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Influences between time and space can be found in our daily life in which we are
surrounded by numerous spatial metaphors to refer to time. For instance, when we
move files from one folder to another in our computer a horizontal line that grows from
left to right informs us about the elapsed and remaining time to finish the procedure and,
similarly, in our communication we use several spatial terms to refer to time. Although with
some differences in the degree of interference, not only space has an influence on time
but both magnitudes influence each other. Indeed, since our childhood our estimations of
time are influenced by space even when space should be irrelevant and the same occurs
when estimating space with time as distractor. Such interference between magnitudes
has also been observed in monkeys even if they do not use language or computers,
suggesting that the two magnitudes are tightly coupled beyond communication and
technology. Imaging and lesion studies have indicated that same brain areas are involved
during the processing of both magnitudes and have suggested that rather than coding
the specific magnitude itself the brain represents them as abstract concepts. Recent
neurophysiological studies in prefrontal cortex, however, have shown that the coding
of absolute and relative space and time in this area is realized by independent groups
of neurons. Interestingly, instead, a high overlap was observed in this same area in
the coding of goal choices across tasks. These results suggest that rather than during
perception or estimation of space and time the interference between the two magnitudes
might occur, at least in the prefrontal cortex, in a subsequent phase in which the goal
has to be chosen or the response provided.

Keywords: monkeys, prefrontal cortex, time perception, working memory, magnitude processing

Einstein’s Theory of Relativity postulates that time and space are tightly coupled. This is, time
passes in the same way for all non-accelerating observers, but differently for observers traveling at
different speeds. Inspired by further questions formulated by Einstein, Piaget conducted a series of
experiments about time and space with children. These experiments led him to claim that “time
and space form an inseparable whole” (Piaget, 1927), although with some asymmetries in the
way that one magnitude influences the other. Such asymmetries can be found in language (Clark,
1973; Traugott, 1978; Alverson, 1994) and co-speech gestures (Nufiez et al., 2012). For instance,
when using language, it is common to use words or concepts borrowed from the spatial domain.
In English, expressions such as “long”, “short”, “move forward,” or “ahead of” are often used to
refer to time. Moreover, children learn first spatial than temporal terms and indeed metaphorical
expressions of spatial terms are used as temporal terms (Clark, 1973). Such metaphoric manner in
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which spatial terms are used to refer to time is not only found
in linguistics but also in the graphical representation of time. In
other words, specific spatial locations relative to a reference point
are generally used to indicate either “past” or “future” events
(Boroditsky, 2000; Torralbo et al., 2006). These findings have led
to metaphorical theories of mental representation that propose
that time and space influence each other in an asymmetrical way
(Lakoff and Johnson, 1999).

Recent studies have investigated whether the dependency
between the two magnitudes also exists when we merely think
about them. Indeed, it has been observed that the link between
time and space is not uniquely constraint to communication but
it is also present when estimating duration and dimension of
different stimuli (Xuan et al., 2007; Casasanto and Boroditsky,
2008) or when estimating the passage of time in spatial
environments of different sizes (De Long, 1981; Mitchell and
Davis, 1987). Moreover, brain lesions affecting spatial processing
also influence time estimation (Basso et al., 1996) whereas,
on the contrary, people with synesthesia exhibit enhanced
magnitude processing (Teuscher et al, 2010; Cohen Kadosh
et al, 2011). In addition, the discrimination of time, space,
and other magnitudes, obeys Weber-Fechners law (Stevens
and Greenbaum, 1966; Teghtsoonian and Teghtsoonian, 1978)
according to which the perceived change in the magnitude of a
stimulus is proportional to its initial value of magnitude. Based
on this experimental evidence, a Theory of Magnitude (ATOM)
proposes that a general neural mechanism is responsible for
the computation of magnitudes (Walsh, 2003). According to
ATOM, neurons encode, for instance, time and space in an
abstract manner independently of the specific magnitude. Besides
behavioral evidence, this theory has been also supported by
lesion studies showing time and space processing impairments
(Critchley, 1953; Basso et al., 1996). However, more recently,
independent groups of neurons with a domain-specific coding of
magnitude have been found in the prefrontal cortex (Genovesio
et al., 2012; Marcos et al., 2017).

