 1 respectiva-
mente.

En la segunda etapa se realiza la observación zi(t) de una
determinada vista i del mapa, cuya asociación de datos se asu-
me correcta, y mediante la cual se puede definir el concepto de
innovación, como la variación entre la estimación a priori y la
medida de observación:

vi(t + 1) = zi(t + 1) − ẑi(t + 1|t) (7)

S i(t + 1) = Hi(t)P(t + 1|t)HT
i (t) + Ri(t + 1) (8)

donde S i(t + 1) representa la covarianza de la innovación.
Finalmente, en la tercera etapa se actualiza la estimación

obtenida en la primera etapa según el valor de la innovación
obtenida en la segunda etapa, obteniendo ası́ la solución al filtro
para el instante t + 1:

x̂(t + 1|t + 1) = x̂(t + 1|t) + Ki(t + 1)vi(t + 1) (9)
P(t + 1|t + 1) = P(t + 1|t) − Ki(t + 1)S i(t + 1)KT

i (t + 1) (10)

donde en este caso Ki(t + 1) se corresponde con la ganancia del
filtro EKF, obteniéndose del siguiente modo:

Ki(t + 1) = P(t + 1|t)HT
i (t)S −1

i (t + 1) (11)

Para el caso que nos ocupa, inicializamos las matrices de
covarianza de ruido Q(t) y R(t) que introducen la odometrı́a y el
modelo de observación respectivamente. La primera de ellas se
establece en base a los parámetros de ruido conocidos que ge-
nera la odometrı́a del robot, y la segunda se determina en base a
medidas experimentales, tal y como se detalla en el apartado 5.
La odometrı́a u(t), se emplea para la obtención de la predicción,
conjuntamente con el estado anterior, tal y como se deduce de
la ecuación 4. La matriz de incertidumbre del mapa estimado,
P(t), tiene en cuenta el ruido de la odometrı́a según la ecuación
6, y el ruido introducido por el sensor visual a la hora de rea-
lizar una medida de observación, como puede comprobarse en
las ecuaciones 8 y 10. En particular, el modelo propuesto de
observación zi(t) se detalla a continuación.

2.2. Modelo de Observación

El modelo de observación nos permite obtener una informa-
ción relativa para la estimación indirecta de la pose del robot y
de las vistas. En lo siguiente se asume que el robot se encuentra
en una posición en el entorno y captura una imagen omnidirec-
cional Ii. A continuación, suponemos que hemos sido capaces
de encontrar un conjunto de puntos correspondientes entre Ii y
una de las vistas almacenadas en el mapa Ili . Según se descri-
birá en el apartado 3, obtenemos una observación zi(t):

zi(t) =

(
φ
β

)
=


atan( yli−yv

xli−xv
) − θv

θli − θv

 (12)

donde el ángulo φ es la orientación con la que la vista i es ob-
servada desde el sistema de referencia móvil asociado al robot
y β es la orientación relativa entre ambas imágenes. La vista i
está representada por xli = (xli , yli , θli ), mientras que la pose del
robot está descrita por xv = (xv, yv, θv). Ambas medidas (φ, β)
se presentan en la Figura 1(a).

2.3. Inicialización de Nuevas Vistas

Según se dijo, es necesario proporcionar un método para
incluir nuevas vistas en el mapa cuando estas sean necesarias.
En nuestro caso, se incluye una nueva vista en el mapa cuando
la apariencia de la imagen actual es muy diferente de cualquiera
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Figura 2: La figura presenta la idea básica para la construcción del mapa. El robot comienza la exploración en el punto A y almacena una vista IA en el origen.
A continuación se mueve. Cuando no se encuentran correspondencias entre la imagen actual e IA, una nueva vista es creada en la posición actual del robot, B. El
proceso continúa hasta que el entorno queda completamente representado.

de las vistas almacenadas en el mapa. El cálculo de la apariencia
global se aproxima mediante la siguiente ratio:

R =
2K

nA + nB
(13)

que calcula el grado de similitud entre las vistas A y B, siendo
K el número total de correspondencias puntuales entre A y B,
mientras que nA y nB son el número de puntos detectados en las
imágenes A y B respectivamente.

El robot decidirá incluir una nueva vista en el mapa cuan-
do la ratio R cae por debajo de un valor predefinido. Ası́ pues,
la inicialización de las vistas depende de un único factor de si-
militud R. Si se selecciona un valor de R alto, se incluirá un
gran número de nuevas vistas en el mapa, aumentando la preci-
sión con la que podremos localizar al robot pero incrementando
el coste computacional necesario para calcular el mapa. En el
caso opuesto, si se selecciona un valor de R bajo, el número
de vistas será menor, reduciéndose el tiempo de cómputo pero
también reduciendo la precisión con la que podemos localizar
al robot en el mapa.

En la inicialización de cada vista, la pose xli y la incerti-
dumbre asociada se obtienen de la estimación de xv en el ins-
tante actual t y de su submatriz de covarianza asociada, ya que
en el instante t la posición de la vista y la posición del robot
coinciden.

3. Cómputo de la Transformación entre Imágenes Omni-
direccionales

En este apartado proponemos un método para calcular la
transformación entre dos imágenes omnidireccionales. La trans-
formación se puede calcular salvo un factor de escala y está re-
presentada mediante los ángulos (β, φ), según se indicó en el
apartado 2.2. Estos ángulos representan la posición relativa del
robot a una de las vistas del mapa y permiten su localización.
Para su obtención deben detectarse puntos caracterı́sticos en
ambas imágenes y encontrar sus correspondencias aplicando

la condición de epipolaridad. Los esquemas tradicionales, tales
como (Kawanishi et al., 2008; Nister, 2003; Stewenius et al.,
2006) resuelven el caso general con 6 GDL, mientras que en
nuestro caso, asumiendo que el movimiento del robot se res-
tringe a un plano, podemos limitar el cálculo a 4 variables de la
matriz esencial, reduciendo de este modo el coste computacio-
nal.

3.1. Detección de Puntos Significativos y Correspondencias

Durante las pruebas experimentales se han empleado las
caracterı́sticas SURF (Bay et al., 2006) con el fin de obtener
puntos de interés y correspondencias entre imágenes. Según el
estudio presentado en (Gil et al., 2010; Ballesta et al., 2010),
el detector y descriptor SURF obtuvo excelentes resultados en
términos de robustez de los puntos detectados y de invarianza
del descriptor al compararse con otros métodos empleados en
el ámbito de SLAM visual. La extracción de puntos de interés y
su descripción se realizan a partir de una imagen panorámica, si
bien una vez obtenidos los puntos, se trabaja con sus coordena-
das en la esfera unidad sobre el sistema de referencia original.
Para ello, como primer paso, se transforma la imagen omni-
direccional capturada con la cámara a una vista panorámica y
se extraen un conjunto de puntos caracterı́sticos. A continua-
ción, para cada uno de estos puntos se calcula un descriptor
SURF. Según se comprueba experimentalmente, ante un movi-
miento de la cámara, la variación en la apariencia local de los
puntos (y, por tanto, la variación en el descriptor) es menor en
la imagen panorámica que en la omnidireccional. En la Figura
3.1 se presenta un ejemplo de imagen omnidireccional captu-
rada por el sistema catadióptrico y su transformación a imagen
panorámica. De esta manera se consigue aumentar el número
de correspondencias válidas entre imágenes. Hay que destacar,
que finalmente los puntos detectados en la imagen panorámica
se reproyectan sobre la esfera unidad en las coordenadas de la
vista original, es decir sobre la vista omnidireccional, y se alma-
cenan junto con los descriptores calculados. El cambio a vista
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Figura 3: La figura muestra una imagen omnidireccional y su vista panorámica
correspondiente. En la figura, la lı́nea dibujada representa la posición de los
mismos puntos en ambas imágenes. Una vez detectados puntos de interés en
la vista panorámica, se realiza la reconversión de estos puntos sobre la esfera
unidad en el sistema de referencia original.

panorámica se realiza únicamente con la intención de incremen-
tar el número de puntos detectados, puesto que este modelo ha
sido planteado para obtener transformaciones entre imágenes
omnidireccionales.

3.2. Cómputo de la Transformación
Una vez detectados los puntos SURF en cada una de las

vistas y suponiendo conocidas un conjunto de correspondencias
entre imágenes, ha de establecerse un proceso para calcular los
ángulos relativos β y φ.

3.2.1. Geometrı́a Epipolar
La condición de epipolaridad establece la relación entre dos

puntos 3D observados desde diferentes vistas. Se puede expre-
sar como:

ρp′T Ep = 0 (14)

donde la matriz E recibe el nombre de matriz esencial. El mis-
mo punto detectado en dos imágenes se expresa como p =

[x, y, z]T en el sistema de referencia fijo de la primera cáma-
ra y p

′
= [x

′
, y
′
, z
′
]T en el de la segunda (considerado móvil).

La matriz esencial E representa una rotación R y una traslación
T (salvo un factor de escala ρ) entre los sistemas de referen-
cia de dos imágenes, con E = R · Tx. Por tanto los ángulos
deseados (β, φ), pueden ser obtenidos a partir de los elemen-
tos de E. Debe señalarse que la Geometrı́a Epipolar puede ser
usada en imágenes omnidireccionales ya que reproyectamos el
sistema 2D del plano imagen a 3D mediante el modelado del
espejo hiperbólico de la cámara, a partir de una calibración pre-
via (Scaramuzza et al., 2006). A causa de la ambigüedad en la
profundidad, denotamos ~p and ~p′ en 3D, como los vectores uni-
tarios que indican la dirección de los puntos en los dos sistemas
de referencia, ya que la posición 3D no puede ser totalmente
definida con una única vista de la escena. De otra manera: el
método presentado permite calcular la matriz E salvo un fac-
tor de escala ρ, el cual a efectos prácticos se elige de manera
arbitraria para la resolución del problema. Aun ası́, en los ex-
perimentos con datos reales que se presentan, la escala real del

Figura 4: Diagrama de bloques representativo del modelo de SLAM propuesto.

mapa puede determinarse con bastante precisión a partir de las
medidas de odometrı́a del robot, resolviendo de este modo la
indeterminación del factor de escala ρ.

Con el fin de obtener β y φ, hemos considerado (Hartley
and Zisserman, 2004), donde se sugiere el empleo de la matriz
de proyección P, la cual también define la transformación entre
imágenes. Se ha adoptado este método por su simplicidad a la
hora de calcular las cuatro posibles soluciones del problema.
Al estimar una rotación y una traslación sobre un movimiento
en el plano XY, sólo son necesarias K = 4 corresponcencias
para resolver el problema, ya que la matriz E tiene la siguiente
forma:

E =


0 0 e13
0 0 e23

e31 e32 0

 (15)

En cambio, calculamos E con un mayor número de puntos
a fin de obtener soluciones fiables en presencia de ruido y falsas
correspondencias. Además, empleamos un algoritmo RANSAC
(Nistér, 2005) para filtrar posibles correspondencias erróneas.

Para el cálculo de E, primero aplicamos la condición de epi-
polaridad ~p′T · E · ~p = 0 sobre K puntos, y resolvemos la ecua-
ción resultante D ·~e = 0. Donde, D es una matriz de coeficientes
que se obtiene como resultado de aplicar la ecuación (14) a K
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puntos, y ~e = [e13 e23 e31 e32]. A continuación descomponemos
E mediante SVD:

[U |S |V] = S VD(E), (16)

que permite calcular:

R1 = [UVT W], R2 = [UVT WT ], T = [UZUT ] (17)

siendo W y Z matrices auxiliares (Hartley and Zisserman,
2004) y las posibles rotaciones (R1,R2) y traslaciones (T1x,−T1x).
Para obtener las cuatro posibles P-matrices, computamos:

P1 = [R1|T1x], P2 = [R1| − T1x], (18)
P3 = [R2|T1x], P4 = [R2| − T1x], (19)

En nuestro caso, las matrices de proyección tienen la forma:

Pi =



cos(β) − sin(β) 0 ρ cos(φ)
sin(β) cos(β) 0 ρ cos(φ)

0 0 1 0
0 0 0 1


(20)

Nótese que β, φ y ρ pueden tomar diferentes valores que
cumplan la condición de epipolaridad (14) debido a la indermi-
nación del factor de escala ρ. Esto plantea un proceso de selec-
ción de una de las cuatro posibles soluciones descritas en (18)
como la correcta. En nuestro caso, hemos utilizado una solución
basada en mı́nimos cuadrados, según se detalla en (Bunschoten
and Krose, 2003). Dicho proceso se detalla a continuación:

3.2.2. Selección de la Solución
La selección de la solución correcta debe llevarse a cabo

mediante un procedimiento inverso. Multiplicamos ~p′ por la in-
versa de cada una de las cuatro matrices de proyección posibles
Pi, obteniendo ası́ cuatro estimaciones de ~p. Se asume como
solución correcta aquella que genera la estimación con menor
desviación respecto de ~p. Por último, β y φ son directamente
recuperados a partir de los elementos de P definidos en (20).

