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Modelado y autooptimizacion en esquemas
paralelos de backtracking
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Resumen— En este trabajo se estudia el modelado
del tiempo de ejecuciéon de esquemas paralelos de back-
tracking. Se estudian diferentes esquemas de progra-
macién identificando pardametros que influyen en el
tiempo de ejecucién. Se propone una metodologia
de optimizacién basada en la seleccién automatica de
parametros para obtener ejecuciones con un tiempo
reducido. Se estudian las propiedades que deberia
tener un esquema algoritmico secuencial de backtrack-
ing para poder realizar internamente la paralelizacién.
De esta manera se pretende abstraer a los usuarios
finales de las complejidades de la programacién para-
lela.

Palabras clave— autooptimizacién, programacién pa-
ralela, recorridos de arboles, esquema algoritmico de
backtracking.

I. INTRODUCCION

ADA vez es mds habitual la apariciéon de

méquinas multiprocesadores capaces de acele-
rar la resolucién de problemas computacionales de
alto coste. En los tltimos dos o tres anos, estas
maquinas estan adquiriendo mayor importancia con
la aparicién de los multicores en los ordenadores per-
sonales. Por este motivo, este campo ya no solo
queda reservado a grupos reducidos de usuarios y se
extiende a todos aquellos que utilizan un PC. Sin em-
bargo, las rutinas paralelas traen consigo pardmetros
que deberemos seleccionar correctamente para mi-
nimizar el tiempo de ejecucién: niimero de proce-
sadores a utilizar, nimero de hilos, geometria de la
malla de procesos, tamanos de los bloques de comuni-
cacién. .. [1] Seleccionar una configuracién adecuada
para estos parametros no es una tarea sencilla. In-
cluso un usuario experto en paralelismo seria inca-
paz, a primera vista, de dar con la configuracion
o6ptima o simplemente adecuada para ejecutar las
rutinas en maquinas totalmente distintas. Por este
motivo, para que las rutinas puedan ser usadas de
manera eficiente por los cientificos que necesitan de
paralelismo pero no son expertos en computacion pa-
ralela, es necesario que el proceso de seleccién de
parametros sea automatico y transparente al usuario,
y si es posible que incluso la obtencién de un pro-
grama paralelo se realice de forma automaética a par-
tir de cédigo secuencial.

Desde hace algunos anos se han desarrollado
técnicas de autooptimizaciéon de rutinas paralelas
con el fin de conseguir rutinas que se adapten au-
tomaticamente a las caracteristicas del sistema de
computo, reduciendo el periodo de tiempo necesario
para tener rutinas optimizadas para un nuevo sis-
tema. Entre otros campos, las técnicas de autoop-
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timizacion se han venido aplicando en problemas de
algebra lineal [2, 3, 4], trabajos sobre las transfor-
madas de Fourier [5], sistemas de altas prestaciones
[6]...

Una de las técnicas para el desarrollo de rutinas
con capacidad de autooptimizacién se basa en la
parametrizacién del modelo de tiempo de ejecucion.
Esta técnica se ha aplicado a rutinas de algebra li-
neal con paso de mensajes [7], a la mejora de una
jerarquia de librerias de algebra lineal con autoopti-
mizacién [3], al disefio de polilibrerias para acelerar
la computacién en dlgebra linear [8] y se ha analizado
la posibilidad de adecuarla a entornos heterogéneos
[9, 10]. Ademsds, en la propuesta de desarrollo futuro
de ScalLAPACK se incluye la posibilidad de utilizar
parametrizaciéon para obtener rutinas que sean mas
faciles de usar y que se ejecuten de manera mas efi-
ciente [11].

Mas recientemente se ha empezado a trabajar en
la aplicacién de este tipo de técnicas a esquemas al-
goritmicos paralelos [1], por ejemplo en algoritmos de
divide y venceras [12], de programacién dindmica [13]
y en recorrido de drboles de soluciones [14]. También
se trabaja en la aplicacion de heuristicas en el mapeo
de tareas sobre sistemas heterogéneos [13, 15, 16].

Seria interesante incorporar estas técnicas de au-
tooptimizacién a esqueletos algoritmicos paralelos.
De esta manera se simplificard al usuario la progra-
macién, abstrayéndole tanto del paralelismo como
de la optimizacién. Los usuarios solo tendrian que
programar en secuencial los fragmentos del esquema
necesarios. Internamente se paralelizaria el problema
eligiendo los mejores parametros para su ejecucion.
Hay multitud de trabajos sobre diseno de esqueletos
paralelos [17], algunos de ellos dedicados a técnicas
de recorrido de drboles [18, 19].

En este documento se resume el trabajo [20] donde
se estudian los mecanismos de autooptimizacion en
esquemas paralelos de backtracking. En los esquemas
de recorrido de arboles de soluciones se presenta la
dificultad adicional de estimar el ntimero de nodos
generados, lo que depende no solo del algoritmo y
el tamano del problema, sino también de la entrada
particular a resolver.