INTERFERENCE BETWEEN SPACE AND
TIME IN BEHAVIOR

We use words from concrete domains to refer and to think about
abstract domains because concrete domains are the ones that
we can really experience. Such cross-domain use of semantic
terms can be found in our language and gestures when we
refer to love or time among other abstract concepts (Lakoff and
Johnson, 1980; Lakoff and Kovecses, 1987; McNeill, 1992). For
instance, metaphoric expressions such as, “Winter is coming”
(see Games of Thrones) or “The trip was short” are often used
to express temporal concepts and they shape our idea of time
through spatial metaphors. This occurs because we can perceive
the concrete but only imagine the abstract (Evans, 2004). For
instance, through experience, we learn about the spatial domain
because we can perceive the distance between two points or
the relative position of one object respect to another. Then, we
import terms and schemas from this domain to structure our idea
of time and to materialize what we have learned, also through

experience, about time, such as, that time always moves forward
and that all days have a beginning and an end.

Using non-linguistic tasks, psychophysics experiments have
examined the influence that time and space have on each other
(Casasanto and Boroditsky, 2008; Casasanto et al., 2010; Merritt
et al, 2010; Mendez et al., 2011). Casasanto and Boroditsky
(2008) tested the ability of humans to reproduce either the
duration or the spatial displacement of lines or dots displayed
on a screen. Both magnitudes were always presented and one
of them served as the testing variable while the other was
simply a distractor. Participants’ estimations of duration were
influenced by the spatial displacement but not vice versa.
Moreover, the effect was not related to a difference in accuracy
between duration or displacement estimates and was also
observed when participants were given prior knowledge about
the magnitude to attend to. Interestingly, spatial influence on
duration estimates was sensory independent and also present
when the duration of the stimuli was provided through visual
and auditory modalities. Thus, the effect of space on time
was robust across the different experimental manipulations.
Moreover, similar to linguistic metaphors, the results suggest that
mental representations of time rely on mental representations of
space.

A subsequent study examined whether the mental
representation of time in adults emerges after cognitive
development or whether it already exists in young children
(Casasanto et al.,, 2010). To do that, the authors ran a series
of experiments in children aged from 4 to 6 and from 9 to 10
years old. The experiments were analogous to those in adults
(Casasanto and Boroditsky, 2008). Although children’s ability to
judge temporal and space magnitudes was equivalent they were
more influenced by the spatial components during temporal
estimations than vice versa. This result confirms that children
exhibit the same asymmetry found in adults for estimations
of time and space. Therefore, together with previous studies,
the dependency between time and space in non-linguistic tasks
in humans seems to be asymmetrical, similar to the influence
observed during communication.

SHARED MECHANISM FOR MAGNITUDE
ESTIMATIONS

Some behavioral mechanisms are common to several magnitude
estimations. For instance, independently of whether subjects are
estimating time, distance, or length, there is a tendency, that
increases for large sample ranges, to estimate values which are
biased toward the mean of the distribution (Hollingworth, 1910;
Stevens and Greenbaum, 1966; Teghtsoonian and Teghtsoonian,
1978; Jazayeri and Shadlen, 2010; Petzschner and Glasauer,
2011). Bayesian models have explained such general behavioral
phenomena as the result of integrating prior experience and noisy
sensory information (Jazayeri and Shadlen, 2010; Petzschner
and Glasauer, 2011). Likewise, magnitude sensitivity is similar
in different domains using time, space, and number tasks
(Hauser et al., 2000; Brannon et al., 2006; Halberda et al.,
2006; Beran, 2007). Additionally, a close connection between
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numbers and space has been observed, in which numbers can
have a continuous spatial representation organized along a
“mental number line” with, at least in Western culture, small
numbers on the left side of space and large numbers on the
right (Restle, 1970; Dehaene et al., 1990, 2003a; Hubbard et al.,
2005). Numerical processing can cause shifts in covert attention
as a function of their magnitude (Casarotti et al.,, 2007; Dodd
et al.,, 2008; Nicholls et al.,, 2008), influence motor planning
leading to faster responses toward left for small numbers and
toward right for big numbers (Fischer, 2003; Fischer et al,
2004) and impact high-level cognitive processes such as, non-
propositional reasoning (Brunamonti et al., 2011). On the
other hand, visuospatial variables, such as, spatial cueing or
visual hemifield presentations, can also influence numerical
comparisons (Lavidor et al., 2004; Nicholls and Mcllroy, 2010).
All these experimental evidence have led to the idea of ATOM
that proposes that there is a common processing mechanism for
magnitudes.