4. Asociación de datos

El problema de la asociación de datos reviste gran impor-
tancia en el caso general de SLAM visual basado en landmarks.
Dicho problema se puede enunciar de la siguiente manera: da-
do un conjunto de observaciones zi(t) = {zi,1, ..., zi,B} obteni-
das en el instante t, se deberá decidir cuáles de las landmarks
del mapa generaron dichas observaciones. Ası́ pues, el resulta-
do del proceso de asociación de datos es un vector de ı́ndices
H = { j1, ..., jB} donde cada uno de los ı́ndices ji ∈ [1,N +1] de-
nota una de las landmarks del mapa, siendo N el número total
de landmarks en el mapa. Si la observación zi(t) no está aso-
ciada a ninguna de las landmarks del mapa, se inicializará una
nueva con ı́ndice N + 1. Este proceso de asociación de datos
es crucial en SLAM. El caso del SLAM visual basado en land-
marks visuales es particularmente complejo, ya que en el mapa
pueden existir un gran número de marcas visuales y la aparien-
cia de los puntos correspondientes puede variar considerable-
mente. Por ejemplo, en (Gil et al., 2006) se utiliza una distancia

de Mahalanobis para encontrar un conjunto de candidatos entre
las landmarks del mapa. A continuación, se elige la correspon-
dencia en función de la similitud entre los descriptores visuales.
Otras soluciones más elaboradas para hallar la asociación de
datos, como la presentada en (Neira and Tardós, 2001) son de
difı́cil aplicación, debido al coste computacional que implican.

En el caso presentado aquı́, basado en el uso de vistas om-
nidireccionales para la construcción del mapa, la asociación de
datos se puede abordar de una manera diferente. Consideremos
que en un instante t el robot captura una imagen omnidireccio-
nal Ii. Asumamos que, en ese instante t existen N vistas en el
mapa I1, I2, . . . , IN . Primero, se seleccionan un conjunto de vis-
tas cercanas a la vista actual, según las poses de las mismas.
Esta selección se realiza en base a la distancia Euclı́dea:

Di =

√
(xv − xli )T · (xv − xli ) (21)

La vista i se incluye en el conjunto de candidatos si Di < δD,
donde δD es una distancia elegida experimentalmente. Valores
altos de δD precisan un mayor número de candidatos para reali-
zar la búsqueda, con lo que se incrementa el coste computacio-
nal.

A continuación, se busca un conjunto de puntos correspon-
dientes entre la imagen Ii y cada uno de las imágenes en el
grupo de candidatos {I1, I2, . . . , IJ}. La búsqueda de puntos co-
rrespondientes se realiza teniendo en cuenta la restricción epi-
polar (14). Finalmente, en base al número de correspondencias
encontradas, se calcula la ratio R (13) y se obtiene una observa-
ción zi(t) = (φ, β) entre la vista Ii y la vista Ik (k ∈ [1, J]) si la
ratio R supera un determinado valor fijado experimentalmente.

De esta manera, cuando la ratio R es alta, existen un gran
número de correspondencias correctas entre la vista actual Ii

y la vista candidato, con lo que la observación zi(t) = (φ, β)
será precisa. Si la ratio R es baja, el número de corresponden-
cias entre las imágenes es reducido, con lo que la observación
zi(t) con gran probabilidad, será incorrecta. De esta manera, en
base al factor R podemos decidir la asociación de datos y la
inicialización de nuevas vistas.

5. Resultados

Los resultados experimentales se agrupan en dos apartados
diferentes. Primero, en el apartado 5.1 presentamos los resul-
tados obtenidos en simulación que permiten validar el esque-
ma de SLAM aquı́ propuesto. Seguidamente, en el apartado 5.2
mostramos resultados experimentales reales.

5.1. SLAM: Resultados en Simulación

Hemos realizado una serie de experimentos en simulación
que permiten validar el concepto general de vista y su estima-
ción mediante un algoritmo de SLAM basado en el filtro EKF.
Nótese la importancia de asegurar la convergencia de un algo-
ritmo de SLAM basado en EKF, con el modelo de observación
presentado en la ecuación 12, ya que el modelo de observación
se debe linealizar para incluirlo en el filtro de Kalman. Los ex-
perimentos en simulación se han realizado en dos escenarios
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Figura 5: La Figura 5(a) representa el escenario simulado 1. La localización de las distintas vistas en el mapa se representa con puntos. La Figura 5(b) representa el
escenario simulado 2.
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Figura 6: La Figura 6(a) presenta los resultados obtenidos en el escenario simu-
lado 1. La Figura 6(b) presenta los resultados obtenidos en el escenario simula-
do 2.

virtuales con caracterı́sticas diferentes. La Figura 5(a) muestra
el escenario simulado 1, donde se simula un entorno en el que
no existen obstáculos que impidan la visibilidad sobre las dife-
rentes vistas del mapa. Por otra parte, la Figura 5(b) representa
el escenario simulado 2, el cual emula un entorno tı́pico de inte-
rior donde existen obstáculos, tales como paredes, que limitan
la visibilidad sobre las vistas del mapa. Se asume que el robot
puede calcular una observación zi(t) con alguna de las vistas del
mapa cuando podemos trazar una lı́nea recta entre la pose del
robot y la posición de la vista, siempre que estén dentro del ra-
dio de observación δD. En las Figuras, 5(a) y 5(b) se presenta
además con lı́nea continua el camino real seguido por el robot,
mientras que con lı́nea de puntos se muestran las lecturas de

odometrı́a. Un conjunto de vistas han sido aleatoriamente dis-
puestas a lo largo de las trayectorias y se muestran con puntos.
Nótese que, según se indicó en el apartado 2.3, el emplazamien-
to de las vistas depende de la similitud entre las imágenes y de
la ratio R elegida. En los dos escenarios, la simulación gene-
ra una variación aleatoria de R, por tanto se está simulando el
procedimiento de inicialización de vistas en el mapa por par-
te del robot a medida que va descubriendo el entorno. Esta si-
mulación de la disposición de vistas emula el comportamiento
normal de los experimentos reales, ya que la variación de R se
ha escogido para tal efecto. Puesto que la intención principal
de estos primeros experimentos es la validación de la conver-
gencia del algoritmo de SLAM, las imágenes asociadas a las
vistas son omitidas. De este modo las observaciones zi(t) que
realiza el robot también son simuladas con una covarianza ob-
tenida experimentalmente de σφ = 0, 1 = σβ = 0,1rad. El radio
de observación del robot δD se representa mediante un cı́rculo
discontinuo centrado en la pose real del robot.

A continuación presentamos los resultados obtenidos en si-
mulación con el escenario simulado 1. En ambos casos, el robot
comienza el proceso de SLAM en el origen y realiza dos vueltas
a lo largo de la trayectoria indicada. Las observaciones obteni-
das por el robot han sido simuladas según el modelo presentado
en la ecuación 12 con un ruido gaussiano simulado mediante
una matriz de covarianza R(t) = diag(σ2

φ = 0, 12rad2, σ2
β =

0,12rad2). Hemos llevado a cabo una serie de experimentos
donde se varı́a el radio de observación del robot δD. Los re-
sultados se presentan en la Figura 6(a) y 6(b), donde se muestra
el error RMS en la trayectoria frente al radio de observación.
Dicho error, representa la desviación cuadrática media tanto de
la estimación según el filtro EKF (lı́nea contı́nua), como de la
odometrı́a (lı́nea a trazos) comparada con el camino real. El ex-
perimento se ha repetido 50 veces, generando aleatoriamente
50 series diferentes de odometrı́a. En las Figuras 6(a) y 6(b)
se observa el error RMS medio de los distintos experimentos,
ası́ como intervalos de 2σ. Según se puede observar en la Fi-
gura 6(a), cuando el radio de observación está por debajo de 6
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Figura 7: La Figura 7(a) representa el error RMS cometido en el camino frente al número de landmarks N y el tiempo de cómputo medio por iteración del algoritmo
de SLAM. La Figura 7(b) representa el error RMS frente al número de landmarks N mientras que la Figura 7(c) muestra el error RMS frente al tiempo de cómputo
medio por cada iteración del algoritmo de SLAM.

m la incertidumbre en la posición es alta, denotando que el fil-
tro no ha sido capaz de filtrar el ruido en la odometrı́a. Esto es
debido a que la vistas están emplazadas a distancias mayores, y
el robot no ha sido capaz de obtener suficientes observaciones.
Para valores de radio superiores a 6 m el error RMS disminu-
ye demostrando la convergencia del filtro. Un resultado simi-
lar se presenta en la Figura 6(b), la cual se corresponde con el
escenario simulado 2. En este caso se obtienen resultados sa-
tisfactorios con valores de δD por encima de 9m. La diferencia
existente entre ambos resultados se puede explicar debido a la
existencia de elementos en el entorno que limitan la visibilidad
entre las vistas, dificultando ası́ la obtención de observaciones.

Es necesario recalcar que los resultados obtenidos dependen
fuertemente del emplazamiento y número de vistas. Si se sitúan
más vistas en el entorno se consigue un cálculo más preciso tan-
to del mapa como de la trayectoria, a cambio de un mayor coste
computacional. Con esta idea en mente se realizaron un con-
junto de simulaciones en las que se mantuvo constante el radio
de observación δD y se varió el número N de vistas en el mapa
mientras se media el tiempo necesario para realizar el experi-
mento. Cada simulación en el escenario 1 se repitió 50 veces,
obteniendo valores medios del error RMS cometido en la esti-
mación de la trayectoria del robot. En la Figura 7 representamos
el error en la trayectoria estimada en función del número de vis-
tas incluidas en el mapa y el tiempo necesario para calcular cada
iteración. Tı́picamente, una aplicación de SLAM debe ser capaz
de funcionar a tiempo real, por tanto, debe existir un compro-
miso entre la precisión del mapa y el tiempo de cálculo. Dada la
capacidad de computación del robot, la Figura 7(a) nos permite
determinar el número máximo N de vistas para poder procesar
las observaciones a tiempo real y prever la precisión con la que
podemos estimar la trayectoria del robot. Las Figuras 7(b) nos

permiten observar cómo varı́a el error RMS en función de las
vistas del mapa. Obsérvese como el error tiende hacia un lı́mite
mı́nimo conforme N tiende a infinito. Por otra parte, en la Fi-
gura 7(c) se puede observar cómo aumenta el tiempo necesario
de cómputo en función del error RMS deseado en el camino.
Se puede comprobar cómo, el error no se corresponde de forma
lineal con el tiempo de cálculo necesario.

5.2. SLAM: resultados con Datos Reales

En este apartado presentamos resultados que validan el es-
quema de SLAM propuesto mediante imágenes reales captura-
das en un entorno interior. Los datos experimentales se obtu-
vieron con un robot Pioneer P3-AT equipado con una cámara
firewire con una resolución 1280x960 pı́xeles y un espejo hi-
perbólico. El eje óptico de la cámara está instalado aproxima-
damente perpendicular al plano del suelo como se describe en
la Figura 1(a). Como consecuencia, una rotación del robot se
corresponde con una rotación de la imagen respecto al eje ópti-
co de la cámara. Durante las pruebas, se capturaron imágenes
omnidireccionales cada vez que el robot avanzó más de 0, 05m
o giró más de 0, 05rad. Igualmente, se almacenaron datos de
distancia de un sensor SICK LMS y se obtuvo un mapa y un
camino con el algoritmo descrito en (Stachniss et al., 2004) que
se ayuda de la gran precisión de las medidas del sensor láser.
Durante los experimentos el camino calculado a partir de datos
de láser se utiliza únicamente para compararlos con los resulta-
dos de SLAM visual obtenidos mediante la cámara omnidirec-
cional.

El robot es guiado a través del entorno mientras captura
imágenes omnidireccionales y datos de distancia láser a lo lar-
go de la trayectoria. De nuevo, para poder comparar resultados,
hacemos uso de un algoritmo de SLAM basado en distancias
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Figura 8: La Figura 8(a) presenta los resultados de SLAM con datos reales, para trayectoria real (punteada), estimación (continua) y odometrı́a (trazos). La posición
de las vistas se presenta con elipses de error. La Figura 8(b) presenta el error en cada paso temporal en X, Y y θ de la estimación (punteada) y la odometrı́a (trazos).

láser, descrito en (Stachniss et al., 2004), para definir la trayec-
toria real. El robot comienza inicializando una vista a partir de
la adquisición de una imagen omnidireccional en el origen. A
continuación se mueve a lo largo de la trayectoria mientras con-
tinúa adquiriendo imágenes. Instantes después se inicializa una
nueva vista. Mientras se calcula el mapa, se realiza una compa-
ración entre la imagen actual y el resto de vistas del mapa, obte-
niendo un conjunto de correspondencias. Al mismo tiempo, la
ratio de similitud (13) es evaluada, y cuando ésta cae por debajo
de δR = 0,5, se crea una nueva vista y se inicializa con la posi-
ción actual del robot. Finalmente el robot recorre la trayectoria
mostrada en la Figura 10, donde mostramos con puntos el resto
de posiciones en las que el robot decide inicializar una nueva
imagen. La lı́nea punteada muestra la trayectoria real, la lı́nea
continua muestra la estimación del EKF, mientras que la lı́nea a
trazos muestra la odometrı́a. Cabe señalar que el robot continúa
el movimiento dentro de la misma estancia siendo capaz de rea-
lizar observaciones de las vistas inicializadas anteriormente. En
nuestro caso el umbral δR fue determinado experimentalmente
con el objetivo de generar un número reducido de vistas y re-
presentar el entorno de un modo más compacto. Si se eligiese
un valor más bajo de δR, menos imágenes serı́an inicializadas
en el mapa. Por el contrario si se eligiese un valor superior, el
mapa resultante almacenarı́a un mayor número de vistas. Pue-
de observarse en la Figura 8(a) como una vez la cuarta vista es
inicializada no es necesario inicializar ninguna otra, obteniendo
ası́ una representación más compacta. En la Figura 8(b) compa-
ramos la trayectoria estimada con la trayectoria real y con la
odometrı́a. Hay que señalar que este error tiene la misma escala
que la solución del mapa estimado y no ha sido normalizado.
Presentamos el error en la estimación de la trayectoria (lı́nea
punteada) junto a los intervalos 2σ y al error en la odometrı́a
(lı́nea a trazos).

