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A B S T R A C T

Feature matching is a key technique for a wide variety of computer vision and image processing applications
such as visual localization. It permits finding correspondences of significant points within the environment
that eventually determine the localization of a mobile agent. In this context, this work evaluates an Adaptive
Probability-Oriented Feature Matching (APOFM) method that dynamically models the visual knowledge of
the environment in terms of the probability of existence of features. Several improvements are proposed to
achieve a more robust matching in a visual odometry framework: a study on the classification of the matching
candidates, enhanced by a nearest neighbour search policy; a dynamic weighted matching that exploits the
probability of feature existence in order to tune the matching thresholds; and an automatic false positive
detector. Additionally, a comparison of performance is carried out, considering a publicly available dataset
composed of two kinds of wide field-of-view images: catadioptric and fisheye. Overall, the results validate the
appropriateness of these contributions, which outperform other well-recognized implementations within this
framework, such as the standard visual odometry, a visual odometry method based on RANSAC, as well as the
basic APOFM. The analysis shows that fisheye images provide more visual information of the scene, with more
feature candidates. Contrarily, omnidirectional images produce fewer feature candidates, but with higher ratios
of feature acceptance. Finally, it is concluded that improved precision is obtained when the location problem
is solved by this method.
. Introduction

In recent years, the creation of visual models of environments has
eceived a great attention by the scientific community, due to the
umerous applications it has in a variety of areas such as in mobile
obotics (Harapanahalli et al., 2019; Patruno et al., 2020; Taheri and
ia, 2021; Kostavelis et al., 2016). When a robot has to operate in
n ‘a priori’ unknown scenario (Alatise and Hancke, 2020), modelling
fficiently this environment is a crucial requisite. Nowadays, vision
ystems sustained by computer vision and image processing techniques
re widely acknowledged to this purpose. In particular, feature match-
ng (Jiang et al., 2013; Liu et al., 2021) permits finding, modelling and
racking relevant visual information from the environment. Once the
revious task is achieved, the mobile robot will be able to solve the
apping and localization problems with robustness (Hou et al., 2020).

The present work continues the research line started in Valiente
t al. (2018), where the Adaptive Probability-Oriented Feature Match-
ng (APOFM) technique is proposed to obtain a robust local feature
orrespondence search in presence of outliers. This method comprises a
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L. Payá).

feedback loop that accounts for the existence of previous matches in the
3D space. Such information corresponds to a 3D probability distribution
provided by a Gaussian Process (GP). Finally, once the local feature
points are detected in the next iteration, the 3D probability distribution
of features existence aids in the selection of candidate points for the
definitive matching.

The APOFM can be used in many applications where feature match-
ing is needed (e.g. object tracking Xiao et al., 2012, detection Jakubović
and Velagić, 2018, mapping Zivkovic et al., 2005 and localization Wu
et al., 2011 of mobile robots). Among them, we have focused on the
localization problem. Sometimes the presence of dynamic elements can
cause errors in the pose estimation and a robust matching framework
is required. Thence, considering the benefits of the previous method
in that context, its implementation in a visual odometry algorithm can
improve the solution to this problem.

This work presents several improvements to the APOFM which
provide a more precise localization estimation comparing to the basic
APOFM (Valiente et al., 2018). The main contributions of this work are
fourfold:
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(a) The matching candidates selection has been improved by means
of a k-nearest neighbour classifier based on different distance
metrics.

(b) The spatial probability distribution is used to perform a weighted
and dynamic search of feature correspondences, under static and
adaptive thresholds.

(c) An automatic false positive detector is implemented, based on
the distance between pixel points and their 3D projection.

(d) An extended comparison of the efficiency of the proposal is
performed, using not only a catadioptric vision system but also a
fisheye one. To that end, two open-source and publicly available
image datasets (Robotics and Perception Group, University of
Zurich, Switzerland, 2013) have been used to benchmark the
proposal with other well-acknowledged implementations such
as a Standard Method (SM) (Hartley and Zisserman, 2003),
SM using RANdom SAmple Consensus (RANSAC) (Nister, 2003;
Scaramuzza, 2011), as well as the basic APOFM (Valiente et al.,
2018).

The remainder of this paper is structured as follows. Section 2
resents an overview of related works. In Section 3, the two types
f vision system and the camera model are described. The method to
ecover the relative pose from a pair of images is outlined in Section 4,
hereas Section 5 presents how this method concretizes based on the
ehicle model. In Section 6, all the steps of the improved APOFM
re explained. Finally, the results achieved during the experiments are
hown in Section 7. Section 8 presents the conclusions of this work.

. Related work

Modelling the environment consists in creating a representation.
hree main approaches can be found in the related literature: topo-

ogical (Cebollada et al., 2019; Román et al., 2020), metric (Andert
nd Goormann, 2007; Liu et al., 2020) and hybrid (Yuan et al., 2018).
ne of the most usual representation is the occupancy grip map (Gil
t al., 2015), which discretizes the environment into cells to define free
r occupied (presence of an obstacle) regions. However, the classical
ccupancy grid approaches have some limitations such as the fact
hat the structural correlations between points on the map are not
onsidered. For this reason, new techniques, such as Gaussian Process
GP) (Rasmussen and Williams, 2006), have been applied to overcome
hem. This learning method is a Bayesian nonparametric approach
esigned to solve regression and probabilistic classification problems.
P is a powerful tool to accurately identify a complex mathematical
odel from experimental data. Among the variety of suitable properties

f GP, its main advantage is that it deals with the noise in the system,
s well as with the uncertainty in the model. In O’Callaghan and Ramos
2012), the authors present an algorithm that creates a continuous
ccupancy representation of the environment by GP, denominated
aussian Process Occupancy Mapping (GPOM). Ghaffari et al. (2017)
xtend this algorithm to create a semantic map. To this purpose, they
ormulate the semantic mapping as a multi-class classification problem
nstead of a binary classification. The GP technique is not only applied
o build a model of the environment. It has recently become popular
n the research community since it can be used to solve a wide range
f problems in the field of robotics (Song et al., 2018; Polymenakos
t al., 2020; Sun et al., 2018; Park et al., 2018; Dalla Libera et al.,
019; Nutalapati et al., 2019; Li et al., 2020). For example, Nguyen
t al. (2019) employ the GP to infer remaining wall thickness at unseen
ipe sections for a mobile robot which moves inside a pipeline with the
bjective of inspecting at the location of a break.

Both the mapping and the localization tasks can be carried out as
ong as the mobile robot acquires information from its environment.
o this purpose, many types of sensors (e.g. sonar, lidar, encoders,
lobal position system) can be mounted on the mobile robot. Among
hem, vision sensors have become a source of countless research con-
ributions in recent years due to the several attractive features that
2

they present, such as the richness of information captured, low weight,
power consumption, size, and cost (Reinoso and Payá, 2020). Cameras
are versatile since they can be utilized for navigation both in outdoor
and indoor environments. Nevertheless, the most interesting advantage
is the amount of information from the environment that an image
contains, such as colour, luminance, shape and texture. The use of
these sensors increases the scope of applications of mobile robots.
The type of information provided by them not only permits solving
the localization and mapping problems, but it can also be used for
other tasks, for instance, road detection (Zhang et al., 2018), traffic
sign recognition (Jung et al., 2016), and obstacle identification (Emani
et al., 2019). The amount of information available in an image is related
to the field of view of the camera that captured it. The wider the field
of view is, the higher the amount of information from the environment.
According to this, this type of vision systems can be classified, in broad
lines, into conventional monocular or omnidirectional cameras.

Comparing to conventional monocular, omnidirectional vision sys-
tems have more advantages thanks to their wide field of view. A
single image captured by this type of camera can provide a 360◦

view from the environment around the mobile robot (Amorós et al.,
2020). Therefore, omnidirectional cameras permit obtaining exhaustive
models of the environment with a reduced number of views (Payá
et al., 2017). There are different alternatives to get an omnidirectional
vision system (Scaramuzza, 2014; Li, 2006). The most extended ones
are dioptric and catadioptric systems. These are the configurations used
in the present work. The first one consists in combining a conventional
camera with a shaped wide-angle lens (such as fisheye). This vision
system provides a hemispherical view, so a pair of cameras pointing
to opposite sides is required to acquire a full spherical view (Gao and
Shen, 2017). The second way to create an omnidirectional system is the
combination of a spherical (Barone et al., 2018), conic (Marcato Junior
et al., 2016), hyperbolic (Boutteau et al., 2010), parabolic, or elliptic
mirror and a pinhole camera.