Functional = neuroimaging,  neuropsychological, = and
neurophysiological studies (Critchley, 1953; Basso et al,
1996; Dehaene et al., 2003a; Fias et al., 2003) have also supported
the theory of a general mechanism for magnitude processing. For
instance, a Positron Emission Topography (PET) study in which
monkeys were trained to perform a duration discrimination
task (Onoe et al., 2001) showed that the dorsolateral prefrontal
cortex and the inferior parietal lobe were activated during task
duration performance and that both areas are also involved in
the coding of the spatial properties of a task. Another example
is the neurophysiological study performed with monkeys by
Leon and Shadlen (2003). In this study, the authors showed that
neurons in the posterior parietal cortex, an area involved in
spatial processing, modulated their activity with the monkeys’
perception of elapsed time (Gottlieb et al,, 1998; Colby and
Goldberg, 1999; Bisley and Goldberg, 2003). Moreover, deficits in
both space and time are found after parietal damage (Critchley,
1953).

Additionally, Merritt et al. (2010) investigated whether the
relationship between time and space was similar in humans
and in non-human primates. Two rhesus monkeys and 16
adult humans had to classify the space or duration of a line
displayed on a screen as long or short. Both magnitudes were
presented but humans and monkeys had to attend to only one
of them while the other was irrelevant. Humans showed an
asymmetrical dependency between time and space, exhibiting a
higher bias in their responses when they classified line durations
as short or long (Figure 1A) than when they classified line
lengths (Figure 1B). On the contrary, monkeys exhibited a large
effect in their behavior of both, space on time (Figure 1C)
and time on space (Figure 1D). One possible explanation for
the differences in behavior between humans and monkeys
might be due to the language capability, which is absent in
monkeys. During linguistic communication, spatial terms are
often used to refer to time and that might create an asymmetrical
dependency between the two magnitudes even during non-
linguistic scenarios. Another possibility is that humans, but not
monkeys, are exposed to spatial representations of time through
different technologies, such as, the horizontal line that indicates

the elapsed and remaining time of a movie displayed on a
computer.

SPACE AND TIME IN THE BRAIN

Prefrontal and posterior parietal cortices play an important role
during magnitude processing (Nieder et al., 2002, 2006; Dehaene
et al., 2003b, 2004; Walsh, 2003; Nieder and Miller, 2004).
Both areas have been extensively studied in a variety of spatial
processing tasks in monkeys (Wilson et al., 1993; Rainer et al,,
1998; Colby and Goldberg, 1999; Bisley and Goldberg, 2003) and
humans (Astafiev et al., 2003; Merriam et al., 2003; Orban et al.,
2004), as well as in time-interval judgements experiments (Onoe
etal.,2001; Leon and Shadlen, 2003; Genovesio et al., 2006). Thus,
a frontoparietal network of neurons seem to be involved in the
representation of temporal and spatial information (Walsh, 2003;
Buhusi and Meck, 2005; Merchant et al., 2013) and, interestingly,
the same magnitude across different modalities, such as, the
number of visual or auditory events, seems to be represented by
the same neurons in the frontal lobe (Nieder, 2017). Moreover,
modulation of the neural activity associated with timing has
been found in the cerebellum (Perrett, 1998), basal ganglia (Jin
et al., 2009), thalamus (Tanaka, 2007), posterior parietal cortex
(Leon and Shadlen, 2003), prefrontal cortex (Brody et al., 2003;
Genovesio et al., 2006, 2009, 2015; Oshio et al., 2008; Marcos
et al,, 2017), and premotor cortex (Lucchetti and Bon, 2001;
Lebedev et al, 2008; Mita et al., 2009; Merchant et al., 2011;
Confais et al., 2012).