La Figura 9 presenta otro experimento. En este caso, el ro-
bot explora una habitación, recorre un pasillo, entra en una ha-

bitación diferente y vuelve al punto de origen. La distancia to-
tal recorrida es de 45m. La Figura 9(a) presenta la trayecoria
real (punteada), la odometrı́a (a trazos) y la estimación (conti-
nua). La localización de las vistas y su incertidumbre asociada
se indica mediante puntos y elipses de error. En la Figura 9(b)
presentamos el error en la posición para cada paso temporal
con intervalos de 2σ. Puede observarse cómo el error presen-
ta varias oscilaciones a lo largo del recorrido, lo cual se debe
a momentos en los que el robot realiza giros muy pronuncia-
dos para entrar y salir de la habitación, ası́ como para rodearla.
Además, en estos instantes aparecen elementos obstructores y
por tanto disminuye más si cabe la capacidad para visualizar
vistas y obtener medidas de observación precisas. Este hecho
puede comprobarse en la Figura 9(a), donde se observa cómo la
disposición de las vistas del mapa en dichos instantes lleva aso-
ciada una mayor incertidumbre. Pese a todo sigue quedando de
manifiesto que el filtro es capaz de mantener la convergencia en
todo momento. Una vez que el robot vuelve a visualizar vistas
almacenadas anteriormente, se comprueba que estos intervalos
momentáneos de mayor incertidumbre se reducen, obteniendo
un error para la estimación en torno a una decena de centı́metros
respecto al camino real.

Por último, la Figura 10 presenta otro experimento llevado a
cabo en un entorno de dimensiones 32x45m, donde en la Figu-
ra 10(a) se representa la trayecoria real (continua), la odometrı́a
(a trazos) y la estimación (punteada). En este caso la distancia
recorrida es mayor que en los casos anteriores y la compleji-
dad del problema también aumenta debido a la presencia de un
mayor número de obstrucciones. La localización de las vistas y
su incertidumbre asociada se indica mediante puntos y elipses
de error. En la Figura 10(b) presentamos el error en la posición
para cada paso temporal con intervalos de 2σ. Hay que destacar
que los valores de error obtenidos para este caso son ligeramen-
te mayores a causa de la complejidad del entorno. En general,
los elementos obstructores hacen que existan muchos instantes
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Figura 9: La Figura 9(a) presenta los resultados de SLAM con datos reales, para trayectoria real (punteada), estimación (continua) y odometrı́a (trazos). La posición
de las vistas se presenta con elipses de error. La Figura 9(b) presenta el error en cada paso temporal en X, Y y θ de la estimación (punteada) con intervalos de 2σ.

en los cuales las observaciones se llevan a cabo con dificultad.
Por ello la incertidumbre que se genera es mayor. Sin embargo,
pese a esta situación desfavorable, el filtro EKF logra resolver
el problema manteniendo la convergencia en todo momento, y
asegurando un error dentro de los lı́mites esperados.

6. Conclusiones

Hemos presentado un modelo para la resolución del proble-
ma de (SLAM) empleando imágenes omnidireccionales. Pro-
ponemos una representación del entorno que se aleja del con-
cepto de mapa visual tradicional en el campo de SLAM visual.
Habitualmente, el SLAM visual plantea la estimación de la po-
sición 3D de un conjunto de marcas visuales y sus descripto-
res. En contraposición a este modelo, en este trabajo simplifi-
camos el problema a la estimación de la posición y orientación
de un conjunto reducido de imágenes omnidireccionales. Cada
imagen omnidireccional, renombrada como vista, tiene asocia-
do un conjunto de puntos de interés y sus descriptores visuales
que describen el entorno de una forma compacta. Cada una de
las imágenes permite representar un área del entorno, haciendo
posible la localización del robot en las inmediaciones de cada
una de ellas. La aportación fundamental se basa en la posibili-
dad de extraer una transformación entre dos imágenes omnidi-
reccionales en las que existe un conjunto de correspondencias
puntuales. Dicha transformación, formada por una rotación y
una traslación (salvo un factor de escala), nos permite propo-
ner un nuevo modelo de observación y resolver el problema de
SLAM con un algoritmo basado en el EKF. Presentamos resul-
tados obtenidos en entornos simulados que validan el esquema
de SLAM en diferentes condiciones. Además, mostramos la va-
lidez de la propuesta con experimentos reales realizados con un
robot móvil real. Las pruebas experimentales realizadas han de-
mostrado que se puede modelar un entorno mediante un número
reducido de imágenes omnidireccionales, lo que da lugar a un

problema con un menor número de variables a estimar. Al mis-
mo tiempo, los resultados demuestran que este modelo permite
obtener un buen resultado en términos de localización del ro-
bot, ası́ como un mapa mucho más compacto que el obtenido
con un mapa visual tradicional.

English Summary

Construction of a visual model of the environment based
on omnidirectional images

Abstract
This paper deals with the problem of Simultaneous Localiza-
tion and Mapping (SLAM). The solution presented is based on
the utilisation of a set of images to represent the environment. In
this way, the estimation of the map considers the computation
of the position and orientation of a set of omnidirectional views
captured from the environment. The proposed idea sets apart
from the usual representation of a visual map, in which the en-
vironment is represented by a set of three dimensional points
in a common reference system. Each of these points is com-
monly denoted as visual landmark. In the case presented here,
the robot is equipped by a single omnidirectional visual sensor
that allows to extract a number of interest points in the images,
each one described by a visual descriptor. The map building
process can be summed up in the following way: as the robot
traverses the environment, it captures omnidirectional images
and extracts a set of interest points from each one. Next, a set
of correspondences is found between the current image and the
rest of omnidirectional images existing in the map. When the
number of correspondences found is enough, a transformation
is computed, consisting of a rotation and a translation (up to
an unknown scale factor). In the paper we show a method that
allows to build a map while localizing the robot using these
kind of observations. We present results obtained in a simula-
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Figura 10: La Figura 10(a) presenta los resultados de SLAM con datos reales, para trayectoria real (continua), estimación (punteada) y odometrı́a (trazos). La
posición de las vistas se presenta con elipses de error. La Figura 10(b) presenta el error en cada paso temporal en X, Y y θ de la estimación (punteada) y la
odeometrı́a (trazos) con intervalos de 2σ.

ted environment that validate the proposed idea. In addition, we
present experimental results using real data that prove the sui-
tability of the solution.
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based dense maps creation: Comparison of compression techniques with pa-
noramic images. In: 6th International Conference on Informatics in Control,
Automation and Robotics ICINCO. Milan (Italy), pp. 250–255.

Scaramuzza, D., Fraundorfer, F., Siegwart, R., 2009. Real-time monocular vi-
sual odometry for on-road vehicles with 1-point RANSAC. In: Proc. of the
ICRA. Kobe, Japan.

Scaramuzza, D., Martinelli, A., Siegwart, R., 2006. A toolbox for easily cali-
brating omnidirectional cameras. In: Proc. of the IROS. Beijing, China.

Stachniss, C., Grisetti, G., Haehnel, D., Burgard, W., 2004. Improved
Rao-Blackwellized mapping by adaptive sampling and active loop-closure.
In: Proc. of the SOAVE. Ilmenau, Germany.

Stewenius, H., Engels, C., Nister, D., 2006. Recent developments on direct re-
lative orientation. ISPRS Journal of Photogrammetry and Remote Sensing.





A modified stochastic gradient descent algorithm
for view-based SLAM using omnidirectional images

David Valiente ⇑, Arturo Gil, Lorenzo Fernández, Óscar Reinoso
Miguel Hernández University, System Engineering Department, 03202 Elche, Spain

a r t i c l e i n f o

Article history:
Received 25 March 2013
Received in revised form 25 March 2014
Accepted 29 March 2014
Available online 12 April 2014

Keywords:
Mobile robotics
Visual SLAM
Omnidirectional images
SGD

a b s t r a c t

This paper describes an approach to the problem of Simultaneous Localization and
Mapping (SLAM) based on Stochastic Gradient Descent (SGD) and using omnidirectional
images. In the field of mobile robot applications, SGD techniques have never been evalu-
ated with information gathered by visual sensors. This work proposes a SGD algorithm
within a SLAM system which makes use of the beneficial characteristics of a single
omnidirectional camera. The nature of the sensor has led to a modified version of the
standard SGD to adapt it to omnidirectional geometry. Besides, the angular unscaled obser-
vation measurement needs to be considered. This upgraded SGD approach minimizes the
non-linear effects which impair and compromise the convergence of traditional estimators.
Moreover, we suggest a strategy to improve the convergence speed of the SLAM solution,
which inputs several constraints in the SGD algorithm simultaneously, in contrast to
former SGD approaches, which process only constraint independently. In particular, we
focus on an efficient map model, established by a reduced set of image views. We present
a series of experiments obtained with both simulated and real data. We validate the
new SGD approach, compare the efficiency versus a standard SGD and demonstrate the
suitability and the reliability of the approach to support real applications.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the field of mobile robot applications, the problem of SLAM is a crucial factor, due to the need for a complete repre-
sentation of the environment, especially for navigation purposes. The objective of building a map entails considerable com-
plexity, since the map has to be built incrementally, while, the localization of the robot inside it needs to be calculated
simultaneously. Generating a reliable and coherent map is even more challenging and laborious when sensor data is affected
by noise, and this directly impairs the simultaneous estimation of the map and the path followed by the robot.

To date, SLAM approaches have been differentiated according to several factors, such as the way to estimate the repre-
sentation of the map, the main algorithm for computing a solution and the kind of sensor to extract information from the
environment. For instance, several map representations were obtained thanks to the extensive use of laser data range
and sonar [8]. In this area, maps were principally generated following two representation models [16,11], corresponding,
respectively, to 2D occupancy grid maps based on raw laser and 2D landmark-based maps focused on the extraction of
features, described from laser data measurements.
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More recently, the tendency has turned to the use of visual information by means of digital cameras. Many applications
benefit from the use of these sensors, whose characteristics outperform previous sensors such as lasers in terms of the
amount of usable information from the environment for building the map. For instance, the approaches that use two cali-
brated cameras, known as stereo-pairs, in order to extract a set of 3D visual landmarks determined by a visual description
[5]. Other approaches simply exploit a single camera to estimate 3D visual landmarks [2,10]. They initialize the coordinates
of each 3D landmark relying on the inverse depth parametrization, since there exists a scale uncertainty about the distance
to each landmark which cannot be directly retrieved with a single camera. Omnidirectional cameras have also been used
alone [15], and some others have even arranged two omnidirectional images, in order to take the best advantage of the wider
field of view provided by these cameras.

As important as the kind of sensor and the map representation is the estimation algorithm for a SLAM scheme. It defines
the core of the system, as it is responsible for the ultimate solution. Most extensively used are online methods such as EKF
[4], Rao-Blackwellized particle filters [11] and offline algorithms, such as, Stochastic Gradient Descent [7].

The combination of data sensors, map representation and the core of the algorithm therefore determines the final effec-
tiveness of a SLAM which seeks reliability and suitability for realistic applications. Great efforts have been made in this field.
For example, certain approaches [4,5,3,2,14] have concentrated on estimating of the position of a set of 3D visual landmarks
in a main reference system, while, simultaneously, building the map. The main idea lies in the capability of an EKF filter to
converge the estimation to an appropriate solution for the SLAM problem. In this same line of EKF usage, [18] has recently
proposed a distinctive map representation consisting of a reduced set of image views, determined by their position and ori-
entation in the environment. Such a technique establishes an estimation of a state vector which includes the map and the
current localization of the robot at each timestep k. The estimation of the transition between states at k and kþ 1 considers
the wheel’s odometry as initial estimate, but also the observation measurements gathered by sensors.