For some applications (e.g. autonomous aerial robots), the fisheye
cameras are better than the catadioptric ones since they achieve an
omnidirectional coverage with lower weight (Gao et al., 2020). Nowa-
days, the automotive industry is very interested in providing vision
perception to the drivers, concretely a 360◦ view around the vehicle.

o that end, the vehicles are equipped with four fisheye cameras which
re placed in a way that the coverage is optimized. In this application,
he coverage obtained using a catadioptric vision system is less effective
ince the majority of information captured in the image will be sky and
ody car. For instance, Lee et al. (2013) have mounted four fisheye
ameras (looking front, rear, left and right) on a vehicle to implement
heir structureless pose-graph loop-closure algorithm.

The formulation of the localization problem typically depends on
he type of sensor used. It can be classified into global (i.e. global
osition system) or local (i.e. wheel, inertial, laser, radar, or vision
ystems mounted onboard) localization. In Mohamed et al. (2019), the
uthors provide a general overview of the state-of-the-art about the
ocalization methods using these latter sensors.

In the case of onboard vision systems, the technique to solve the
ocal localization problem is also known as visual odometry, which in-
rementally estimates the motion of an agent. The difference is that the
ision-based odometry obtains the relative pose through the changes
hat the movement induces in the images (Fraundorfer and Scaramuzza,
012). This way, this method overcomes the main limitations of the
heel odometry (such as wheel slippage and uneven terrain). Besides,

omparing with other traditional approaches (i.e. GPS, inertial, laser
nd radar), visual odometry is an inexpensive and relatively accurate
lternative technique that can be employed both in outdoor and indoor
nvironments, and its use is not only limited to ground vehicles.

Depending on the process chosen to extract the information from the
mages, the different methods of visual odometry can be classified into
eature-based, appearance-based, or hybrid approaches (Poddar et al.,
018). In Valiente García et al. (2012), a comparison between both
ppearance- and feature-based visual odometry methods is carried out,
sing omnidirectional images.
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Fig. 1. Two examples of wide field of view images which are extracted in the same
indoor scenario (Robotics and Perception Group, University of Zurich, Switzerland,
2013). (a) An image from a catadioptric system composed of a hyperbolic mirror and
a camera. (b) An image from a system composed of a camera and a fisheye lens.

3. Catadioptric and fisheye vision systems

In this work, two different visions systems are used: one catadioptric
system (omnidirectional camera) and one camera with a fisheye lens.
Fig. 1 shows two images of the same scene captured by each of these
systems.

The mathematical model of a catadioptric or fisheye camera is
more complex than a standard perspective camera. The lens causes
refraction, and the mirror produces reflection, so the model should take
these effects into account. There are many works in the literature to es-
timate the model of an omnidirectional camera. The first unified model
for central catadioptric systems, that is, cameras using a parabolic,
hyperbolic, or elliptical mirror, was proposed by Geyer and Daniilidis
(2000). They determine that this type of camera can be modelled by
a projection of the 3D scene point onto a unit sphere centred in the
effective viewpoint, followed by a perspective projection onto a plane.
This model was developed specifically for central catadioptric cameras,
so it is not valid for fisheye cameras. Ying and Hu (2004) presented an
extension of this model that can be used to model fisheye cameras as
well. With respect to Scaramuzza et al. (2006a) all central catadioptric
cameras can be represented through an exact parametric function. Still,
the projective model depends on the lens field-of-view and varies from
camera to camera in the case of the fisheye lenses. Therefore, the
approximation of Ying and Hu (2004) for a fisheye camera through
a catadioptric one, only works with limited accuracy (Siegwart et al.,
2011). To overcome this problem, Scaramuzza et al. (2006a, 2006b)
proposed a new unified model for catadioptric and fisheye cameras. In
this case, the authors use a Taylor polynomial, whose coefficients and
degree are found through a calibration phase.

As mentioned at the beginning of this section, we use catadioptric
and fisheye images, so we use this model due to its suitability for both
types of cameras (Scaramuzza et al. 2006a, 2006b). Fig. 2 shows the
projection following this unified model proposed in (Scaramuzza et al.
2006a, 2006b). A scene point 𝑃𝑊 , expressed in the world reference
rame can be expressed in the fisheye/mirror reference frame 𝑃𝐶 by
sing the extrinsic parameters. This 3D point is projected onto the unit
phere surface obtaining the unit vector ⃖⃗𝑝 emanating from the centre
f the reference frame 𝑂𝑐 . Then, the pixel point 𝑚 is obtained through
n imaging function 𝑔 (see Eq. (1)) and an affine transformation
Scaramuzza et al. 2006a, 2006b).

⋅ 𝑔(𝑚) = 𝜆
⎡

⎢

⎢

⎣

𝑢
𝑣

𝑓 (𝑢, 𝑣)

⎤

⎥

⎥

⎦

= 𝑃𝑐 = [𝐑|𝑡⃗]𝑃𝑤 (1)
3

Fig. 2. A scene point 𝑃𝑊 is projected onto the unit sphere surface. This way, the 3D
unit vector 𝑝 is obtained. Then, it is mapped to a point 𝑚 = [𝑢, 𝑣] on the ideal plane
through a function. This ideal plane point is transformed to a point 𝑚′ = [𝑢′ , 𝑣′] in the
real image plane (pixel coordinates) by an affine transformation.

4. Relative pose estimation

Estimating the relative pose between two images taken from differ-
ent positions is a crucial problem in visual navigation. This technique
is known as Visual Odometry (Fraundorfer and Scaramuzza, 2012;
Scaramuzza and Fraundorfer, 2011).

To solve the feature-based visual odometry problem, the algorithm
can be principally decomposed into three different blocks: (1) feature
detection and description, (2) feature matching (or tracking), and
(3) motion estimation. The first step consists in identifying points of
interest in the image and representing the region around each one
as a compact vector, named descriptor, which is used to compare
features in different images. The second step consists in detecting the
pixel points corresponding to the same 3D point in the pair of images
(i.e. finding the matches). Finally, the third step consists in estimating
the relative camera motion between the pair of images taken at dif-
ferent times (Scaramuzza and Fraundorfer, 2011). Depending on the
dimension of the feature correspondences, there are three techniques
to carry out this last step (Yousif et al., 2015): motion estimation
from 3D feature correspondences (3D to 3D); from 3D feature and
2D image feature correspondences (3D to 2D); and from 2D image
feature correspondences (2D to 2D). In the last method, both feature
correspondences are specified in 2D image coordinates, so the relative
motion is recovered by the epipolar geometry (see Fig. 3), concretely
by the essential matrix 𝐄. In this work, Standard Method (SM) refers
to an algorithm composed only of the three blocks mentioned at the
beginning of the previous paragraph, where the technique employed in
the motion estimation block is the epipolar geometry (2D to 2D).

The essential matrix depends only on the camera motion parameters
that can be recovered only up to a scale factor. This matrix encodes
the relative motion parameters between a pair of images and, in
consequence, can be defined as:

𝐄 = [𝑡]𝑥𝐑 (2)

where 𝐑 is the rotation matrix and [𝑡]𝑥 is the skew-symmetric ma-
trix of the translation vector 𝑡⃗ = [𝑡𝑥, 𝑡𝑦, 𝑡𝑧]. After following the pro-
cess described in Hartley and Zisserman (2003), the relative pose is
recovered.

The relative pose can be expressed using angular parameters. Firstly,
the coordinates (𝑡𝑥, 𝑡𝑦, 𝑡𝑧) of the translation vector can be transformed
into spherical coordinates. In other words, the relative position between
the two camera poses is determined by a radial distance 𝜌 (from the
centre of the camera frame at the first pose to the camera centre at the
second pose), an elevation angle 𝛽 and an azimuth angle 𝜙.
𝜙 = 𝑎𝑡𝑎𝑛2(𝑡𝑦, 𝑡𝑥) (3)
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Fig. 3. Epipolar geometry of cameras with wide field of view. A scene point 𝑃
is projected on the sphere surface of the first and second camera as 𝑝1 and 𝑝2,
espectively. A rotation matrix and translation vector relate both camera reference
ystems. Therefore, 𝑡⃗, 𝐑𝑝1 and 𝑝2 lie in the epipolar plane (coplanarity condition).

𝛽 = 𝑎𝑡𝑎𝑛2(𝑡𝑧,
√

𝑡2𝑥 + 𝑡2𝑦) (4)

𝜌 =
√

𝑡2𝑥 + 𝑡2𝑦 + 𝑡2𝑧 (5)

Secondly, the orientation 𝐑 can be defined by using the Euler angles:
yaw (rotation 𝜃 around the 𝑍-axis), pitch (rotation 𝛾 around the 𝑌 -axis)
and roll (rotation 𝛼 around the 𝑋-axis). In short, the relative pose is
given by six parameters, which can be seen in Fig. 4, five of them are
angles (𝜃, 𝛾, 𝛼, 𝜙, 𝛽) and the remaining one is a scale factor (𝜌). This
work focuses on the estimation of the angular parameters.