A neurophysiological study in macaques with recordings
from neurons in the prefrontal cortex tested whether absolute
duration and distance was coded by the same neural population
(Marcos et al., 2017), testing whether a common magnitude’s
representation system exists in this area. Two monkeys were
trained to perform two tasks: a duration and a distance
discrimination task (Figure 2A). They had to select which of
two stimuli, sequentially presented on a screen, had lasted longer
or was presented farther from a reference point. The durations
varied within the 200-1,200 ms range, in steps of 200 ms, while
the range of distances changed from 8 to 48 mm, in steps of 8 mm,
and were never the same for both stimuli. The performance of
both monkeys was high, with a mean of 79 and 81% of correctly
classified trials in the duration and the distance tasks, respectively
(see also Genovesio et al., 2009, 2011 for further details). Neurons
were classified based on their response during the delay period
that followed S1 presentation (D1), because it is in this period
when S1 duration could be determined. From the initial group
of neurons recorded in the prefrontal cortex (n = 428), a total
of 113 significantly represented long (1,000-1,200 ms) or short
(200-400 ms) durations of S1 while 41 neurons coded long (40-
48 mm) or short (8-16 mm) distances of S1. From the two groups
only 13 neurons, 11.5 and 31.7% of the duration- and distance-
related neurons, exhibited a significant modulation of their
response for both magnitudes (Figure 2B). From this subgroup,
9 neurons showed a congruent preference across tasks, but the
total number of overlapping neurons (13) was, however, not
significant, indicating that the coding of duration and distance
is performed independently in the prefrontal cortex. Consistent
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FIGURE 1 | Humans and monkeys judgements of duration and line length (adapted from Merritt et al., 2010). (A) Humans estimations of stimulus duration (relevant
variable) when crossed with three different values of line length (irrelevant variable): short (6 cm), medium (12 cm), and long (24 cm). (B) Humans estimations of line
length (relevant variable) when crossed with three different values of duration (irrelevant variable): short (1,000 ms), medium (2,000 ms), and long (4,000 ms). (C) Same
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with this result, the mean firing rate of the two groups of neurons
(113 and 41 neurons) showed a difference in response between
preferred and non-preferred conditions for the magnitude that
they significantly coded but not for the other (Figure 2C).
Similar to Marcos et al. (2017) and using the same
experimental tasks, Genovesio et al. (2012) reported that neurons
in prefrontal cortex also coded the relative duration and distance
of the two stimuli in a domain-specific way. The relative
magnitude was coded in the early decision period and was
dissipated later. Interestingly, contrary to the high independency
showed by the neurons representing the relative value of a
specific magnitude, the great majority of neurons coded the non-
spatial prospective goal (Rainer et al., 1999; Saito et al., 2005;
Kusunoki et al., 2009)—the choice that will be subsequently
selected (red or blue stimulus)—in a congruent way in both tasks.
In particular, 92% of goal selective cells shared not only the same
goal preference in the two tasks but also the same preference
in a control matching to sample task that did not require
any magnitude discrimination and that, therefore, allowed to
unmistakably classify the neurons as goal selective. Consistent
with the idea of goal coding, their goal selectivity persisted

until the response could be provided. This result suggests that
an interplay between magnitudes might occur in the prefrontal
cortex at the level of goal choices rather than at the level of
perceptual decisions.