Generally, EKF methods are troublesome in the presence of non-linear errors as they have difficulties in maintaining the
convergence of the estimation. This situation normally appears in presence of Gaussian errors introduced by the observation
measurement, which usually causes data association problems [12]. A visual observation model, such as the omnidirectional,
is susceptible to introduce non-linearities and is thus responsible for this kind of errors. By contrast, an offline algorithm such
as SGD [1] may deal with this issue caused by non-linearity effects. Similarly, in [20,19,17], parallel approaches are presented
to maintain stability in non-linear contexts.

Regarding the basic goals of this study, we present a new visual SLAM approach based on omnidirectional images and
sustained by a SGD solver algorithm which helps overcome the harmful effects caused by errors. To achieve this, and
depending on the nature of the problem, different aspects have to be taken into consideration so that the research is con-
ducted towards the achievement of new contributions and advantages compared to former applications based on the stan-
dard SGD algorithm [13,7,6,1]. Firstly, a map model has to be adapted to the omnidirectional observation. Along the same
line, the standard SGD has to be redesigned to be able to work with the omnidirectional geometry of the images, but also
considering the nature of the measurement, which lacks scale. This implies that the solution to the problem is not a trivial
one. So, the difference between our approach, which uses a different geometrical environment, and all the previous SGD
applications, which consider data range observations in a Cartesian measurement system, should be noted. Next, to improve
the efficiency of the standard method, in terms of the convergence speed, we propose a modification in the estimation pro-
cedure. The traditional models mentioned above, usually process every odometry and observation measurement (denoted as
constraints) independently at each iteration step. By contrast, with the aim of finding a valid solution quickly, we propose a
strategy based on the simultaneous use of a certain set of information provided by our visual observation measurements.
This proposal might appear to be liable to cause an increase in the required computational resources. Nevertheless, we have
concentrated on preventing this by updating several stages of the SGD’s iterative optimization so as to avoid possible harm-
ful bottleneck handicaps. Therefore, the main expected contributions and advantages of this SLAM approach compared to
traditional approaches might be synthesized as it follows:

� An efficient map model established by a reduced set of omnidirectional images.
� A modified SGD solver algorithm adapted to the omnidirectional geometry which is the basis of the proposed SLAM’s

observation model. Development of the new differential equations related to the observation measurements.
� Improved efficiency of the estimation thanks to the use of simultaneous constraint processing.

The structure of the paper has been divided as it follows: Section 2 depicts the SLAM problem within this framework.
Then, Section 3 describes the general specifications of a SGD algorithm, concentrating on the standard SGD. Section 4 details
the proposed modification of the standard SGD and the main contributions mentioned above. Next, Section 5 provides both
simulated and real data experimental results to validate the model and test its reliability and expected benefits versus
traditional methods. Finally, Section 6 analyzes the results to draw a general conclusion.

2. SLAM

A visual SLAM technique is expected to retrieve a feasible estimation of the position of the robot within a certain envi-
ronment, which also has to be precisely determined by the estimation. In our approach, the map is composed of a set of
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omnidirectional images obtained from different poses in the environment, denoted as views. These views do not represent
any physical landmarks, as they will consist of an omnidirectional image captured at the pose xl ¼ ðxl; yl; hlÞ and a set points
of interest extracted from that image. Such an arrangement, allows us to exploit the capability of an omnidirectional image
to gather a large amount of information in a simple image, due to its large field of view. Thus, an important reduction is
achieved in terms of the number of variables for estimating the solution.

The pose of the mobile robot at time t will be denoted as xv ¼ ðxv ; yv ; hv ÞT . Each view i 2 ½1; . . . ;N� is constituted by its pose
xli ¼ ðxl; yl; hlÞTi , its uncertainty Pli and a set of M interest points pj expressed in image coordinates. Each point is associated
with a visual descriptor dj; j ¼ 1; . . . ;M.

Thus, the augmented state vector is defined as:

�x ¼ xv xl1 xl2 � � � xlN

� �T ð1Þ

where xv ¼ ðxv ; yv ; hvÞT is the pose of the moving vehicle and:

xlN ¼ ðxlN ; ylN ; hlN Þ

is the pose of the N-view that exists in the map.

2.1. Map building

The map building procedure is described by Fig. 1. The exploration task starts navigating the environment at the origin,
denoted as A. At this time, the robot captures an omnidirectional image IA, stored as a view with pose xlA . While the robot
keeps moving towards the first office room, it is able to find correspondences between IA and the current omnidirectional
image, which makes it able to localize itself. Once the robot enters the office room, the appearance of the images varies
significantly, so no matches are found between the current image and image IA. In this case, the robot will initialize a
new view named IB at the current robot’s position, which will be used for localization inside the office room. Finally, the
robot completes the exploration of the environment as it traverses the different areas of the environment, while acquiring
the rest of the necessary views IC ; ID; IE, to compose the final map. The number of views initiated in the map depends directly
on the kind of environment and its visual appearance. In particular, in Fig. 1 it may be also perceived a synthesis of the
localization procedure carried out by the robot, which translates the depicted comparison between IA and IE into a single-
computation process.

2.2. Observation model

In accordance with the view-based representation recently presented, a new observation model has to be formulated. The
versatility of omnidirectional images enables to apply epipolar constraints [9] to extract an observation measurement, which
defines the motion transformation between two poses, as seen in Fig. 1. Actually, these poses represent the positions where
the robot acquired two specific images. To that effect, only two images, with a set of corresponding points between them, are
required to obtain the transformation. The observation measurement may be expressed as:

Fig. 1. Map building procedure. The robot starts the exploration at A by acquiring a view IA . While the robot moves, correspondences are found between IA

and the current image captured at the current robot’s pose. When no correspondences are found, the current image is stored as a new view of the map, for
instance IB at B. The procedure ends when the whole environment is represented.
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where the angle / is the bearing at which the view N is observed and b is the relative orientation between the images. The
view N is represented by xlN ¼ ðxlN ; ylN ; hlN Þ, whereas the pose of the robot is described as xv ¼ ðxv ; yv ; hvÞ. Both measurements
ð/; bÞ are represented in Fig. 1.

3. Standard SGD algorithm

3.1. Specifications

A graph-oriented map is composed by a set of nodes defining the poses traversed by the robot and the landmarks
initialized into the map. The state vector st encodes this representation through a set of variables which are expressed in
the following manner:

st ¼ ðx0; y0; h0Þ; ðx1; y1; h1Þ . . . ðxn; yn; hnÞ½ � ð3Þ

where ðxn; yn; hnÞ are the 2D coordinates and the bearing in a general reference system. A complementary subset of edges
represents the relationships between nodes, by means of either distance measurements generated by the odometry or
observations measurements provided by the on-board sensors. Both measurements are commonly known as constraints
and denoted as dji, where j indicates the observed node, seen from node i. The general objective stated by methods based
on standard SGD approaches [13,7] is to minimize the error likelihood, expressed as:

PjiðsÞ / g exp �1
2
ðfjiðsÞ � djiÞTXjiðfjiðsÞ � djiÞ

� �
ð4Þ

being fjiðsÞ a function dependent on the state st and both nodes j and i. The difference between fjiðsÞ and dji expresses the error
deviation between nodes. Such error term is weighted by the information matrix:

Xji ¼ R�1
ji ð5Þ

where R�1
ji is the associated covariance matrix, which considers the uncertainty of the measurements. The assumption of

logarithmic notation in (4) leads to:

FjiðsÞ / ðfjiðsÞ � djiÞTXjiðfjiðsÞ � djiÞ ¼ rjiðsÞTXjirjiðsÞ ð6Þ

being rjiðsÞ the error determined by fjiðsÞ � djiðsÞ, which shows its condition of residue. Finally, the global problem seeks the
minimization of the objective function which represents the accumulated error:

FðsÞ ¼
X
hj;ii2G

FjiðsÞ ¼
X
hj;ii2G

rjiðsÞTXjirjiðsÞ ð7Þ

where G ¼ fhj1; i1i; hj2; i2i . . .g defines the subset of particular constraints that define the map, either odometry or observation
measurements.

3.2. Estimation

Once the formulation of the problem has been presented, the Stochastich Gradient Descent algorithm must be detailed.
The basic goal is to compute in an iterative manner a estimation to achieve a valid solution for the SLAM problem. The basis
of a SGD method lies in minimizing Eq. (7) through derivative optimization techniques. The estimated state vector is
obtained as:

stþ1 ¼ st þ Ds ð8Þ

where Ds expresses a certain update with respect to st , term which is sequentially generated by means of the constraint
optimization procedure. It is worth noting that, in a general case, this update is calculated independently at each step by
using only a simple constraint, that is to say Dsn ¼ f ðdjiÞ. The general expression for the transition between st and stþ1 has
the following form:

stþ1 ¼ st þ k � H�1JT
jiXjirji ð9Þ
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� k is a learning factor to re-scale the term H�1JT
jiXjirji. Normally, k takes decreasing values following the criteria

k ¼ 1=n, where n is the iteration step. This strategy is intended to reach the final solution quickly using large values
of k. When the solution moves close to the optimum, lower values of k are used, thus preventing the estimation to
oscillate around the final solution.

� H is the Hessian matrix, calculated as JTXJ, and it represents the shape of the error function through a precondition-
ing matrix to scale the variations of Jji. According to [6], H can be computed:

H �
X
hi;ji

JjiXjiJ
T
ji ð10Þ

� Jji is the Jacobian of fjiðsÞ with respect to st ; Jji ¼
@fji
@s . It converts the error deviation into a spatial variation.

� Xji is the information matrix associated to a constraint. Xji ¼ R�1
ji , being Rji the covariance matrix corresponding to

the observation constraints dji.

This scheme updates the estimation by computing the rectification introduced by each constraint at each iteration step
respectively. Despite the learning factor to reduce the weight by which each constraint updates the estimation, the
procedure may lead to an inefficient method to reach a stable solution, as undesired oscillations may occur due to the
stochastic nature of the constraint selection. For this reason, we propose an optimization process which takes into account
several constraints in the same iteration. It might be thought that the same drawbacks could arise with the addition of some
other inconveniences such as undesired time overloads, as a consequence of the simultaneous processing of several con-
straints in the same iteration. However, we have modified some calculations at specific stages of the algorithm in order
to maintain the time requirements and even reduce them. As a result, we achieved improved convergence ratios in terms
of speed. Further details will be provided in the next section.

4. Modified SGD

This section has been intended to explain the main advantages and contributions achieved in this study. The first assump-
tion to consider is the redefined state vector st , which will be treated as a set of incremental variables. The pose incremental
state is defined as:

sinc
t ¼

ðx0; y0; h0Þ

ðdx1; dy1;dh1Þ

..

.

ðdxn;dyn; dhnÞ

2
6666664

3
7777775
¼

ðx0; y0; h0Þ

ðx1 � x0; y1 � y0; h1 � h0Þ

ðx2 � x1; y2 � y1; h2 � h1Þ

..

.

ðxn � xn�1; yn � yn�1; hn � hn�1Þ

2
6666666664

3
7777777775

ð11Þ

where ðdxi; dyi; dhiÞ encode the variation between consecutive poses in coordinates of the global reference system. A global
encoding has the main drawback of not being capable to update more than one node and its adjacent ones per constraint.
Regarding a relative codification of the state, the problem of non-linearities in Jji arises. By contrast, an incremental state vec-
tor allows a single constraint to generate a variation at every pose. In this context, Ds in Eq. (8) affects all poses because the
state vector is differentially encoded.

Note that in this approach we are dealing with a visual observation given by an omnidirectional camera. This makes us to
adapt the equations defined in the previous section to the case of omnidirectional geometry, as the nature of the constraints
are not simply metrical like the odometry constraints. According to (2), given two nodes, the observation measurement
allows us to determine a specific motion transformation between them up to a scale factor. Therefore, the omnidirectional
measurements and the incremental representation require the reformulation of several terms involved in the estimation.
Following this, we detail all the proposed modifications to the terms of the standard SGD, which must be necessarily rede-
fined and recalculated. The complete structure for each derivative is detailed in Appendix A.

� The first modification is referred to fjiðsÞ, differentiating between odometry and visual observation constraints:

f odo
j;i ðsÞ ¼

dxj

dyj

dhj

0
B@

1
CAþ

dxj�1

dyj�1

dhj�1

0
B@

1
CAþ � � � þ

dxi

dyi

dhi

0
B@

1
CA ð12Þ

where ðdxi; dyi; dhiÞ has been defined in (11). And for the case of the visual observation constraint:

f visual
j;i ðsÞ ¼

/

b

� �
¼

arctan dyj�dyi

dxj�dxi

� �
� dhi

dhj � dhi

" #
ð13Þ
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where b and / are directly computed from the observation measurement [18] model, which expresses the relationship of
transformation between two omnidirectional images and the encoded pose of the robot in Eq. (11). Observing Fig. 1 may also
help understand the definition of Eq. (13).
� The second modification considers the recalculation of Jji ¼

@fji

@s , according to the previous reformulation of fjiðsÞ. The
importance of considering the indexes of the corresponding nodes, either j > i or j < i must be noted, as the derivatives
considerably change its form. Furthermore, as seen above, the dimensions of fjiðsÞ are different, something which also has
to be taken into consideration, as the rest of the terms involved in the SGD algorithm have to be resized.