5. Relative pose estimation based on the vehicle model

Some steps of this method require that the relation between the
camera frame and the world frame is well-known since the objective is
to obtain a 3D model of the environment. Consequently, the mapping
from pixel to world coordinates, and vice-versa, will be carried out. In
this work, we try to solve the visual odometry problem for a mobile
robot that navigates without knowing its following pose, therefore, the
camera pose is not known. Nevertheless, assuming that the camera is
on-board of a mobile robot, then an approximation of the next camera
pose can be obtained by using the probabilistic odometry motion model
presented by Thrun et al. (2005). Since the ground truth is available,
these data can be modelled as odometry data (by adding some amount
of noise), and, after that, the next pose can be estimated. The mobile
robot moves from 𝑡 to 𝑡 + 1, and then the image 𝐼𝑡+1 is captured.
It means that the odometry information, which is usually provided by
4

Fig. 5. Parameters of the odometry-based motion: first rotation 𝛿𝑟𝑜𝑡1, translation 𝛿𝑡𝑟𝑎𝑛𝑠
and second rotation 𝛿𝑟𝑜𝑡2.

wheel sensors, is available when the image is processed. Therefore,
the odometry-based motion model can be used as an estimation of the
relative pose, but it is only used to map the 3D model and image points.

5.1. Odometry motion model

For a planar environment, the mobile robot state 𝑥⃗ is represented
y a point (𝑥, 𝑦) and a rotation angle 𝜃 that determines the orientation.
he odometry-based motion model describes the movement of a mobile
obot between two consecutive poses (from 𝑥⃗𝑡 = (𝑥𝑡, 𝑦𝑡, 𝜃𝑡) to 𝑥⃗𝑡+1 =
𝑥𝑡+1, 𝑦𝑡+1, 𝜃𝑡+1)) as a sequence of three steps: an initial rotation 𝛿𝑟𝑜𝑡1,
ollowed by a straight line motion (translation) 𝛿𝑡𝑟𝑎𝑛𝑠 and final rotation
𝑟𝑜𝑡2 as illustrated in Fig. 5.

After obtaining 𝑥⃗𝑡 and 𝑥⃗𝑡+1 from the ground truth data, the param-
ters of the odometer model can be computed as:

𝑟𝑜𝑡1 = 𝑎𝑡𝑎𝑛2(𝑦𝑡+1 − 𝑦𝑡, 𝑥𝑡+1 − 𝑥𝑡) − 𝜃𝑡 (6)

𝑡𝑟𝑎𝑛𝑠 =
√

(𝑥𝑡+1 − 𝑥𝑡)2 + (𝑦𝑡+1 − 𝑦𝑡)2 (7)

𝑟𝑜𝑡2 = 𝜃𝑡+1 − 𝜃𝑡 − 𝛿𝑟𝑜𝑡1 (8)

In the ideal case, these values would be the same as the ones
btained using the odometer readings, but it does not happen in a real
peration. In that case, the measurements provided by the odometer
re given by the true motion with independent noises for each one
f these motion parameters. The noise is modelled as a zero-mean
aussian distribution with variance 𝜎 and it is denoted as 𝜖(𝜎). Then,

he measured parameters are:

̂𝑟𝑜𝑡1 = 𝛿𝑟𝑜𝑡1 + 𝜖(𝛼1𝛿𝑟𝑜𝑡1 + 𝛼2𝛿𝑡𝑟𝑎𝑛𝑠) (9)

̂ = 𝛿 + 𝜖(𝛼 𝛿 + 𝛼 (𝛿 + 𝛿 )) (10)
𝑡𝑟𝑎𝑛𝑠 𝑡𝑟𝑎𝑛𝑠 3 𝑡𝑟𝑎𝑛𝑠 4 𝑟𝑜𝑡1 𝑟𝑜𝑡2
Fig. 4. The relative pose recovered from 𝐄 can be described by six parameters. The orientation can be defined as three successive rotations: around the 𝑍-axis 𝐑(𝜃), 𝑌 -axis 𝐑(𝛾)
nd 𝑋-axis 𝐑(𝛼). The position is given by two angles (𝛽 and 𝜙) and a scale factor (𝜌).
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𝑥

𝑦

⃗

Fig. 6. Coordinate Systems: world frame, mobile robot frame and camera frame.
𝛿𝑟𝑜𝑡2 = 𝛿𝑟𝑜𝑡2 + 𝜖(𝛼1𝛿𝑟𝑜𝑡2 + 𝛼2𝛿𝑡𝑟𝑎𝑛𝑠) (11)

where the 𝛼1, 𝛼2, 𝛼3 and 𝛼4 parameters model the noise caused by drifts
and slipping (translation and rotation). Finally, the initial odometry can
be calculated as:

̂ 𝑡+1 = 𝑥𝑡 + 𝛿𝑡𝑟𝑎𝑛𝑠 cos (𝜃𝑡 + 𝛿𝑟𝑜𝑡1) (12)

̂𝑡+1 = 𝑦𝑡 + 𝛿𝑡𝑟𝑎𝑛𝑠 sin (𝜃𝑡 + 𝛿𝑟𝑜𝑡1) (13)

𝜃̂𝑡+1 = 𝜃𝑡 + 𝛿𝑟𝑜𝑡1 + 𝛿𝑟𝑜𝑡2 (14)

The odometry is a relative positioning technique (Aqel et al., 2016),
so there is no fixed mapping between the coordinates used by the
robot’s internal odometry and the world coordinates. To solve it, the
world reference system has been fixed in the initial state of the mobile
robot 𝑥⃗0, then the relative pose of the mobile robot at the instant
𝑡 + 1 with respect to the world frame 𝐓𝐖𝐑𝐭+𝟏

is given by a rotation
matrix around the 𝑍-axis 𝐑𝐳(𝜃̂𝐭+𝟏) and a translation in the XY plane
𝑡 = (𝑥̂𝑡+1, 𝑦̂𝑡+1, 0):

𝐓𝐖𝐑𝐭+𝟏
=

⎡

⎢

⎢

⎢

⎢

⎣

cos 𝜃̂𝑡+1 − sin 𝜃̂𝑡+1 0 𝑥̂𝑡+1
sin 𝜃̂𝑡+1 cos 𝜃̂𝑡+1 0 𝑦̂𝑡+1

0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(15)

Consequently, the relationship between the camera and world coor-
dinate system 𝐓𝐖𝐂𝐭+𝟏

can be computed assuming that the position of the
camera with respect to the mobile robot 𝐓𝐑𝐂 is fixed and well-known.

𝐓𝐖𝐂𝐭+𝟏
= 𝐓𝐖𝐑𝐭+𝟏

⋅ 𝐓𝐑𝐂 (16)

In other words, 𝐓𝐖𝐂𝐭+𝟏
is the matrix that transforms the points from

the camera frame into the world frame. Fig. 6 shows these reference
systems.

6. Adaptive probability-oriented feature matching (APOFM)

This section synthesizes the basis of the APOFM (Valiente et al.,
2018) and the improvements proposed in the present paper to improve
its performance. In each iteration, the corresponding points (matches)
between the images are obtained. A pair of feature points (𝑚1 and 𝑚2)
are considered matched points if their feature descriptors are similar.
Therefore, this means that these feature points are the projection of the
same 3D scene point. Consequently, if this point appears projected on
the next images, and providing it continues to be considered a matching
in other iterations, it presents a high probability in the model. Hence,
the associated probability with each point is updated at every iteration.
Fig. 7 shows the block diagram with the most representative steps of
this process.

The model is obtained by using the GP (Rasmussen and Williams,
2006) that is defined as a collection of random variables, a finite
5

number of which have a joint Gaussian distribution, whose input is a set
of 3D points (Section 6.2). Hence, it is necessary to recover, previously,
the 3D coordinates of each pair of correspondences (Section 6.1). This
problem is known as triangulation (Hartley and Sturm, 1997). After
that, the environment model is updated using the matches between the
previous and current image, and the pose of the next image with respect
to the current one is calculated.

The problem of visual odometry is solved following the algorithm
described in Section 4. However, some steps have been added and
modified in order to improve the matching search. For instance, some
new steps have been inserted between the feature detection and feature
matching search. Now the search of the feature matchings is not per-
formed with all the feature points detected in the image corresponding
to the next pose. The search is only focused on these points considered
as candidates. In broad lines, after detecting the feature points in the
image taken at the next pose 𝐼𝑡+1, using SURF (Bay et al., 2006),
the coordinates of the output of the GP are expressed into the frame
of the camera at the next time instant 𝑡 + 1. To do it, we use
the transformation between world and camera frame calculated in
Section 5.1 by the odometry motion model. Next, these points are
projected on the image using the calibration parameters (Section 6.3).
The next step consists in determining how many detected SURF points
are candidates, based on their proximity to a projected probability point
(Section 6.4). After that, the search for matches can be carried out
(Section 6.5).