Additionally, with the same dataset, Genovesio et al. (2016)
found that neurons in the prefrontal cortex distinguished
whether a delay interval (D1 and D2 in Figure 2A) was short or
long in a context-dependent way. Therefore only a minority of
the neurons coded the delays” durations in both tasks. Moreover,
the authors also observed an independency in the neurons
coding the first and second delay within a task showing that
neurons distinguished between short and long durations not
only across but also within tasks. Interestingly, when a neuron
did code the elapsed duration of the two delays it did so
in an uncorrelated or weakly correlated way. Such a context
dependent timing representation suggest that prefrontal cortex
keeps track of specific intervals. This specificity could help
making foraging choices between patches of resources that take
into account their relative locations, the effort to reach each
patch and the relative amount of the resources (Genovesio et al.,
2014). Similar high independency in the neural groups coding
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FIGURE 2 | Duration and distance discrimination tasks (adapted from Marcos et al., 2017). (A) Temporal sequence of event during a trial. Each trial started with a
pre-stimulus period in which monkeys were required to press and hold the central switch of the infrared array and was followed by the presentation of the first stimulus
(S1). A delay period (D1) separated S1 offset from the presentation of the second stimulus (S2). After S1 offset, a second delay period (D2) preceded the
reappearance of the two stimuli (targets), acting as “Go” signal, instructing the monkeys to choose the target that had either lasted longer, in the duration task, or had
appeared farther from the central reference point, in the distance task. (B) Number of neurons with duration-related activity (n = 100), distance-related activity (n = 28)
or duration- and distance-related activity (n = 13). (C) Mean firing rate for preferred and non-preferred conditions of the population of neurons previously classified as

paired-sample t-test with Bonferroni correction).

having duration- (Top panels) or distance-related (Bottom panels) modulation during the duration (Left panel) and distance (Right panel) tasks ("o < 0.05/24,

delays’ durations was also observed for the representation of the
relative duration of two stimuli (Genovesio et al., 2015). These
results show a high context dependency in the representation
of time in the prefrontal cortex. Rather than coding the time
in an abstract manner, as a common timing mechanism, the
neural representation of time in prefrontal cortex seems to
be highly context dependent at the single cell level. Thus,
neurons in prefrontal cortex do not only code magnitudes
in an independent way but also the same magnitude in a
context-specific way, supporting the hypothesis that in this area
the interference between magnitudes probably occurs at the
level of goal choices rather than at the level of magnitudes
coding.

CONCLUSIONS

Several studies have shown a clear interference between
estimations of space and time. Spatial metaphors about time are
often encountered in our daily communication and thoughts
and are present also in the technological tools that we daily
use (Lakoff and Johnson, 1980; Lakoff and Kovecses, 1987;
McNeill, 1992). Interestingly, such interference between the
two magnitudes emerges since our childhood (Casasanto et al.,

2010). The neural mechanisms of that interference are, however,
not fully understood. To shed light on this issue, several
studies have focused on the neural overlap between brain areas
during the perception or estimation of space and time, using
functional neuroimaging techniques or through lesion studies.
In these cases, a high overlap in the activation of specific
brain areas during the estimation of both magnitudes have
been observed suggesting a fronto-parietal network of neurons
processing magnitudes in a general domain (Walsh, 2003; Buhusi
and Meck, 2005; Merchant et al, 2013). Moreover, lesions
of some brain areas influence the estimation of both space
and time leading also to the idea of a general mechanism
for magnitude processing (Critchley, 1953; Basso et al., 1996).
However, these approaches allow only for a low spatial
and temporal resolutions. A better resolution power can be
obtained using neurophysiological techniques. Indeed, recent
neurophysiological studies have investigated the coding of space
and time at the single-cell level (Genovesio et al., 2012; Marcos
et al., 2017). Neurons in the prefrontal cortex represent the
absolute and relative values of distance and duration in a
domain-specific way whereas, interestingly, they code the goal
choices in a general manner. This opens the question of
whether, at least in prefrontal cortex, in tasks with multiple
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domains the interference between magnitudes occurs during
their perception and/or estimation or whether it occurs only
in a subsequent step when the goal has to be chosen, as
suggested by Genovesio et al. (2012). We cannot rule out the
possibility that other parts of the brain, such as, the parietal
cortex, can have domain-general representations considering
that some parietal cortex neurons represent the same rule
in both spatial and numerical domains (Eiselt and Nieder,
2013).
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