Jj;i ¼
@fj;iðsÞ
@s

¼ @fj;ið/Þ
@s ;

@fj;iðbÞ
@s

h i
ð14Þ

� Finally, we suggest the estimation of the new state stþ1 by considering several constraints at the same time. We seek
greater relevance of the weight of the constraints when searching for the optimal minimum estimation. Obviously, com-
puting more than one constraint at each step leads to a certain overload. By contrast, with this approach, we reduce the
expensive estimation of H. In a general case, H is computed whenever a single constraint is introduced, that is to say, as
many times as there are constraints. In our case we compute H only once for each subset of constraints introduced simul-
taneously into the system. Consequently we obtain H in a more efficient manner, thus compensating for possible time
overloads. The following example depicts the practical meaning of this concept.

Require: dji 2 C 8 j; i, where C ¼ ½c1; c2; . . . ; cb� and cb= {d11; d12, . . .}
Each cb represents different subset of constraints dji simultaneously processed by the robot.
t: iteration step
�: threshold for FðsÞ
while FðsÞ > � do

t ¼ t þ 1
for q = 1:b do

Extract all dji in cq randomly
Computing the following terms:
fjiðsÞ ¼ ½f odo

ji ðsÞ; f visual
ji ðsÞ�; Jji;H;Xji, and rji

Dsq ¼ k � H�1JT
jiXjirji

sq ¼ sq�1 þ Dsq

end for
st ¼ sq þ st�1

end while
return st ¼ ½ðx0; y0; h0Þ; ðdx1; dy1; dh1Þ; . . . ; ðdxn; dyn; dhnÞ]

5. Results

We have carried out three different sets of experiments. Firstly, in Section 5.1 we show SLAM results obtained from sim-
ulated data to confirm the validity of the new SLAM approach supported by SGD. We add a comparison of results obtained by
our approach with a standard SGD algorithm, like those used in applications like [13,7,6,1]. Finally, in Section 5.2 we present
SLAM results using real data acquired by the robot, which have also been compared with a traditional SGD estimator. The
equipment consists of a Pioneer P3-AT indoor robot with a firewire 1280 � 960 camera and a hyperbolic mirror. The optical
axis of the camera is installed approximately perpendicular to the ground plane, as described in Fig. 1. Consequently, a rota-
tion of the robot corresponds to a rotation of the image with respect to its central point. In addition, we used a SICK LMS
range finder in order to compute a ground truth using the method presented in [16].

5.1. SLAM results with simulated data

Confirmation of the convergence of an SLAM algorithm is crucial when a new solver proposal, such as SGD, is introduced.
Furthermore, other considerations require evaluation, since the performance of the new method has to deal with a visual
observation model, which is a common source of non-linearities.

5.1.1. Experiment 1
Fig. 2(a) presents a random simulation environment of 20 � 20 m, where the robot traverses approximately 300 m. The

real path followed by the robot is shown with a continuous line, the odometry is represented with a dash-dotted line, and the
estimated solution is shown with a dashed line. A set of views have been placed randomly along the trajectory. The arrange-
ment of these views is controlled by an appearance ratio between images, to assure a realistic placement of each view. A grid
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of circles represents the possible poses where the robot might move to and gather a new view. The number of iterations of
the SGD algorithm is 25. As it can be observed in Fig. 2(a), starting from a noisy odometry estimate, the final estimation has
been rectified following the tendency of the real path. Fig. 2(b) shows the decreasing evolution of the accumulated error
probability PjiðsÞ in (4), expressed in logarithmic terms, versus the number of iterations. The reliability of this new approach
to work with omnidirectional observations can be confirmed, as it provides a proper solution.

5.1.2. Comparison of results
The following experiments have been conducted in order to compare our approach with the traditional standard SGD in

terms of efficiency. We suggest a strategy to introduce several constraints simultaneously into the SGD algorithm. The main
goal is to improve the speed by which the method iteratively optimizes until a final solution is achieved. In this sense, we
have performed a SLAM experiment, where the robot traverses 50 m through a given environment. Again, the number of
views in the map has been randomly placed, by following the same policy explained above. The same experiment has been
repeated 200 times using the same series of odometry inputs, in order to provide mean values that express consistent results.
The two approaches, ours and the standard SGD algorithm, have been compared. We have modified the number of views N
which the robot is able to observe from each pose. The observation range r of the robot has also been varied. Fig. 3 presents
results for the accumulated error probability, FðsÞ, being the objective function which the SGD algorithm seeks to minimize.
Fig. 3 compares the solution obtained by our approach, drawn with a continuous line, and the solution obtained by the
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Fig. 2. (a) presents a map obtained by the proposed approach in an environment of 20 times 20 m. The continuous line shows the real path, the dash-dotted
line the odometry and the dashed line the estimated solution. (b) Shows the accumulated error probability FðsÞ along the number of iterations.
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Fig. 3. (a) and (b) Show the accumulated error probability FðsÞ versus time in a SLAM experiment, when the number of views observed by the robot is N ¼ 2
and N ¼ 8 respectively. The continuous lines show the results provided by the proposed solution, while the dashed lines show results provided by the
standard SGD solution. Different lengths for the observation range are defined: rmin; rint ; rmax .
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standard SGD algorithm, drawn with a dashed line. Fig. 3(a) and (b) represent FðsÞ when the robot observes N = 2 and N = 8
views, respectively. As we are looking for a fair comparison, the x-axis, originally representing iteration steps, has been trans-
formed into a normalized time variable to generate a trustworthy comparison between the two schemes. Please note that the
time spent at each iteration step differs from one method to another due to their different convergence speeds. Therefore, in
terms of efficiency, it can be shown that the solution provided by our approach outperforms the solution given by a standard
SGD in every case, as the decreasing slope of FðsÞ is clearly steeper. Hence a quicker convergence speed demonstrating a more
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Fig. 4. (a) Shows the SLAM results in an office-like environment of 20 times 50 m. The continuous line shows the real path, the dash-dotted line the
odometry and the dashed line the estimated solution. (b) Compares the accumulated error probability FðsÞ provided by the approach presented in a
continuous line and the FðsÞ provided by the standard SGD in a dashed line.
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Fig. 5. (a) Shows SLAM results in a real office environment of 15 times 15 m. The continuous line shows the real path, the dash-dotted line the odometry
and the dashed line the estimated solution. (b) Shows the accumulated error probability FðsÞ along the number of iterations for our approach and the
standard SGD respectively.
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efficient method. This is the main advantage achieved by means of combining several constraints simultaneously at each
iteration step, instead of using only one as a traditional SGD used to. The relevance of the observation range of the vehicle
r is also notable. As seen in Fig. 3(a) and (b), longer values of r provide a better convergence, compared to shorter r. As the
omnidirectional observation is angular, and lacks scale, views seen by the robot at longer distances in the map allow
the computation of a more feasible localization. In addition, when the robot is able to observe a higher number of views,
the optimum value for FðsÞ is evidently lower, and is reached quickly, as there are more constraints to compute.

5.1.3. Experiment 2
The purpose of this next experiment is to confirm the favorable results shown in Section 5.1, now dealing with an office-

like environment, since it is desirable to emulate a more realistic situation, with obstructions, obstacles, etc. Fig. 4(a)
describes the environment of 20 � 50 m which the robot moves through. The continuous line represents the real path fol-
lowed by the robot, the dash-dotted line shows the odometry, whereas the estimated solution with our approach is shown
by a dashed line. It may be noticed that in only 15 iterations of the algorithm the robot is able to estimate a quiet reliable
solution, whose topology follows the real path. On the other hand, the odometry error grows out of bounds. Fig. 4(b) shows a

Fig. 6. (a) and (b) show SLAM results in a real office environment of 20 times 50 m, with N = 5 and N ¼ 30 views observed respectively. The continuous line
shows the real path, the dash-dotted line the odometry and the dashed line the estimated solution.

334 D. Valiente et al. / Information Sciences 279 (2014) 326–337



comparison of the evolution of the accumulated error FðsÞ along the time for both our SGD approach and the standard SGD.
Once again, the improved capability in quickly reaching a solution is shown, demonstrating better efficiency. In this partic-
ular case, it is worth mentioning that our approach requires a computational cost approximately six times lower than that
for a standard SGD to reach an optimum value.

5.2. SLAM results with real data

Having presented the simulation results validating the proposed approach, we carried out a set of experiments with real
data. We were seeking for confirmation of the suitability and reliability of the approach in a realistic application such as
exploration tasks. Furthermore, we also show comparisons with the standard SGD.

5.2.1. Experiment 3
The first experiment analyzes the behavior of the approach when dealing with one of the most adverse situations, that is

to say, when the robot constantly turns around as shown in Fig. 5(a). The real path is shown with a continuous line, the
odometry with a dash-dotted line and the estimated solution with a dashed line. This case is seen as one of the worst, as
the frequent turns introduce significant noise into the input associated with the odometry. Nevertheless, it should be noted
that the estimation converges to a proper solution, which is practically overlapped with the real path, whereas the odometry
estimation differs considerably. Fig. 5(b) shows the decreasing tendency of the accumulated error probability FðsÞ along the
number of iterations for both our approach and the standard SGD. Having tested the validity of the main benefits with the
previous experiments, the improved efficiency of our approach can now be confirmed in terms of the speed of convergence
compared to the standard SGD method. Examinating Fig. 5(b), it can be seen that this approach reaches optimum values for
FðsÞ in less time than the standard SGD. The main advantage in terms of efficiency is therefore shown.

5.2.2. Experiment 4
This last experiment aims to support the beneficial results presented above, which have been compared to traditional

SGD approaches. In this case we conducted an experiment in a large environment. Here, the robot moves through a real office
of 20 � 50 m. Again, there are obstacles and obstructions such as doors, walls and office furniture. As seen in Fig. 6 the robot
explores the whole environment describing a trajectory of approximately 280m. Moreover, maps with different number of
views N have been constructed to study its relevance to the estimation of the solution. Fig. 6(a) and (b) show different results
when the robot observes N = 5 and N ¼ 30 respectively. The real path is drawn with a continuous line, odometry with a dash-
dotted line and the estimated solution with a dashed line. Some real views stored in the map have been indicated. Fig. 7
shows the accumulated error probability FðsÞ for both experiments, expressing it with continuous line for N ¼ 5 views
and with dashed line for N ¼ 30 views. In addition, to demonstrate the improved efficiency of the method, we compare
the values of FðsÞ provided by this approach, in blue, versus that obtained by a standard SGD, in red. In accordance to the
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Fig. 7. Accumulated error probability FðsÞ in a real SLAM experiment versus time. Results obtained for the map showed in Fig. 6(a) with N ¼ 5 views, are
compared using continuous lines: the continuous blue line represents the proposed approach while the continuous red line represents the standard SGD.
Results obtained for the map shown in Fig. 6(b) with N ¼ 30 views are compared using dashed lines: the dashed blue line represents the proposed approach
whereas the dashed red line represents the standard SGD.
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specific topology of the environment, it is confirmed that the larger the number of views N, the more accurate the estimation.
Since the robot is able to observe more views, the rectification of the estimation is ensured by a higher number of constraints.
Moreover, our approach still reveals the main favorable features compared to the standard SGD, regardless of the value of N.
Along the same lines as the previous experiment, the faster convergence speed is proved by observing Fig. 7, where lower
optimum values for FðsÞ are confirmed in considerably less time. This fact shows the greater efficiency of this proposal com-
pared to former SGD techniques.

6. Conclusions

This work has proposed an approach to the visual SLAM problem by introducing a SGD algorithm adapted to omnidirec-
tional observations. The assumption of SGD has been aimed at reducing instabilities and harmful effects which compromise
the convergence of the most extended SLAM algorithms such as EKFs. These erroneous effects are mainly consequences of
the visual nature of the observation, which is non-linear, and particularly intensified on omnidirectional images. We present
a visual SLAM approach which computes a map consisting of a reduced set of omnidirectional views. A single computation of
two views allows us to easily retrieve a motion transformation between the poses where the robot captured the views. The
standard SGD algorithm has been modified to integrate an unscaled observation model. We propose a more efficient SGD
model, which suggests a new strategy designed to exploit the information provided by several constraints simultaneously into
the same SGD iteration. We have presented SLAM results with simulated data which validate the combination of SGD with
omnidirectional images proposed by this new approach. In addition, we have established a comparison between the results
obtained by our approach and those obtained by a standard SGD algorithm. Finally, SLAM results with real data have been pre-
sented so as to demonstrate the suitability of the approach and also its efficiency compared to the traditional SGD algorithm.
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Appendix A. SGD equations adapted to omnidirectional observations

Jj;i ¼
@fj;iðsÞ
@s

¼ @fj;ið/Þ
@s ;

@fj;iðbÞ
@s

h i
ðA:1Þ

� j > i

– k > i

@fj;ið/Þ
@s

¼

@fj;ið/Þ
@dxk
¼ �

Pj

k¼iþ1
dyk

q ¼ a

@fj;ið/Þ
@dyk
¼
Pj

k¼iþ1
dxk

q ¼ b
@fj;ið/Þ
@dhk
¼ 0

8>>>>><
>>>>>:

ðA:2Þ

@fj;iðbÞ
@s

¼

@fj;iðbÞ
@dxk
¼ 0

@fj;iðbÞ
@dyk
¼ 0

@fj;iðbÞ
@dhk
¼ 1

8>>><
>>>:

ðA:3Þ

– k < i

@fj;ið/Þ
@s

¼

@fj;ið/Þ
@dxk
¼ 0

@fj;ið/Þ
@dyk
¼ 0

@fj;ið/Þ
@dhk
¼ �1

8>>><
>>>:

ðA:4Þ

@fj;iðbÞ
@s

¼

@fj;iðbÞ
@dxk
¼ 0

@fj;iðbÞ
@dyk
¼ 0

@fj;iðbÞ
@dhk
¼ 0

8>>><
>>>:

ðA:5Þ

Jj;i ¼
@fj;iðsÞ
@s

¼
0 0 �1 . . . a b 0 . . .