In the first iteration, that is, to estimate the relative pose using
the images 𝐼0 and 𝐼1, the method employed is SM since there is no
information about matching features, that is, all SURF points of 𝐼1
have the same probability of finding a correspondence in 𝐼0. After that,
the triangulation problem is solved with the matched features of this
iteration, and these 3D points are the input to the GP. This way, the
scene model is available from the second iteration, and the proposed
model can be employed from then on.

6.1. Triangulation and false positive record

As already mentioned, the triangulation problem essentially consists
in calculating the position of a point in the space, given its projection on
at least two views, and the calibration parameters and pose estimation.
The basic method to solve this problem is to find the intersection of
the lines of sight whose origins are the camera centres (𝑂1 and 𝑂2) and
their direction vectors are given by the projections of the image points
on the unit surface sphere (𝑝1 and 𝑝2). To recover the coordinates of the
3D point in the world frame, the centres of the camera and the direction
vectors must be expressed in the world reference system. The necessary
information to do it can be extracted from the estimated transformation
matrix that has been calculated using Eq. (16).

However, the rays may not intersect in the 3D space as a conse-
quence of the presence of noise in the matching of image points. This
noise can be produced by lens distortion or errors in the calibration
parameters. The first one affects the 3D to 2D mapping, whereas the
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Fig. 7. Block diagram that shows the main parts of the algorithm to create a model of the environment, detailing the sections of the paper in which each part of the algorithm
is presented.
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Fig. 8. Triangulation problem: the mid-point approach to recover the 3D coordinates
of a point using its projection on a pair of images.

second one makes the 2D to 3D mapping be not precise since the
camera model is used in this step. Moreover, some noise may appear
due to image processing, such as interest points detection error or the
presence of outliers in the correspondence detection. As a consequence,
the solution to the triangulation problem becomes nontrivial. In the
literature, there are different methods to find the best solution; some
of them are described in Nair and Nair (2020). In this work, we adopt
the mid-point method proposed in Beardsley et al. (1994). Thus the 3D
scene point, is approximated by the midpoint of the segment which is
perpendicular to both rays with the shortest distance.

Fig. 8 shows that for the first camera there is a ray defined by the
origin 𝑂 and the direction vector 𝑝 , so its corresponding equation is
1 1 w

6

𝐿1 = 𝑂1 + 𝜆1 ⋅ 𝑝1. Similarly, there is a ray equation, whose equation
is 𝐿2 = 𝑂2 + 𝜆2 ⋅ 𝑝2, for the second camera. The first step for the
omputation of the intersection point is to obtain the points 𝑎 and 𝑏⃗.
hese points are the intersection of the common perpendicular 𝑎𝑏 with
he line 𝐿1 and 𝐿2 respectively. In other words, the point 𝑎 satisfies the
quation of the first ray, so 𝑎 = 𝑂1 +𝜆1 ⋅ 𝑝1, and the point 𝑏⃗ satisfies the
quation of the second ray, hence 𝑏⃗ = 𝑂2 + 𝜆2 ⋅ 𝑝2.

Due to the fact that the segment 𝑎𝑏 is perpendicular to both rays,
he dot product of its direction vector, and the corresponding of each
ay is equal to zero.

𝑏⃗ − 𝑎) ⋅ 𝑝1 = (𝑂2 − 𝑂1) ⋅ 𝑝1 + 𝜆2 ⋅ 𝑝2 ⋅ 𝑝1 − 𝜆1 ⋅ 𝑝1 ⋅ 𝑝1 = 0 (17)

𝑏⃗ − 𝑎) ⋅ 𝑝2 = (𝑂2 − 𝑂1) ⋅ 𝑝2 + 𝜆2 ⋅ 𝑝2 ⋅ 𝑝2 − 𝜆1 ⋅ 𝑝1 ⋅ 𝑝2 = 0 (18)

After solving the equation system, the unknowns 𝜆1 and 𝜆2 are
btained. The intersection point is the average of the points 𝑎 and 𝑏⃗.

= 𝑎 + 𝑏⃗
2

=
(𝑂1 + 𝜆1 ⋅ 𝑝1) + (𝑂2 + 𝜆2 ⋅ 𝑝2)

2
(19)

As mentioned above, sometimes the set of corresponding points
may contain wrong matches, named false positives. Fig. 9 depicts this
problem. The detected feature point in the first image 𝑚1 and the
detected feature point in the second image 𝑚2 are considered as a
pair of corresponding features during the matching search. Then, the
triangulation problem is solved, and the result is the 3D point 𝑃 . If

is re-projected on the second image 𝑚′
2, it can be observed that its

rojection is not near the detected feature point in the second image
2. This means that the feature points are not the projection of the

ame 3D point (false positive). As a matter of fact, this can be noticed
n this figure, where the true 3D point of each feature point is shown.
o extend this example, Fig. 10 shows two pairs of matched features
here one is a false positive and the other is a true positive.
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Fig. 9. The detected feature point in the first image ∙ and the detected feature point in
the second image ∙ have been considered as a pair of corresponding features. However,
it can be observed that the feature points are not the projection of the same 3D point
so it is a false positive. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

It is important to note that this contribution aims to serve as a tool
for quantifying false positive ratios, and thus evaluating the efficacy of
the probability-based matching.

6.2. GaussIan process

Once the 3D coordinates corresponding to each matching feature
have been recovered, the next step is to create the probability model
with them using the GP.

A GP can be seen as a generalization of the Gaussian probability
distribution to function spaces. It means that a probability distribution
describes random variables, whereas a GP is a distribution over func-
tions 𝑓 (𝑥). Therefore, if a Gaussian distribution is given by its mean
and covariance, then a GP is formed by a mean function 𝑓𝑚(𝑥) and
covariance function 𝑘(𝑥, 𝑥′). So, the GP can be written as:

𝑓 (𝑥) ∼ (𝑓𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (20)

where 𝑥 ∈ R𝑑 and 𝑥′ ∈ R𝑑 , are the training and test (query) input
points respectively.

The algorithm used to obtain the probabilistic model of the envi-
ronment is the one proposed by Ghaffari et al. (2018). They developed
a technique for occupancy mapping using the GP. As presented in
Fig. 11, the algorithm is composed of three main modules: (1) GP re-
gression (Section 6.2.1). (2) Logistic regression classifier that squashes
the output of the prior module into probabilities (Section 6.2.2) and
leads to the local map. (3) Bayesian Committee Machine (BCM) (Tresp,

2000), which updates the global map incrementally. The output of this

7

algorithm is a probability distribution which is shown in Fig. 12(a) and
the modules that compose it are described in depth in the following
subsections.

6.2.1. GaussIan process regression
Given a set of 𝑛 training input points 𝑋 =

{

𝑥1, 𝑥2,… , 𝑥𝑛|𝑥𝑖 ∈
R3}, their corresponding output values arranged as a vector 𝑦 =
{

𝑦1, 𝑦2,… , 𝑦𝑛|𝑦𝑖 ∈ R
}

and a set of 𝑛𝑡 test points 𝑋∗ =
{

𝑥∗1, 𝑥∗2,… , 𝑥∗𝑛𝑡 |𝑥𝑖 ∈ R3
}

. The mean and covariance of the predictive
conditional distribution for test data 𝑓∗|𝑋, 𝑦,𝑋∗ ∼  (𝑓∗, 𝑐𝑜𝑣(𝑓∗)) can be
computed as follows:

𝑓∗ = 𝐾(𝑋,𝑋∗)𝑇 (𝐾(𝑋,𝑋) + 𝜎2𝑛𝐼)
−1𝑦 (21)

𝑐𝑜𝑣(𝑓∗) = 𝐾(𝑋∗, 𝑋∗) −𝐾(𝑋,𝑋∗)𝑇 (𝐾(𝑋,𝑋) + 𝜎2𝑛𝐼)
−1𝐾(𝑋,𝑋∗) (22)

here 𝜎2𝑛 is the variance of the observation noise and 𝐊(⋅, ⋅) denotes
he covariance matrix of the variables (⋅, ⋅), for instance, 𝐊(𝐗,𝐗∗) is the
× 𝑛𝑡 matrix of the covariances evaluated at all pairs of training 𝑋

nd test points 𝑋∗.
In this work, the training input data 𝑋 are the 3D points 𝑃 obtained

fter solving the triangulation problem for each pair of feature corre-
pondences. The target value assigned to each training input point is
ne (𝑦𝑖 = 1) indicating that the projections of this point on the images at
−1 and 𝑡 have been considered as a pair of matched features. Therefore,
he training output data 𝑦 is a vector of ones 𝑦 = {1, 1,… , 1}. Finally,
he test data are the set of spatial coordinates to build the map on. In
ther words, the motion space of the mobile robot with existing points
s evaluated. This map consists of a three-dimensional grid represented
y the vectors 𝑋𝑚 =

{

𝑥1 ∶ 𝑖 ∶ 𝑥𝑛𝑥
}

, 𝑌𝑚 =
{

𝑦1 ∶ 𝑖 ∶ 𝑦𝑛𝑦
}

, and 𝑍𝑚 =

𝑧1 ∶ 𝑖 ∶ 𝑧𝑛𝑧
}

that are defined by a starting and ending value, and an

ncrement 𝑖 between their elements, which is denominated the step of
he grid (𝛥𝑔𝑟𝑖𝑑). The number of test points is given by the length of
hese vectors so 𝑛𝑡 = 𝑛𝑥 ⋅ 𝑛𝑦 ⋅ 𝑛𝑧.

.2.2. Logistic regression classifier
Since the goal is to obtain a probabilistic representation of the

nvironment, the output of the GP regression, that is the prediction
𝜇∗, 𝜎2∗) at a test point 𝑥∗, must be squashed into the range [0, 1]. Hence,
logistic function is used.

(𝑦∗ = 1|𝑋, 𝑦) = 1
1 + 𝑒𝑥𝑝(−𝛾𝜔𝑖)

(23)

where 𝜔𝑖 = 𝜇∗𝑖𝜆1∕2 is the weighted mean, 𝜆 = 𝜎2𝑚𝑖𝑛∕𝜎
2
∗𝑖 denotes the

bounded information associated to each location, 𝜎𝑚𝑖𝑛 is the minimum
predicted variance by the GP regression and 𝛾 is a positive constant
parameter to control the sigmoid shape.
Fig. 10. Detection of false positive: (a) Two pairs of features matches can be seen in this figure. Each feature is symbolized by 𝑚𝑖 where the subscript 𝑖 indicates to which
image it belongs. Furthermore, each pair of matched features is represented by a different colour. (b) The calculated 3D points are projected on the first image 𝑚′

1 after solving
the triangulation problem for each pair of correspondences shown in (a). It can be observed that the projected point 𝑚′

1 is nearby the feature point in the case of the green
correspondence. Nevertheless, it does not happen the same for the orange matching since this is a false positive. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 11. Block diagram of the algorithm that calculates the probabilistic model of the environment using GP.
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6.3. Projection of the model points on the 2D image

A 3D probability distribution has been obtained in the previous
section. Given that it determines the probability that the projection of a
3D scene point is a feature correspondence, the output of the GP must
be projected on the image at the next pose. In this manner, relevant
areas are obtained over the image. If a feature point is detected in one
of these areas, then it will probably be a matching feature.

The first step is to express each 3D point of the probability distri-
bution 𝑊 𝑃 =

{

𝑊 𝑝1,𝑊 𝑝2,… ,𝑊 𝑝𝑛|𝑊 𝑝𝑖 ∈ 𝐑3} in the camera coordinate
system:

𝐶𝑡+1
𝑝𝑖 = 𝐓𝐂𝐭+𝟏𝐖 ⋅ 𝑊 𝑝𝑖 (24)

where 𝐓𝐂𝐭+𝟏𝐖 is the matrix that transforms the points from world to
camera frame at 𝑡 + 1. To move the GP output to the next frame
pose 𝑡 + 1, an estimation of the relationship between the world and
camera frames must be available. This estimation es calculated from
the vehicle model (Section 5). In this case, we obtain the matrix that
transforms the points from the camera to the world frame 𝐓𝐖𝐂𝐭+𝟏

using
Eq. (16). Therefore, taking this into account, the previous equation can
be written as:

𝐶𝑡+1
𝑝𝑖 = 𝐓𝐶𝑡+1𝑊 ⋅𝑊 𝑝𝑖 = 𝐓−1

𝐖𝐂𝐭+𝟏
⋅𝑊 𝑝𝑖 =

[

𝐑𝑇
𝐂𝐭+𝟏𝐖

−𝐑𝑇
𝐂𝐭+𝟏𝐖

⋅ 𝑡⃗𝐶𝑡+1𝑊

]

⋅ 𝑊 𝑝𝑖
(25)

where 𝐑𝐂𝐭+𝟏𝑊 is the rotation matrix that describes the orientation of
the camera frame with respect to the world frame and 𝑡⃗𝐶𝑡+1𝑊 is the
distance vector from world to camera expressed in world frame. The
next step is to calculate the pixel coordinates of each point using the
camera model Eq. (1).

Fig. 12(a) shows the 3D probability distribution of feature existence
expressed in the world frame. Fig. 12(b) shows these same points with
their associated probability in the image at 𝑡 + 1 after performing
the transformation between frames and mapping the 3D points in the
camera frame to 2D image points.

6.4. Determining candidate features

The last step of this method is to determine which of the detected
feature points will be considered as a possible matching candidate from
the probability points projected.

The feature points will be candidates if they are near projected
points with an associated probability, besides they will be assigned the
probability of the nearest point. To carry out this, the Nearest Neigh-
bour (Cover and Hart, 1967) method has been used, which calculates
the distances between the test data and each of the training data in
order to identify the nearest neighbour.

Given a set of training data 𝑝1, 𝑝2,… , 𝑝𝑛, and a distance function 𝑑,
the nearest neighbour search permits finding the closest point in the
training dataset to each query point 𝑞 according to Eq. (26). In the
APOFM, the training points are the projected points with an associated
probability, whereas the set of query points are the feature points
detected.

𝑁𝑁(𝑞) = arg min 𝑑(𝑝𝑖, 𝑞) (26)

𝑝𝑖

8

There are several types of distance functions which have been used
in the literature (Chomboon et al., 2015), such as Euclidean, Maha-
lanobis, Manhattan, Minkowsky, City-block, and Chebyshev. In this
paper, two of these distance metrics have been employed. In the first
place, the Mahalanobis distance, whose search of the nearest neighbour
has been carried out using the exhaustive method. This search method
finds the distance from each detected feature point to all 𝑛 projected
points with an associated probability. In the second place, the City-
block distance has been employed to find the nearest neighbour using
the Kd-tree algorithm (Bentley, 1975). Finally, each feature point is
classified using the distance between itself and its nearest neighbour.
Then, a specific threshold 𝜒 is imposed on the maximum distance for
a feature point to be considered as a candidate. The value of 𝜒 is
given by the chi-square inverse cumulative distribution function, with
𝑛𝑑𝑜𝑓 degrees of freedom, evaluated at a probability value. In this work,
𝑛𝑑𝑜𝑓 is equal to 2 since this is the dimension of the image points. The
probability value is chosen as the one that provides the best results,
according to the experiments performed in Section 7.1.

In summary, a feature point is classified as a candidate only if
𝑑(𝑝𝑖, 𝑞) < 𝜒 . On the contrary, the feature points which do not satisfy
this requirement are classified as not candidates and are not taken into
account in the next step.

Fig. 12(c) shows the projected points with an associated probability
and the detected SURF feature points in the image taken at 𝑡 + 1. After
solving the classification problem, the detected SURF feature points
which are classified as candidates are represented in Fig. 12(d), with a
specific colour based on its probability.

6.5. Image matching

This step consists in searching for similar features between a pair
of images, that is, two-dimensional features that are the re-projection
of the same 3D point across two different frames. A common approach
to this task is to compare all feature descriptors in the first image to
all other feature descriptors in the second image. After comparing all
feature descriptors using a similarity measure, the correspondence of a
feature is established by finding the nearest neighbour in the descriptor
space.

The problem of image matching can be formulated as follows (Hass-
aballah et al., 2016): after finding a set of interest points and extracting
the feature descriptors around each one as a vector of length M,
suppose that 𝑞11 is one of these points in the first image 𝐼1, and
𝐅𝟏
𝟏 = [𝑓 1

1 (1), 𝑓
1
1 (2)...𝑓

1
1 (𝑀)] is its feature descriptor. The aim is to find

he best matching point 𝑞𝑗2 from the set of 𝑁 feature points detected
n the second image 𝐼2 so, 𝑗 = 1, 2...𝑁 . To this end, the feature
ector 𝐅𝟏

𝟏 is compared with each keypoint descriptor extracted 𝐅𝐣2 =
𝑓 𝑗
2 (1), 𝑓

𝑗
2 (2)...𝑓

𝑗
2 (𝑀)] from 𝐼2 by means of a distance function such as

he Euclidean.