0 0 0 . . . 0 0 1 . . .

� 	
ðA:6Þ

336 D. Valiente et al. / Information Sciences 279 (2014) 326–337



� j < i

– k > i

@fj;ið/Þ
@s

¼

@fj;ið/Þ
@dxk
¼ �

Pj

k¼iþ1
dyk

q ¼ a

@fj;ið/Þ
@dyk
¼
Pj

k¼iþ1
dxk

q ¼ b
@fj;ið/Þ
@dhk
¼ �1

8>>>>><
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@fj;iðbÞ
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@dxk
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a b s t r a c t

The problem of Simultaneous Localization and Mapping (SLAM) is essential in mobile robotics. The
obtention of a feasible map of the environment poses a complex challenge, since the presence of noise
arises as a major problem which may gravely affect the estimated solution. Consequently, a SLAM
algorithm has to cope with this issue but also with the data association problem. The Extended Kalman
Filter (EKF) is one of the most traditionally implemented algorithms in visual SLAM. It linearizes the
movement and the observation model to provide an effective online estimation. This solution is highly
sensitive to non-linear observation models as it is the omnidirectional visual model. The Stochastic
Gradient Descent (SGD) emerges in this work as an offline alternative to minimize the non-linear effects
which deteriorate and compromise the convergence of traditional estimators. This paper compares
both methods applied to the same approach: a navigation robot supported by an efficient map model,
established by a reduced set of omnidirectional image views.We present a series of real data experiments
to assess the behavior and effectiveness of both methods in terms of accuracy, robustness against errors
and speed of convergence.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The solution of the SLAM problem is vital for most applications
in the field of mobile robotics, for example in navigation tasks.
A reliable map representation of the environment has to be built
dynamically, in an incremental manner, meanwhile the mobile
vehicle requires an appropriated localization inside it, which has
to be calculated simultaneously. This fact poses a challenge for the
SLAM techniques, since this process involves a notable complexity.
The appearance of noise arises as a severe problem, which highly
aggravates the achievement of a valid estimation to the problem.

Different SLAM approaches may be classified according to
aspects such as the representation of themap, the solver algorithm

⇤ Corresponding authors. Tel.: +34 96 665 9005; fax: +34 96 665 8979.
E-mail addresses: dvaliente@umh.es (D. Valiente), arturo.gil@umh.es (A. Gil),

l.fernandez@umh.es (L. Fernández), o.reinoso@umh.es (Ó. Reinoso).

to compute a solution and the kind of sensor which gathers
information of the environment. For instance, the utilization of
a laser range sensor [1] has been extensively applied to the
obtention of map representations. In this area, two kinds of map
representations were principally generated: 2D occupancy grid
maps [2] based on raw laser, and 2D landmark-based maps [3]
focused on the extraction of features, whichwere described thanks
to laser data measurements. An interesting comparison of both
representations is provided in [4].

Nowadays, the emergence of visual sensors has made the
tendency to turn into the utilization of digital cameras as the
main sensor to gather information. A huge number of applications
benefit from the use of these sensors, whose characteristics
outperform preceding sensors such as laser, in the sense of the
amount of available information. In contrast to laser data sensors,
vision sensors provide a wide amount of information of the scene,
being as well less expensive, lighter and more efficient in terms
of consumption at the price of needing a computational cost to
obtain profitable information to build the map. The extraction

0921-8890/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.robot.2013.11.009
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of significant feature points has been a procedure widely used
in order to encode the visual information. Diverse arrangements
are commonly known by their configuration in reference to the
number of cameras they consist of. For instance, approaches
which utilize two calibrated cameras, known as stereo-pair, in
order to extract a set of 3D visual landmarks determined by a
visual description [5]. Other approaches simply exploit a single
camera to estimate 3D visual landmarks [6,7]. They initialize the
coordinates of each 3D landmark by relying on an inverse depth
parametrization, since there exists a scale uncertainty on the
distance to each landmark, which cannot be directly calculated
by using only a single image. Omnidirectional cameras have also
been used solely [8], and even some others have arranged two
omnidirectional images [9], following the line stated by stereo-
based, but pursuing themajor advantage associatedwith thewider
field of view provided by omnidirectional cameras.

The estimator algorithm for a SLAM scheme has to be consid-
ered as important as the kind of sensor and the map representa-
tion. It represents the core of the system, since it is responsible
for the ultimate solution. Amongst the most widely used online
methods deserving to be highlighted are the EKF [10] and the
Rao-Blackwellized particle filters [3,11]. Regarding the offline al-
gorithms, one of the most effective is SGD [12].

Therefore, the correct balance in the combination of data
sensors, map representation and kind of algorithm, eventually
determines the effectiveness of a SLAM approach which pursues
reliability and suitability for realistic applications. Great efforts
have been made in this field. For example, certain approaches
[10,5,13,6,14] have concentrated on the estimation of the position
of a set of 3D visual landmarks in a main reference system,
while dealing with the obtention of the map simultaneously. Their
principle of working lays on the capability of an EKF filter to
converge the estimation to an appropriate solution for the SLAM
problem. In [15], an EKF algorithm also supports an approach
which proposes a distinctive map representation, consisting of
a reduced set of image views. These views are determined by
their position and orientation in the environment. Such technique
establishes an estimation of a state vector which includes the map
and the current localization of the robot at each timestep.

The methods based on EKF are generally liable to become
troublesome when dealing with external errors. This issue is
directly deduced from the linearization of variables carried out
by the EKF. In this sense, such difficulties compromise the proper
convergence of the estimation. This situation normally appears
in presence of gaussian noise introduced by the observation
measurement, fact that usually causes injurious data association
problems [16]. A visual observation model as in the case of the
omnidirectional model, is susceptible to introduce non-linearities
and thus it is responsible for those kind of errors. On the contrary,
an offline algorithm such as SGD [17] provides more robustness to
face this issue. It isworthmentioning that the vanilla SGDapproach
has been modified in this work to deal with omnidirectional
geometry as well as with the associated observation model.
Traditionally, every odometry and observation measurements are
processed in an independent manner. Nevertheless, with the aim
of finding a valid solution quickly, we have designed a strategy
based on the simultaneous usage of a certain set of observation
measurements. This proposal might seem to be likely to cause an
increase of the required computational resources. However, we
have concentrated on the prevention of such effect by updating
several stages of the SGD’s iterative optimization. According to this,
some amendments have been performed so as to accomplish the
avoidance of possible harmful bottleneck handicaps.

Hence, the main goal of this paper is to provide with results
which help analyze the behavior of both EKF and SGD applied to
a view-based SLAM approach. As it can be inferred, the solution’s

convergence is not trivial with EKF, neither with SGD, especially
when the nature of the observation measurement is up to a
scale factor. The results extracted from the experiments are
intended to assess the capability of both methods to maintain
a feasible estimation under different conditions. Estimation
accuracy, robustness and convergence of the estimation and speed
of convergence will be the most important terms to evaluate.

The structure of the paper has been divided as it follows:
Section 2 introduces the most important aspects of the visual
SLAM approach proposed here. The EKF principles are detailed in
Section 3. Then, Section 4 concentrates on the SGD’s specifications.
Next, Section 5 provides a series of experiments in order to extract
real data results. Finally, Section 6 pursues the analysis of the
results and the discussion.

2. SLAM

The main purpose of a visual SLAM scheme is to retrieve a
reliable representation of the environment explored by the robot,
as well as the position of this vehicle. In this approach, the map
of the environment is defined by a set of omnidirectional images
acquired from different poses of the robot along the environment,
denoted as views. These views do not express information about
any physical landmarks as it is traditionally in the field of vision-
based SLAM. By contrast, a viewconsists of a single omnidirectional
image captured at a certain pose of the robot xl = (xl, yl, ✓l) and a
set of interest points extracted from that image. In accordancewith
the large field of view provided by omnidirectional images, such
arrangement allows us to exploit this capability to gather a large
amount of information of the scene in a single image. Thus, a highly
notable reduction in terms of number of variables to estimate the
solution is achieved.

The position of the mobile robot is denoted as:

xv = (xv, yv, ✓v)
T . (1)

Each view nwith n 2 [1, . . . ,N] is constituted by its pose:

xln = (xl, yl, ✓l)Tn (2)

together with its uncertainty Pln and a set of M interest points pj,
expressed in image coordinates. Each point is associated with a
visual descriptor dj, j = 1, . . . ,M .

Therefore, these are the variables which compose the aug-
mented state vector:

x̄ = ⇥
xv xl1 xl2 · · · xlN

⇤T
. (3)

2.1. Map building

The process of map building may be clearly understood
by inspecting an example in Fig. 1. It shows the exploration
procedure carried out by a robot, which starts its navigation of
the environment at the origin A. At this moment, capturing an
omnidirectional image IA is required to determine the first view
of the map. This view is associated with the pose xlA and it encodes
the relevant information of the local area around this pose. Then,
the robot moves towards the first office room. Assuming that the
robot does not find any major obstruction, it will be capable of
extracting correspondences between IA and the omnidirectional
image referred to the pose where it currently moves through. This
procedure makes it able to localize itself. Once the robot enters in
the office room, the appearance of the images vary significantly,
thus, no matches are found between the current image and image
IA. In this case, the robot will initialize a new view into the map
IB at the current robot position xlB . Now, this view will facilitate
the localization of the vehicle inside this office room. Finally, the
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Fig. 1. Map building process. Origin is set at A, where a first view IA is initiated into the map. While the robot traverses the environment, correspondences may be found
between IA and the current image captured at the current robot’s pose. In case that no correspondences are found, a new view is initiated as the current image, for instance
IB at B. The procedure finalizes when the entire environment is represented.

robot concludes the exploration of the environment by successfully
achieving a well-defined trajectory and a map representation of
the different areas. As it may be seen, it has been necessary to
acquire a set of views IC , ID, IE to complete the finalmap. The size of
themap in terms of the number of views initiated, directly depends
on the specific appearance of the environment. Fig. 1 also depicts
how the robot accomplishes the computation of its localization,
by which it eventually obtains two relative angles thanks to the
processing of the information provided by IA and IE .

The relative appearance between images is determined by a
specific ratio, which it has been experimentally defined as:

A = k
c

p1 + p2
(4)

where p1 and p2 are the interest points detected on each image and
c are the corresponding points found between them. The value of
k has also been experimentally determined according to the visual
appearance of the environment. The ratio A represents a measure
of similarity and it is the factor which ease the robot to decide
whether to initialize a new view in themap. In particular, the robot
will initialize a new view whenever the ratio A drops a certain
threshold.

2.2. Data association

The data association problem is posed in the following way:
given a set of observations zt = [zt1 , . . . , ztB ] at each t , the views
which generate each observation have to be discerned. In the
approach presented here, the data association process is tackled
through the computation of the appearance ratio A. First, we select
a subset of candidate views from the map, based on the euclidean
distance between the current pose of the robot and the position of
each candidate, Dn = p

(xv � xln)T (xv � xln). The maximum ob-
servation range of the robot is established as the maximum dis-
tance at which any view can be observed at each t . Thenwe extract
corresponding points between the image acquired at the current
pose of the robot and the rest of the candidate views. This allows
to find the view which provides the maximum appearance ratio A,
defined in (4), which will eventually be chosen as the data associa-
tion. The viewwithmaximum A reveals the highest similarity with

the current image. However, if none of the candidate views provide
a value forAhigher than a predefined threshold, thiswillmean that
the appearance of the current image of the robot differs substan-
tially from the set of candidate views. Therefore itwill be necessary
to initialize a newview into themap at the current robot’s position.