𝑗 (𝐅𝟏
𝟏,𝐅

𝐣2 ) = ‖

‖

‖

𝐅𝟏
𝟏 − 𝐅𝐣2‖

‖

‖

=

√

√

√

√

𝑀
∑

𝑖=1
(𝑓 𝑗

2 (𝑖) − 𝑓 1
1 (𝑖))

2 (27)

where 𝑗 = 1, 2...𝑁 and 𝑁 is the number of keypoints in 𝐼2. Once all
the distances are calculated, the nearest neighbour is searched, that is,
the one with the minimum distance 𝑑 . The feature point associated is
1𝑠𝑡
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Fig. 12. The 3D points with a probability (a) are transformed from the world frame to the camera frame at pose 𝑡 + 1. Then, they are projected on the image and their pixel
oordinates are obtained (b). Once the projected points and the detected SURF points are expressed in the image at 𝑡 + 1 (c), the process to extract SURF points as candidate
s carried out. Finally, we obtain a set of SURF points (candidates) with an associated probability (d). (For interpretation of the references to colour in this figure legend, the
eader is referred to the web version of this article.)
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ccepted as a correspondence of 𝑞11 only if this distance is smaller than
threshold.

However, this requirement is not enough to discard ambiguous
atches, and this is due to the fact that some descriptors are much more
iscriminative than others. For this reason, another condition based on
earest Neighbour Distance Ratio (NNDR) (Lowe, 2004; Mikolajczyk
nd Schmid, 2005) has been used to find the best match. This method
onsiders a matching is reliable only if the closest neighbour is signifi-
antly closer than the closest incorrect match. Thus, the distance ratio
etween the nearest 𝐅𝟏𝐬𝐭

𝟐 and the second nearest 𝐅𝟐𝐧𝐝
𝟐 image descriptor

s used.

𝑁𝐷𝑅 =
𝑑1𝑠𝑡
𝑑2𝑛𝑑

=
‖

‖

‖

𝐅𝟏 − 𝐅𝟏𝐬𝐭
𝟐

‖

‖

‖

‖

‖

‖

𝐅𝟏 − 𝐅𝟐𝐧𝐝
𝟐

‖

‖

‖

≤ 𝑡ℎ𝑟𝑎𝑡𝑖𝑜 (28)

where 𝑑1𝑠𝑡 and 𝑑2𝑛𝑑 are the Euclidean distances to the nearest and
econd nearest neighbour respectively. A correct match will have a
istance ratio lower than a specific threshold, whereas an ambigu-
us match or an incorrect match will have a distance ratio close to
ne (Hassaballah et al., 2019).

Taking all this information into consideration, the feature point
ssociated to the nearest feature descriptor (the one with minimum
uclidean distance) is considered as the best match only if this distance
s lower than a matching threshold (𝑡ℎ𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔) and the ratio between the
earest and the second closest match is smaller than a ratio threshold
𝑡ℎ𝑟𝑎𝑡𝑖𝑜).

As presented in the previous section, the APOFM employs the 3D
robability distribution to obtain the set of candidate points. In the
resent paper, we propose using this probability information to weigh
he matching search as well. On account of that, the improved APOFM
mploys a weighted and dynamic matching evaluated under three
 t

9

custom functions, as presented in Fig. 13. The value of the 𝑡ℎ𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔
is constant; by contrast, the 𝑡ℎ𝑟𝑎𝑡𝑖𝑜 value will depend on the function
used (step, linear or square). In the weighted matching with a step
function, which is shown in Fig. 13(a), only the projected probability
points whose associated probability is higher than a threshold (𝑃𝑚𝑖𝑛)
are considered. The points whose probability is lower than 𝑃𝑚𝑖𝑛 are
not considered in the matching search. In the weighted matching with
a linear function, which is shown in Fig. 13(b), all the projected
probability points are taken into account and the value of the 𝑡ℎ𝑟𝑎𝑡𝑖𝑜
is established according to the associated probability and a linear
function. In the weighted matching with a square function, which is
shown in Fig. 13(c), all the projected probability points are taken into
account and the value of the 𝑡ℎ𝑟𝑎𝑡𝑖𝑜 is established according to the
ssociated probability and this function.

. Results

In order to have objective evidences of the performance of this
ork, this section presents results evaluated in a publicly available
ataset, with the inclusion of a benchmark of the different methods
ntroduced in Table 1. As stated in the introduction, one of the goals
f this work is to compare the performance of the improved APOFM
Section 6) solving the visual odometry with a SM (Hartley and Zis-
erman, 2003) described in Section 4. In addition to this, given that
he main feature of the APOFM is the optimization of the matching
earch regarding to false positives, we have also compared SM with
utlier rejection by means of RANSAC (Scaramuzza, 2011). The code
mplemented for this purpose is an open-source available in Yan (2011)
hich has been adapted to estimate the essential matrix. After perform-

ng a study, the values of the RANSAC parameters have been optimized

o obtain the best estimation of the relative pose. We denote it as
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Fig. 13. Value of 𝑡ℎ𝑟𝑎𝑡𝑖𝑜 based on (a) step, (b) linear or (c) square function.
able 1
ummary of the different methods and variations employed during the experiments.
Identification Method Function 𝑡ℎ𝑟𝑎𝑡𝑖𝑜 Parameters of the function

SM Standard method (Hartley and Zisserman, 2003) – –
SM+RANSAC Standard method and RANSAC to remove outliers (Scaramuzza, 2011) – –
WM-SF0.6 Improved APOFM Step (Fig. 13(a)) (𝑡ℎ𝑟𝑎𝑡𝑖𝑜)𝑓𝑖𝑥𝑒𝑑 = 0.4 and 𝑃𝑚𝑖𝑛 = 0.6
WM-SF0.7 Improved APOFM Step (Fig. 13(a)) (𝑡ℎ𝑟𝑎𝑡𝑖𝑜)𝑓𝑖𝑥𝑒𝑑 = 0.4 and 𝑃𝑚𝑖𝑛 = 0.7
WM-LF Improved APOFM Linear (Fig. 13(b)) (𝑡ℎ𝑟𝑎𝑡𝑖𝑜)𝑚𝑎𝑥 = 0.4
WM-SqF Improved APOFM Square (Fig. 13(c)) (𝑡ℎ𝑟𝑎𝑡𝑖𝑜)𝑚𝑎𝑥 = 0.4
SM+RANSAC. These comparisons are carried out using images taken
with two different types of wide field of view cameras: fisheye and
catadioptric.

In this regard, we have used the image dataset available in Robotics
and Perception Group, University of Zurich, Switzerland (2013) and
Zhang et al. (2016) composed by synthetic images generated with
Blender. These images were rendered with two different camera models
(fisheye and catadioptric) that were moving along the same trajectory
in an indoor pixels for the fisheye model (180◦ FOV), and another
sequence with the same number of images and resolution for the
catadioptric model have been obtained.

On this matter, two plots have been obtained for each experiment,
one using images captured by the catadioptric camera (they will be
on the left side of the figures in the following subsections) and the
other with images captured by the fisheye camera (these will be on
the right side) and a comparative evaluation is performed. Altogether,
six methods are considered which are summarized in Table 1. The
first of them is the Standard Method (SM) and the remaining ones
are variations of the improved APOFM, denoted in this section as WM
(Weighted Matching). Focusing attention on the latter, the changes are
related to the feature matching search step (Section 6.5). The second
method (WM-SF0.6) considers a Step Function (SF) (Fig. 13(a)) to set
𝑡ℎ𝑟𝑎𝑡𝑖𝑜, with 𝑃𝑚𝑖𝑛 = 0.6. The third method (WM-SF0.7) considers the
same function with 𝑃𝑚𝑖𝑛 = 0.7. The fourth method (WM-LF) uses a
Linear Function (LF) to set 𝑡ℎ𝑟𝑎𝑡𝑖𝑜 (Fig. 13(b)) with (𝑡ℎ𝑟𝑎𝑡𝑖𝑜)𝑚𝑎𝑥 = 0.4
and, finally, method 5 (WM-SqF) makes use of a Square Function (SqF)
(Fig. 13(c)) with (𝑡ℎ𝑟𝑎𝑡𝑖𝑜)𝑚𝑎𝑥 = 0.4.

7.1. Parameters: 𝛥𝑔𝑟𝑖𝑑 and 𝜒

The APOFM depends mainly on two parameters. The first one is
the value of 𝜒 , as mentioned in Section 6.4. This parameter is the
threshold that determines if a detected feature point is a candidate to
be a matching feature according to the distance between itself and the
nearest projected probability point. The second parameter delimits the
number of test points 𝑛𝑡 that the GP has to treat.

Thus, the first experiment tries to evaluate the influence of these
parameters upon the localization error and computation time. Thereby,
the experiment will permit selecting optimum values for both param-
eters: 𝜒 and 𝛥𝑔𝑟𝑖𝑑, so that the localization error is small and the
computation time is admissible. Given that the third method (WM-
SF0.7) is the most restrictive in comparison with the other proposed
methods (i.e. fewer feature points are candidates), it has been employed
for this experiment.
10
Therefore, the algorithm will be run for different values of 𝜒 and
𝛥𝑔𝑟𝑖𝑑 whereas the values of the other parameters are fixed. A range
of possible values for 𝜒 and for the 𝛥𝑔𝑟𝑖𝑑 has been defined. For each
possible combination of values of these parameters, the relative pose
between each image of the dataset (𝑡) and its three successive ones
(𝑡 + 1, 𝑡 + 2, 𝑡 + 3) has been calculated. Then, the mean value of
all localization errors obtained at each iteration is calculated. Fig. 14
shows the translation error (i.e. the error when the azimuth 𝜙 angle is
estimated) which is shown with a specific colour based on its value. It
is worth highlighting that, in some cases, it is not possible to estimate
the relative pose because the number of correspondence pairs are not
enough to obtain the essential matrix. These cases are represented
with white colour in Figs. 14 and 15. It usually happens when (a) the
value of 𝜒 is small and (b) the value of the 𝛥𝑔𝑟𝑖𝑑 is high. The first
condition denotes that 𝜒 is more restrictive in terms of distance and,
consequently, the number of feature points considered candidates will
be fewer. As a result of the second condition, the probability model of
the environment will be represented by a low number of points, and
the result is a loss of 3D information.

As Fig. 14 shows, the behaviour is different for each type of camera.
In the case of the catadioptric vision system (Fig. 14(a)), the error is
smaller when the value of the 𝛥𝑔𝑟𝑖𝑑 is low, and the value of 𝜒 is high;
in other words, when the method is less restrictive (i.e. there are more
points to represent the scene and more feature points are considered as
candidates). In the case of the fisheye camera (Fig. 14(b)), the smallest
error is obtained when both parameters take values in the middle of
the range of possible values.

Next, Fig. 15 shows the computation time of the process. In this
case, the influence on the calculation time is the same, regardless of the
camera type. In both cases, the time is shorter as the 𝛥𝑔𝑟𝑖𝑑 is increased.
This result makes sense given that the higher the value of the 𝛥𝑔𝑟𝑖𝑑, the
lower the number of test points is. This means that the number of points
that the GP has to treat is lower and, as a consequence, the computation
time is also lower. As regards the 𝜒 parameter, it can be observed
that when it increases, so does the computation time. We could expect
this fact since this means that more SURF points are considered as
candidates, so both the matching search and the GP (training points)
have to process more data in terms of points. However, the increment
of the computation time is small compared to the one caused by the
𝛥𝑔𝑟𝑖𝑑. Therefore, we can say that the GP has more influence on the
computation time than the other parts of this process (e.g. the image
processing), and it does not depend on the camera type.

Taking all the above information into account, the values of 𝜒 and
𝛥𝑔𝑟𝑖𝑑 have been chosen to obtain a good balance between error and
time for both kinds of cameras. As for the value of the 𝛥𝑔𝑟𝑖𝑑, the
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Fig. 14. The influence of the values of the 𝛥𝑔𝑟𝑖𝑑 and 𝜒 upon the translation error when using either (a) a catadioptric or (b) a fisheye camera.
Fig. 15. The influence of the values of the 𝛥𝑔𝑟𝑖𝑑 and 𝜒 upon the computation time when using either (a) a catadioptric or (b) a fisheye camera.
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selected value is 0.15, since the results obtained in both cases show
a good balance. While it is true that they are better for the catadioptric
camera, higher values could lead to a case in which it is not possible to
estimate the pose. Additionally, according to Fig. 15(b), the best result
for this 𝛥𝑔𝑟𝑖𝑑 occurs when 𝜒 is 0.018, so in the following sections, the
xperiments are carried out with these optimum values.

.2. Number of feature matches

This subsection studies the number of SURF feature points corre-
ponding to the next image 𝐼𝑡+1 that have been considered in the search
f matching features, and how many of them have found matches in
he current image 𝐼𝑡. Fig. 16 shows the number of these sets of points
onsidering images captured in different times, labelled as 𝑑1, 𝑑2, 𝑑3.
he first distance specified as 𝑑1 (Fig. 16(a) and (b)) denotes that
he algorithm considers the images 𝐼𝑡 and 𝐼𝑡+1. The second distance
pecified as 𝑑2 (Fig. 16(c) and (d)) means that the algorithm estimates
he relative pose between the images 𝐼𝑡 and 𝐼𝑡+2. Finally, in the case
f 𝑑3, the images taken at 𝑡 and 𝑡 + 3 have been employed (Fig. 16(e)
nd (f)). In each sub-figure, the columns denote number of points (left
xis). The first column corresponds to the SM, so it represents all SURF
 i

11
oints detected in the next image 𝐼𝑡+𝑖 (where 𝑖 = 1, 2, 3) and the number
f them which have been found as a match in the current image 𝐼𝑡.
n the second column, the same results are represented but employing
ANSAC to estimate the essential matrix. The other columns show the
esults when the improved APOFM with specific variations is employed
Table 1). In these cases, the points considered in the searching of
atching features are the candidate points (Section 6.4), therefore the
umber of these points and how many of them have been found as
atch are represented in each one of these columns.

Firstly, we analyse the results of the SM with each type of camera.
ven though the number of detected SURF points is higher for the
isheye camera, the results show that the number of feature matches is
igher for the catadioptric camera. This effect is likely to appear when
he field of view is higher. Comparing to SM, the number of matches
ith SM+RANSAC is lower, as expected, since it removes those matches

hat do not fit well the model. It leads to lower values of matching ratio,
specially with fisheye images.

Secondly, about the APOFM, comparing the number of candidate
oints, it can be said that more points have been determined as candi-
ates with the fisheye camera than with the catadioptric one. However,
f we calculate the ratio between them and the number of matching
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Fig. 16. Number of SURF points and ratio between the number of considered and matched points in the next image 𝐼𝑡+𝑖, with (a), (b) 𝑖 = 1; (c), (d) 𝑖 = 2 and (e), (f) 𝑖 = 3. The
left axis shows the total number of points (num SURF ■); the number of them that have found a match in the current image 𝐼𝑡 using SM (Standard Matching ■); the number of
points considered as candidates by the APOFM (num candidates ■) and how many of these latter have found matches (Proposed Matching ■). The right 𝑦-axis shows the ratio −■−
etween the number of feature points used during the matching step and the number of them that have found a match. (For interpretation of the references to colour in this
igure legend, the reader is referred to the web version of this article.)
g
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oints (this ratio is represented as an orange tendency whose values
re shown in the right axis of Fig. 16), the catadioptric camera provides
etter results. In other words, many candidate points are not found as
orrespondence in the case of the fisheye camera. This may be due
o the fact that these candidates are extracted by metric distance to
rojected points with an associated probability (pixel frame). However,
 v

12
iven the nature of the fisheye images, the reprojected rays of these can-
idates might be practically coincident with more than one 3D point.
s a result, several 3D points might be associated with the same pixel

ocation, thus losing the coincidence of their visual descriptors. Finally,
he matching discards these points since it does not find corresponding
isual descriptor.
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Fig. 17. Distribution of the number of false positives in the images captured by (a) catadioptric and (b) fisheye camera. The SM and the variations of the improved APOFM
WM-SF0.6, WM-SF0.7, WM-LF and WM-SqF) have been compared.
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Considering the number of feature points, the third method WM-
F0.7 provides the best results for both types of cameras since the ratio
s high in this case. Even so, it is necessary to study its behaviour re-
arding the false positives and the localization error before determining
f this method is the best one.

To complete this section, we discuss the effect of the distance
etween the images in the number of matched points (i.e. 𝑑1, 𝑑2,
3). After observing the results achieved for each distance with the
atadioptric camera (Fig. 16(a), (c) and (e)), and with the fisheye
amera (Fig. 16(b), (d) and (f)), the conclusion is that, regardless the
ype of camera, the number of matches is lower when the distance
etween the images is higher. This difference of matches is lower in
he case of the catadioptric camera.

.3. False positives

A high number of feature matches does not indicate per se that
specific method is more effective. It is true that the higher the

umber of matches, the more information about the relative motion,
nd consequently, the localization error is expected to be smaller.
owever, as mentioned in Section 6.5, some of these matches may
e false positives and may lead to a wrong estimation of the relative
amera pose.

In this sense, Fig. 17 shows the number and distribution of false
ositives with each method by means of a boxplot. Each one represents
ll the false positives between the current image 𝐼𝑡 and the three
uccessive ones 𝐼𝑡+1, 𝐼𝑡+2 and 𝐼𝑡+3. Once the plots have been observed,
he conclusion is that the range of the number of false positives is
reater using the SM than using the variations proposed in this work.
n particular, the third proposal WM-SF0.7 demonstrates a more con-
ensed distribution, fact that implies a lower number of false positives,
ut also less dispersion.

Even though the results for the SM and SM+RANSAC seem similar,
here is a small decrease in the number of false positives. Still, this
ifference is much more significant with the improved APOFM.

After keeping the result obtained in this subsection as well as the
revious ones in mind, it can be said that the feature matches are more
obust in all cases in which the improved APOFM has been employed,
ince the number of false positives is smaller, though this implies that
ome true positives have also been eliminated. For this reason, it is
lso necessary to study the localization error, based on the method
mployed.