2.3. Observation model

In consequence with the view-based representation, the
formulation of a new observation model is required. The intention
is to retrieve a motion transformation between two poses. As
observed in Fig. 1 a comparison involving two images provides
a motion transformation between two poses. In fact these poses
represent the positions where the robot acquired these two
specific images. To that effect, only two images with a set of
corresponding points between them are required to obtain the
transformation. So that the observation measurement may be
expressed as:

zt =
✓

�
�

◆
=
0

@arctan
✓
yln � yv

xln � xv

◆
� ✓v

✓ln � ✓v

1

A (5)

where � and � are the relative angles which express the bearing
and orientation at which the view i is observed. Please notice that
the structure of the view i follows (2),whereas the pose of the robot
is described in (1). Both measurements (�, �) are shown in Fig. 1.
Please note that the feature point detector chosen is SURF [18] due
to its success and robustness when working with omnidirectional
images [19].

3. EKF

The EKF [20] is the first algorithm which has been considered
in this work to be applied to the case of visual SLAM with the
intention of generating a valid estimation for the problem.

The basis of this filter lays on the estimation of the augmented
state vector which is constantly updated in real time. In this
framework of a view-based representation, the variables to
estimate are themap itself, consisting of views and their poses, and
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the pose of the robot inside it. Hence the state vector defined in (3)
can be adapted to introduce t:

x̄(t) = [xv, xl1 , xl2 , · · · , xlN ]T . (6)

Once the state vector is defined, the transformation relation
between x̄(t) and x̄(t + 1) is:

x̄(t + 1) = F(t)x̄(t) + u(t + 1) + v(t + 1) (7)

where F(t) contains the information pertinent to the transition
between states, u(t + 1) is the vector related to the movement
generated by the odometry of the wheels of the robot, and v(t +1)
represents the noise introduced in the system, which has gaussian
uncorrelated nature.

Similarly, a linear relation may be defined so as to connect the
observation measurement zi(t) with the current state vector:

zi(t) = Hi(t)x̄(t) + wi(t) (8)

where Hi(t) encodes the relation between x̄(t) and zi(t). Here,
wi(t) represents the randomnoise generated by the sensors, which
is gaussian and with covariance R(t).

Then, the filter’s procedure has to be divided into three
fundamental stages well differentiated. Firstly, a prediction of the
state x̂(t) is carried out, and based on it, a prediction for the
observation measurement ẑi(t) is also proposed in the following
terms:

x̂(t + 1|t) = F(t)x̂(t|t) + u(t) (9)

ẑi(t + 1|t) = Hi(t)x̂(t + 1|t) (10)

P(t + 1|t) = F(t)P(t|t)FT (t) + Q (t) (11)

where P(t|t) and P(t + 1|t) are the covariance matrices which
represent the uncertainty of the estimation at instants t and t + 1
respectively.

The second stage performs the real observation zi(t) at the
current instant t , of a specific view i of themap. Now the concept of
innovation has to be introduced to explain the deviation between
the prior prediction ẑi(t) and the current measurement zi(t):

vi(t + 1) = zi(t + 1) � ẑi(t + 1|t) (12)

Si(t + 1) = Hi(t)P(t + 1|t)HT
i (t) + Ri(t + 1) (13)

where Si(t + 1) represents the innovation’s covariance.
Finally, the third stage takes into account the refinement of the

estimation obtained during the first stage, seen as an updating
step. The value of the innovation is significantly relevant in the
computation of the final solution provided by the filter. This
solution estimation at instant t + 1, is finally obtained as:

x̂(t + 1|t + 1) = x̂(t + 1|t) + Ki(t + 1)vi(t + 1) (14)

P(t + 1|t + 1) = P(t + 1|t) � Ki(t + 1)Si(t + 1)KT
i (t + 1) (15)

where in this case Ki(t + 1) plays a role of weighting, and
corresponds to the gain of the EKF. It is calculated in the following
manner:

Ki(t + 1) = P(t + 1|t)HT
i (t)S�1

i (t + 1). (16)

It is worth mentioning that the matrices referred to the noise’s
covariance Q (t) y R(t) have to be initialized. Q (t) is established by
means of the noise parameters which characterize the odometry
of the wheels of the vehicle. On the other hand, R(t) is determined
by experimental accuracy thresholds associated with the visual
sensor. The odometry u(t) is required as an initial seed for the
prediction obtention, together with the previous state, as deduced
from (9). The uncertainty matrix of the map, P(t), considers the
noise introduced by the odometry in the form presented in (11),
and the noise introduced by the visual sensor when carrying out
an observation measurement, as detailed in (13) and (15).

3.1. Correspondence of interest points

With the aim of obtaining a set of feasible correspondences be-
tween two views, some restrictions have to be taken into account.
Considering the use of epipolar constraints is generally agreed to
delimit the search for correspondences [21]. The same point de-
tected in a first camera reference system, denoted as p = [x, y, z]T ,
may be expressed as p0 = [x0, y0, z 0]T in the second camera ref-
erence system. Then, the epipolar condition is used to state the
relationship between both 3D points p and p0 seen from different
views.

p0T Ep = 0 (17)

where the matrix E is the essential matrix and it can be computed
from a set of corresponding points in two images.

E =
" 0 0 sin(�)

0 0 � cos(�)
sin(� � �) cos(� � �) 0

#

(18)

being � and � the relative angles that determine a planar motion
transformation between two different views, as shown in Fig. 1
and (5).

The avoidance of false correspondences has been studied
extensively so as to mitigate bad effects on the final estimation
for the SLAM problem. Techniques such as RANSAC and Histogram
voting have been widely used, and mainly applied to visual
odometry approaches [21]. Together with the epipolar constraint
(17), they reveal good results in the achievement of false positive
rejection. In such context of visual odometry, consecutive images
are close enough to disregard high errors in the pose from where
imageswere taken, so that the epipolar constraint is highly likely to
be satisfied. Nevertheless, concentrating on the framework of our
SLAM problem, the accumulative uncertainties are substantially
higher, either in the pose of the robot or in the pose of the
views which compose the map. This fact requires to define a
reliable strategy to accomplish with a correct data association. We
rely on the information provided by the predicted state vector
extracted from the Kalman filter, by which we are able to obtain
a predicted observation measurement ẑt , as stated in (5). Then it is
also necessary to consider the current map uncertainties so as to
deal with a realistic search for valid corresponding points between
images. The map uncertainties are propagated in accordance with
(17) by introducing a dynamic threshold �. In an idealistic case,
the epipolar constraint may equal a fixed threshold, implying that
the epipolar curve defined between images always presents a little
static deviation. On the contrary, a realistic SLAM approach, should
consider that this threshold depends on the existing error on the
map, which dynamically varies at each step of the SLAM algorithm.
Since this error is correlated with the error on ẑt , we rename � as
�(ẑt). In addition, it has to be noted that (18) is defined up to a scale
factor, which is another reason to keep �(ẑt) as a variable value.
Therefore, given two corresponding points between images, they
must satisfy:

p0T Êp < �(ẑt). (19)

This approach not only mitigates the undesired harmful effects
associated with false positives, but also simplifies the search for
corresponding points between images as it restricts the areawhere
correspondences are expected. The procedure is depicted in Fig. 2,
where a detected point P(x, y, z) is assumed, and it is represented
in the first image reference systemby a normalized vector Ep1 due to
the unknown scale. To deal with this scale ambiguity, we suggest a
point distribution to generate a set ofmulti-scale points�i Ep1, being
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Fig. 2. Given a detected point Ep1 in the first image reference system, a point distribution is generated to obtain a set of multi-scale points �i Ep1. By using the Kalman
prediction, they can be transformed into Eq0

i in the second image reference system by means of R ⇠ N(�̂, �� ), T ⇠ N(�̂, ��) and ⇢̂. Finally Eq0
i are projected into the image

plane to determine a restricted area where correspondences have to be found. Circled points represent the projection of the normal point distribution for the multi-scale
points that determine this area.

representative for the lack of scale in Ep1. This distribution considers
a valid range for �i according to the predicted ⇢̂. Please note that
the error of the current estimation of themap has to be propagated
along the procedure. To that end, we look back to the Kalman filter
theory, where the innovation is defined as the difference between
the predicted ẑt and the real zt observationmeasurement as stated
in (12), and the covariance of the innovation defined in (13). So that
Si(t + 1) presents the following structure:

Si(t + 1) =

��

2 ���

��� ��
2

�
. (20)

As the predicted Ê can be decomposed in a rotation R̂ and a
translation T̂ , we can transform the distribution �i Ep1 into the sec-
ond image reference system, obtaining Eq0

i . The introduction of (20)
allows to propagate the error, and thus it redefines a transfor-
mation between images through the normal distributions R ⇠
N(�̂, ��) and T ⇠ N(�̂, ��). Therefore Eq0

i is a gaussian distribu-
tion correlated with the current map uncertainty. Once obtained
Eq0
i , they are projected into the image plane of the second image,

seen as circled points in Fig. 2. This projection of the normal multi-
scale distribution determines the predicted area which is drawn
with a continuous curve line on the omnidirectional image. This
area establishes the specific image pixels where correspondences
for Ep1 must be searched for. The shape of this area depends on the
error of the prediction, which is directly correlated with the cur-
rent uncertainty of the current map estimation. Dash lines rep-
resent the possible candidate points located inside the predicted
area. Hence the problem of matching is simplified to the search for
the correct corresponding points for Epi amongst those candidates
inside a restricted area, instead of a global search along the whole
image.

4. SGD

4.1. Structure

The SGD algorithm has been the second method considered
in this work to be applied to the case of visual SLAM and it is
responsible for generating a feasible estimation for the problem.

In this case, the problem is dealt with a graph-oriented map,
which contains a set of nodes to define the poses traversed by
the robot and the views initialized into the map. It is considered
as a maximum-likelihood estimator, and it seeks a least squares
minimization [22]. The state vector st encodes this representation
through a set of variables which are expressed in the following
manner:

st = ⇥
(x0, y0, ✓0), (x1, y1, ✓1) · · · (xn, yn, ✓n)⇤ (21)

being (xn, yn, ✓n) the 2D position and orientation of each node
in a general reference system. Despite the fact that this kind of
representation seems the most natural and intuitive, such global
encoding has the main drawback of not being capable to update
more than one node and its adjacents per constraint. This aspect
has led to a general agreement in the use of the incremental
representation:

sinct =

2

664

(x0, y0, ✓0)
(dx1, dy1, d✓1)

...
(dxn, dyn, d✓n)

3

775 (22)

where (dxn, dyn, d✓n) represents the deviation between two
consecutive poses in the global reference system. According to the
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formulation defined in (1) and (21), xv and each xln correspondwith
(x0, y0, ✓0), (x1, y1, ✓1) · · · (xn, yn, ✓n), and thus:

sinct =

2

66664

(x0, y0, ✓0)
(x1 � x0, y1 � y0, ✓1 � ✓0)
(x2 � x1, y2 � y1, ✓2 � ✓1)

...
(xn � xn�1, yn � yn�1, ✓n � ✓n�1)

3

77775
. (23)

Now, the state vector is differentially encoded and each single
update has influence on the whole map reestimation.

Regarding the observation measurements, a complementary
subset of edges are introduced to relate nodes to each other. That
is to say, they express the observation measurements between
poses, either from odometry of the wheels or visual sensors. The
nomenclature commonly refers to the observations as constraints,
and it denotes them as �ji, where j indicates the observed node,
seen from node i. The general objective stated by these kind of
methods [23,12] is to minimize the error likelihood expressed as:

Pji(s) / ⌘ exp
✓

�1
2
(fji(s) � �ji)

T⌦ji(fji(s) � �ji)

◆
(24)

being fji(s) a function dependent on the state st and both nodes
j and i. The difference between fji(s) and �ji expresses the error
deviation between nodes, which in this case are views of the map
and poses traversed by the robot. Such error term is weighted by
the information matrix:

⌦ji = ⌃�1
ji (25)

where ⌃�1
ji is the inverse covariance matrix responsible for the

uncertainty of the observation measurements. After taking the
logarithm we have:

Fji(s) / (fji(s) � �ji)
T⌦ji(fji(s) � �ji) (26)

= eji(s)T⌦jieji(s) = rji(s)T⌦jirji(s) (27)

being eji(s) the error resultant from fji(s)–�ji(s), which is also
named as rji(s) to emphasize its condition of residue. Finally, the
global problem seeks the minimization of the objective function
which represents the accumulated error on the map:

F(s) =
X

hj,ii2G

Fji(s) =
X

hj,ii2G

rji(s)T⌦jirji(s) (28)

where G = {hj1, i1i, hj2, i2i . . .} defines the subset of particular
constraint conforming the map, either pertaining to odometry or
visual observation measurements.

4.2. Estimation

Once the formulation of the problem has been stated, the SGD
algorithm develops an iterative process to reach a valid estimation
for the SLAM problem. The basis of a SGD method lays on the
minimization of (28) through derivative optimization techniques
such as mean square estimators, so that the estimated state vector
is obtained as:

st+1 = st + �s (29)

where �s updates st , by means of an adaptive constraint’s
optimization. It is worth noting that in a general case, this update
is calculated independently at each step by using only a single
constraint, that is to say �s = f (�ji). The general expression for
the transition between st and st+1 has the following form:

st+1 = st + � · H�1JTji ⌦jirji. (30)

• Jji(s) is the Jacobian of fji(s) with respect to st . It translates the
error deviation into a spacial variation.

• H is the Hessian matrix, calculated as JT⌦J , and it shapes the
error function through a preconditioning matrix to scale the
variations of Jji:

H ⇡
X

hi,ji
Jji⌦jiJTji . (31)

• ⌦ji is the information matrix associated with a constraint, and
equals ⌃�1

ji .
• � is a learning factor to re-scale the term H�1JTji ⌦jirji. Normally,

� follows a decreasing criteria such as � = 1/n, where
n is the iteration step. This strategy pretends to achieve a
final estimation by using higher values of � at first steps, and
presuming that lower values of � will be useful in preventing
from oscillations around the final solution.

This method updates the estimation by computing the rectifi-
cation introduced by each constraint at each iteration step respec-
tively. Despite the fact that the learning factor reduces the weight
by which each constraint updates the estimation, the procedure
may be inefficient as it may lead to an unstable solution. Unde-
sired oscillations may occur due to the stochastic nature of the
constraints’ selection. For this reason, we propose an optimization
process which takes into account several constraints at the same
iteration step. Such idea might cause undesired overloads of time.
However, we also propose some amendments to avoid this effect,
which succeed in maintaining the time requirements and even re-
duce them.

4.3. Adaption to omnidirectional images

Regarding the observation measurements provided by an om-
nidirectional camera, some assumptions have to be contemplated
in the structure of the SGD algorithm.

Note that in this approach we are dealing with a visual
observation given by an omnidirectional camera. This fact requires
the adaption of the equations defined in the previous section,
since the nature of the constraints are not only metrical like
odometry’s constraints. Following, we detail the terms related
to the observation measurements, emphasizing on the visual
observation, which has been redefined in consequence with (5):

• The first adaption was referred to fji(s), differentiating between
odometry and visual observation constraints:

f odoj,i (s) =
 dxj
dyj
d✓j

!

+
 dxj�1
dyj�1
d✓j�1

!

+ · · · +
 dxi
dyi
d✓i

!

(32)

f visual
j,i (s) =

✓
�
�

◆
=
2

4arctan
✓
dyj � dyi
dxj � dxi

◆
� d✓i

d✓j � d✓i

3

5 (33)

where� and� express the relation between views and the pose
codification (21), and are directly computed as defined in [15].
Visual inspection of Fig. 1 may ease to define (33).

• Then, it is necessary to recalculate Jji(s) = @ fji(s)
@s , accordingly

with the previous reformulation. It has to be noticed the
importance of considering the value of each node’s index, being
either j > i or j < i, since the derivatives vary its form
considerably. Furthermore, as seen above, the dimensions of
fji(s) are different, fact which has also to be considered in order
to resize the rest of the terms involved in the SGD algorithm.

Jji(s) = @ fji(s)
@s

=


@ fji(�)

@s
,
@ fji(�)

@s

�
. (34)
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• Lastly, we also propose that the estimation of the new state
st+1 reflects the usage of several constraints at the same
time. We seek more relevance of constraints’ weight when
searching for the optimal minimum estimation. Obviously,
computing more than one constraint at each step may cause
a certain overload. Contrarily, in this approach we reduce the
expensive estimation of H . In a general case, at every step, H
is computed as many times as constraints exist in the map. In
oppositionwith this, we only computeH once for each subset of
constraints introduced simultaneously into the system at each
step. Thuswe dramatically reduce the number of times thatH is
calculated, so thatwe proceed in amore efficientmannerwhich
compensates possible time overloads.

5. Results

We have performed different real data experiments in an office
environment. The equipment utilized in the experiments consisted
of a Pioneer P3-AT indoor robot equipped with a firewire 1280 ⇥
960 camera and a hyperbolic mirror to build the omnidirectional
image. The optical axis of the camera is installed approximately
perpendicular to the ground plane, as described in Fig. 3. As a
result, a rotation of the robot corresponds to a rotation of the
image with respect to its central point. In addition, we used a SICK
LMS range finder in order to compute a ground truth by means
of the method presented in [2]. The exposition of the results is
structured as it follows: First in Section 5.1 we show SLAM results
obtained with both methods EKF and SGD when the dimension
of the map in terms of N views is variable. Then in Section 5.2,
we also compare both methods by testing their accuracy and
robustness on the estimation when data association errors arise.
Finally, in Section 5.3 we present results with regard to the speed
of convergence.

5.1. SLAM results with EKF and SGD

This experiment has been conducted in an indoor environment
which corresponds to an office area of 42 ⇥ 32 m. The robot
navigates this area while it acquires omnidirectional images and
laser data along the trajectory. The laser data is an auxiliary
reference to aid in generating a ground truth for fair comparison.

In the EKF’s case, as mentioned above, the procedure of map
building is accomplished in an incremental manner. Fig. 4 shows
the results obtained in this experiment, where the robot starts
the SLAM process by adding the first view of the map. Next, it
keepsmoving along the trajectorywhile capturing omnidirectional
images. The image at the current robot pose is compared with
the views stored in the map so as to extract some corresponding
points that allow the robot to compute a relative measurement
of its position, as explained in Section 2. The robot decides to
initiate a new view whenever the relative appearance of the
current image compared to the appearance of the map’s views
drops below a specific similarity threshold R. The ellipses indicate
the uncertainty in the pose of each view and the robot. The
dash-dotted line represents the solution obtained with the EKF
approach, indicating with crosses the points along the trajectory
where the robot decided to initiate new views in the map. The
continuous line represents the ground truthwhereas the odometry
is drawn with dash line. The modification of R, leads to a variation
of the size of the map in terms of N . As it can be observed in
Fig. 4(a), a map for an environment of 42 ⇥ 32 mmay be perfectly
generated by a reduced set of N = 5 views, thus leading to a
compact representation.However, the sameenvironmentmay also
be represented with a different number of views N as shown in
Fig. 5(a). Figs. 4(b) and 5(b) compare the errors for the estimated
trajectory, each one associated with the maps composed by N =

Fig. 3. Robot Pioneer P3-AT used in the experiments. Two poses are indicated with
their corresponding relative angles which determine the motion transformation.

5 and N = 20 views respectively. Based on the ground truth
comparison, the solution error is shownwith dash-dotted line and
the odometry’s with dash line at every step of the trajectory. The
validity of the solution is confirmed due to the accomplishment of
the convergence requirements. It may be noticed that the solution
error is inside the 2� interval, drawn in continuous line, whereas
the odometry error grows out of bounds. According to these
results, it should be noticed that the higher values of N the lower
the resultant error in the map.

On the other hand, we run the same experiment with a SGD
estimator. Fig. 6(a) and (b) represent the same two situations with
N = 5 and N = 20 views previously performed. The placement
of the views is exactly the same. The main difference in the
manner to proceed with respect to EKF is that SGD processes the
observations offline. Inspecting Figs. 4(a), 5(a), 6(a) and (b) reveals
that EKF estimations are more accurate than the SGD estimations.
To generalize, Fig. 7 establishes a fair comparison between both
methods, where the RMS (Root Mean Square) error along the path
is represented versus the number of views N . The continuous line
shows the RMS error for SGD and the dash line shows the EKF’s.
The results of EKF outperforms in this case SGD’s. However, this
experiment has dealt with a desirable situation where non-linear
errors, if any, were low enough so that the EKF response was
able to ensure convergence. The following experiment will show
the results obtained when the visual information is damaged and
corrupted by significative noise errors.

5.2. Comparing accuracy

Now we intend to compare the behavior of both methods
in a more realistic situation, that is to say, when they are
expected to suffer non-linear errors introduced by the observation
measurements and it consequently causes wrong data association
errors. We have conducted the same real experiment shown above
but assuming a highly relevant presence of non-gaussian errors.
To that end, we have modeled a random generator scheme which
introduces wrong data associations. At each estimation step, the
robot computes the observationmeasurements for the entire set of
viewswhich is able to observe. However the robot fails to associate
the observation measurement with its corresponding view at a
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Fig. 4. (a) presents results of SLAM using an EKF algorithm with real data. The map representation of the environment is formed by N = 5 views. The position of the views
is presented with error ellipses. (b) shows the solution and the odometry error in X, Y and ✓ at each time step.

certain probability, meaning that a percentage out of the total data
association are wrong, and thus the observation measurement as
well.

Fig. 8(a) and (b) describe the RMS error tendency of both
methods, when data association fails with a given probability.
The experiment has been repeated 200 times in order to retrieve
consistent and coherent mean values. Again, the environment has
been represented with different values of N in order to show
differences. The results provided by EKF reveal that the resultant
RMS error grows out of bounds when the probability of data
association error is apparently low. This fact demonstrates the low
reliability of the EKF when it has to deal with non-linearities and
thus non-gaussian errors. Despite the fact that maps with more
views provide a larger number of observation measurements to
enable the rectification of the estimation, the error continuously
increases. The results prove that once the solution diverges, the
EKF is unable to recover it, despite the fact that N is higher.
Consequently, the difficulties experienced by the EKF to keep the
convergence of the estimation are evidenced.

Contrary to the EKF’s results, and according to Fig. 8(b), the SGD
provides a lower RMS error under the same conditions. Moreover,
it ensures convergence, as the RMS’s tendency only increases
slightly. It is worth noting the importance of selecting a suitable
value for �, so that new updates to st+1 do not lead the estimation
to diverge when there is evidence of errors. In this case, the SGD
proves its capability to rectify the solution even in presence of non-
linearities and the consequent non-gaussian errors. Therefore, in
the case of SGD, as it could be intuitively expected, the more N
views in the map, the more observations gathered, and thus the
better results provided.

5.3. Comparing speed of convergence

As it may be seen in the previous subsection, the SGD
outperforms EKF in terms of robustness and accuracy when the
system is considerably affected by non-gaussian errors. However,
one should think about the speed of convergence of both methods.
A compromising solution will have to be agreed so as to ensure
a balance which provides robustness against the influence of
noisy terms and speed of computation. With this experiment we
would like to compare the speed ratios by which EKF and SGD
compute a valid solution. Fig. 9 represents the time consumption
to reach a valid solution versus the number of views N of the
map. Since we look for a fair comparison, the y-axis, has been
transformed into a normalized time variable which achieves a
trustworthy comparison between both schemes. This adoption has
been considered since the stochastic nature of the SGD method
may lead each experiment to last a different number of iterations,
and consequently a different time. Therefore the mean values
for each iteration step have to be considered, so that the final
estimation time can be obtained. Hence this normalization allows
a fair and simpler comparison between methods.

In this sense, it may be proved that the solution provided by
EKF outperforms the solution given by a basic SGD for each N-
view map, since its gradient is definitely lower. However, it is also
worthwhile to analyze these results together with the tendency
of each corresponding RMS error. Fig. 10(a) and (b) show the
normalized RMS error, versus the total time consumption to reach
the final estimation. Now it can be clearly confirmed that quicker
speed of convergence is assured by EKF.
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Fig. 5. (a) presents results of SLAM using an EKF algorithmwith real data. The map representation of the environment is formed by N = 20 views. The position of the views
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6. Conclusions

We have presented a comparison between EKF and SGD al-
gorithms, according to their provided solution to the Simultane-
ous Localization and Mapping (SLAM) approach. The main issue
to analyze has been the influence of non-linear errors, which are
a clear indicator of added noise by the visual sensor’s measure-
ments, especially associated with the omnidirectional observation
model. We have presented a real data experimental set, which
has considered different modifications so as to test the behavior
of both methods under different conditions. The approach to the
map representation relies on an efficient view-based map model,
which is built by means of a reduced set of omnidirectional image
views. Bearing in mind the results presented in this work, a key
aspect to remark about EKF is definitely its capability to provide
a suitable estimation in real time, thanks to its adequate speed of
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Fig. 8. (a) and (b) presents the RMS error (m) versus the probability of data association error (%) for EKF and SGD respectively. Errors for maps with different number of
views N are indicated.
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convergence. Moreover, other favorable aspect in case of an ide-
alistic situation without clear evidence of non-linearities, is that
EKF provides amore accurate estimation in contrast to SGD. On the
other hand, contrary to EKF, the SGD has evidenced to bemore reli-
able when a robust solution is required. Despite the fact that SGD’s
accuracy in an idealistic situation is lower than the EKF’s, the re-
sults obtained in presence of non-linear noise effects, indicate that
SGD provides a solid and stable solution which prevents the sys-
tem fromdiverging. As it iswell known, this is not accomplished by
EKF, since is highly sensitive to errors due to the linearization of the
variables of the filter. However, the SGD reveals a lower speed of
convergence.

Therefore it has been proved that the effectiveness of each
method depends on the assumed conditions. Assuring and
approach to SLAM which achieves the avoidance of the effects of
non-linearities and non-gaussian errors, would lead to select a SGD
method. Nevertheless, in case of dealing with a more desirable
situation, such as in a low-noise environment, would indicate
that an EKF method would be more appropriated in order to
succeed in providing a more precise solution with a higher rate of
convergence.
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