Regarding the type of camera, there are fewer false positives in

he images taken by a fisheye camera than by a catadioptric camera.

13
Furthermore, the lower whisker of the boxplots does not exist for the
improved APOFM since the median is near to zero. In the majority of
the iterations to obtain the relative pose, the number of false positives
obtained is between zero and a small value.

7.4. Localization error

One of the aims of the work is to solve the localization problem;
hence it is necessary to make a study about the error obtained after
estimating the relative pose with each of the methods. Two different
distance measures have been applied to determine the candidate fea-
ture points. As mentioned in Section 6.4, they are the Mahalanobis
distance (exhaustive search algorithm) and City-Block distance (kd-tree
search algorithm). Figs. 18 and 19 show the angular error made in the
estimation of the relative pose by means of a bar graph, where the
first bar corresponds to the error using the SM. Each variation of the
improved APOFM has two bars. The first one shows the error using the
Mahalanobis distance to determine candidate feature points; the second
bar represents the angular error when the distance used is City-Block.
Fig. 18 shows the angular error after estimating the translation vector
(𝜙 and 𝛽), whereas Fig. 19 shows the orientation error (𝜃, 𝛾 and 𝛼).

After analysing Fig. 18, it can be deduced that the translation
rror is smaller using a fisheye camera than a catadioptric camera
ith the SM. In contrast to this, the improvement with regard to the

ranslation error can be appreciated better when the improved APOFM
all variations) is employed with the images taken by a catadioptric
amera. The translation error using RANSAC (SM+RANSAC) is lower
han without it (SM) and even similar to WM-SF0.6 for the fisheye
mages. Nevertheless, the use of the improved APOFM provides a more
recise solution for all remaining cases.

With respect to the distance metric, it can be observed that the
ity-Block with the fisheye camera leads to a smaller translation error,

ndependently of the proposed method case. In this sense, the behaviour
ith the catadioptric camera is different, the Mahalanobis distance

eems to be better to the second (WM-SF0.6) and fourth (WM-LF) case,
hereas the City-Block distance outputs a smaller error in the third

WM-SF0.7) and fifth (WM-SqF) case. All the same, a considerable
ifference of error between both distance measures can only be seen in
he third case when the feature points with an associated probability
igher than 0.7 are screened.

Finally, the angular error after estimating the orientation is studied.
s Fig. 19 shows, the rotation error behaves very similarly to the

ranslation error. However, it is worth highlighting that the low error
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Fig. 18. Translation error. Each subfigure shows the angular error employing SM (■) and the variations of the improved APOFM (Table 1: WM-SF0.6, WM-SF0.7, WM-LF and
WM-SqF) based on the distance used (Mahalanobis ■ and cityblock ■). The error estimating 𝜙 with a catadioptric camera is shown in (a) and with a fisheye lens in (b). The
error estimating 𝛽 with a catadiotric camera appears in (c) and with a fisheye lens in (d). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
achieved when the orientation is estimated, in contrast with the one
obtained in the translation vector estimation, being this mean angular
error below a remarkable value of 1◦.

8. Conclusion

In this work, the localization problem is solved using visual in-
formation. The basis of this method relies on the former approach
proposed in Valiente et al. (2018), which presented a visual information
fusion approach for Adaptive Probability-Oriented Feature Matching
(APOFM). Despite the fact that Valiente et al. (2018) exploited the
potential of GP to produce a 3D representation with probability of
feature existence towards obtaining a robust and adaptive matching,
several aspects have been improved in the present work.

The main goal of this work was to improve the former method and
to extend its application to images captured by a catadioptric and by
fisheye camera, so as to produce a consistent comparison between two
well-recognized vision systems within the field of visual localization. In
this context, we have benchmarked the improved APOFM against: (a) a
Standard Method (SM) (Hartley and Zisserman, 2003), (b) this SM with
outlier rejection by means of RANSAC (SM+RANSAC) (Scaramuzza,
2011) and (c) the basic APOFM (Valiente et al., 2018) (WM-SF0.6 and
14
WM-SF0.7). This comparative evaluation has comprised several varia-
tions associated to new contributions. This analysis appraises efficiency
and computation when using these two types of vision systems under
a publicly available dataset.

Additionally, we have presented an improved search method for
matching candidates with the support of a k-nearest neighbour clas-
sifier which matches the nearest projected point on the images (with
an associated probability) with a feature point, resulting in a match-
ing candidate. It has been implemented as a Kd-tree algorithm using
the City-block distance, and compared to an exhaustive search using
the Mahalanobis distance. Next, we have improved the use of visual
information in terms of the spatial probability distribution. In contrast
to the previous method, which only used such information for filtering
within a maximum probability those feature points allowed to result
in matching candidates, now we enhance its use to achieve a weighted
search of features, which dynamically adapts to the current probability
of feature existence by applying three probability-weighted variations
of the improved APOFM. Finally, a more reliable detection of false
positives has been introduced. It is supported by a design that evaluates
the pixel coincidence of the projected 3D point onto the image, assumed
as a matched point between two images. Thus, a match is tagged as a

false positive if the projection of its 3D point does not converge towards
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Fig. 19. Rotation error. Each subfigure shows the angular error employing SM (■) and the variations of the improved APOFM (Table 1: WM-SF0.6, WM-SF0.7, WM-LF and
WM-SqF) based on the distance used (Mahalanobis ■ and cityblock ■). The error estimating 𝜃 with a catadioptric camera is shown in (a) and with a fisheye lens in (b). The
error estimating 𝛾 with a catadiotric camera appears in (c) and with a fisheye lens in (d). The error estimating 𝛼 with a catadiotric camera appears in (e) and with a fisheye lens
in (f). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the same pixel point which was initially marked as a SURF point, within

a certain distance threshold.
15
Before producing comparative results, a preliminary experiment was

carried out in order to extract an optimum set of parameters for the
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GP computation. The execution of the method constraints the accuracy
with the computation load. This study reveals that a trade-off setup can
be established between the spatial resolution of the 3D testing points
in the probabilistic model (𝛥𝑔𝑟𝑖𝑑), and the distance threshold that
discerns whether a feature point is considered as a matching candidate
(𝜒). Although both vision systems, the catadioptric and the fisheye,
should be tuned with their specific trade-off setups, these experiments
considered the same value of 𝛥𝑔𝑟𝑖𝑑 and 𝜒 for both vision systems
test-bed, in order to ensure an acceptable balance.

After inspecting the comparative results between the catadioptric
and fisheye images, it can be confirmed that the improved APOFM
provides an enhanced accuracy and efficiency, comparing to SM, re-
gardless the sort of vision system employed, either catadioptric or
fisheye.

Regarding the performance of the three variations of the improved
APOFM, the results corroborate several benefits of these contributions.
First, they confer higher ratios of detected matching candidates, versus
the total amount of feature points, in comparison with the SM. Par-
ticularly, the method WM-SF0.7 returns the highest ratio. Notably, the
fisheye camera produces more matching candidates, however, due to
its nonlinear nature and field of view, the final set of matched points
is more reduced than the one provided by the catadioptric system.

As for the false positives detector, the proposed variations demon-
strate to outperform significantly both the SM and the SM+RANSAC.
The fisheye images perform better in this sense, fact that is justified by
the lower number of matched points in the last stage.

Finally, focusing on the accuracy of the visual localization, it can
be confirmed that the error associated to the relative pose estimation
is lower when a weighted matching search with the square function is
employed. Moreover, the best performance is obtained when the City-
block distance is used to establish which feature point is the nearest
to a certain projected point with an associated probability, and thus
obtaining a valid matching candidate. The outputs of the experimental
set lead to deduce that the catadioptric vision system produces lower
errors with all the methods with the improved APOFM approach. It
is noteworthy that the translation error, which typically is the worst
affected by noise and non-linearities of these lenses, is bounded by a
value under 1 degree (mean error) with the proposed variation of the
method (linear and square).

In summary, this work has validated the appropriateness of the
proposed contributions to deal with the visual localization problem.
The estimated relative pose is defined by five angular parameters, three
for the orientation and two for the translation, so this method presents
the inconvenient the translation vector is obtained with the exception
of the scale factor. Taking all these facts into account, the results have
evidenced to outperform the SM, as well as SM+RANSAC. Further-
more, the suitability of these implementations have been extensively
tested against a publicly dataset, which at the same time permitted
producing an extended evaluation and comparison over two of the most
commonly used vision systems in visual localization, within mobile
robotics.

The evaluation has been carried out in an indoor environment. As
future work, it will be interesting to employ this method using images
taken from an outdoor environment. Another future work could be to
compare the robustness of this method using a camera with a fisheye
lens and a vision system composed of two fisheye cameras pointing to
opposite sides (a full 360 degrees of view).
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