El contenido de este documento se estructura en
una primera parte donde se estudia el modelado de
los recorridos secuenciales, asi como los resultados
experimentales (Seccién II). En la segunda parte nos
centramos en esquemas paralelos (Seccién III), su
modelado (Seccién IV) y los experimentos realizados
(Seccién V). Para finalizar se resumen las principales
conclusiones y los trabajos futuros (Seccién VI).
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II. RECORRIDO SECUENCIAL DE ARBOLES POR
MEDIO DE backtracking

A. Modelado de los recorridos secuenciales

Continuando con los trabajos sobre el modelado
de rutinas realizados en [1], se utilizard un modelo
del tiempo de ejecucién que refleje las caracteristicas
de computo y de comunicaciones del sistema sobre
el que se ejecutard (hardware y software bésico ins-
talado), y del algoritmo estudiado. Se parte de un
modelo analitico del tiempo de la forma:

t(s) = f(s, AP, SP) (1)

Donde s representa el tamano y tipo de la en-
trada del problema. Al segundo parametro lo hemos
denominado pardmetros del sistema (SPs) y serdn
especificos de cada uno de los sistemas computa-
cionales donde deseamos ejecutar nuestra rutina, por
lo que deberan ser calculados para cada nuevo sis-
tema donde se instale. El tercer pardametro corre-
sponde con los pardmetros del algoritmo (APs) y son
los que seria labor del usuario de nuestra rutina ajus-
tar, para cada una de las maquinas donde se ejecute
y cada una de las entradas a resolver.

Normalmente los valores de los pardmetros del sis-
tema estaran influenciados por los pardametros del
algoritmo. Por esto, los pardmetros del sistema se
pueden expresar como una funcién de las propiedades
del problema y de los parametros del algoritmo:

t(s) = f(s, AP, g(s, AP)) (2)

En este trabajo se utiliza esta metodologia de
parametrizacién para modelar el tiempo de eje-
cucion de la técnica de backtracking. Se disena
una metodologia independiente del tipo de recorrido
que realicemos (bisqueda de una solucién u opti-
mizacién), la representacién del arbol... [21] Aunque
no todos los esquemas de backtracking realizan po-
das sobre el espacio de buisqueda, se modela este tipo
de recorridos que es el méas general. Al producirse
podas en el espacio de biisqueda no se conoce el por-
centaje exacto de nodos recorridos. El niimero de
nodos podados es dependiente de la forma y reco-
rrido del arbol, asi como la propia naturaleza de las
entradas. Para modelar este comportamiento se in-
troduce en el modelo un parametro que representa el
porcentaje de nodos no podados para una determi-
nada ejecucion. A este porcentaje lo llamamos &, con
{k e R|0<k<1}. Tebricamente y para cada una
de las entradas el valor de k es 1 — %. Donde NP
es el nimero total de nodos podados en el recorrido
y NT es el ntimero total de nodos del recorrido. El
problema es que estos datos no son conocidos hasta
que no se resuelve el problema.

Se modela el tiempo de ejecucién de un reco-
rrido secuencial utilizando la técnica de backtracking
como:

t(n)=k-NNG-TCN (3)

Donde t(n) representa el tiempo de ejecucién para
una entrada de tamano n. La variable NNG equivale

14

al niimero de nodos generados y dependeré del tipo
de drbol que genere el problema al que nos enfrenta-
mos. En este trabajo se van a considerar arboles de
[ niveles donde cada uno de los nodos generara h no-

dos hijos, siendo NNG totales del darbol % TCN
es el tiempo de cémputo de un nodo.

Se podrian utilizar otros modelos del tiempo de
ejecucion, pero presentarian la misma problematica.
Lo que nos interesa es estudiar una metodologia ge-
neral para estimar los parametros, y la que aqui se
utiliza para este modelo particular podria extenderse
a otros modelos.

B. Estrategias de estimacion de los pardmetros

Una vez se dispone del modelo del tiempo de eje-
cucién, se deben programar estrategias para la es-
timacién de los parametros que lo componen. Esta
estimacién debera realizarse antes de ejecutar nues-
tra rutina y sin que la decisién que debemos tomar
nos lleve un tiempo excesivo en el momento de la
ejecucién, ya que supone un tiempo adicional al de
resolver el problema.

Se propone una metodologia de trabajo dividida
en una fase de instalacién y una fase de ejecucion.
Durante la fase de instalacién se realizan experimen-
tos para extraer informacién general del problema,
para ello existe una rutina de instalacién que sera
configurada por un manager. Esta configuracion
(ntimero de experimentos, tamafo de las entradas,
informacién a registrar, tiempo maximo de insta-
lacién...) dependerd de los conocimientos que tenga
el manager sobre el tipo de entradas a resolver. A
partir de esta configuracién se irdn generando y re-
solviendo entradas aleatorias del problema; para ello
la metodologia exige que se programe, ademds del
programa que resuelve el problema, un generador de
entradas aleatorias configurable. En la fase de eje-
cucion se completara esta informacion general con la
extraida de la entrada concreta a resolver.

Respecto a la estimacion de TCN, en ocasiones
serd el mismo para todos los nodos del arbol, inde-
pendientemente del nivel. Sin embargo, este tiempo
puede ser mas complejo de estimar: depender de la
operacion de generacién de los nodos, de la operacién
de poda, del nivel actual... En nuestros experimen-
tos se calcula como el cociente entre lo que tarda en
ejecutarse la rutina y el niimero de nodos generados.

En cuanto a la estimacién de k, se ha experimen-
tado con tres posibles estrategias para estimarla a
partir de los datos obtenidos en la fase de instalacion:

o FEstMedia: se realizan pruebas durante la insta-
lacién para distintos tamanos y se obtiene una
media del indice de poda de todas las ejecu-
ciones. Serd el mismo valor para todas las en-
tradas.

o FstRecta: se considera que el valor del indice de
poda dependera de los tamanos de la entrada.
Almacenaremos valores de los indices de poda
agrupados para los distintos tamanos en tiempo
de instalacién, y extrapolaremos por medio de
una recta para nuevos tamanos que recibamos
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en tiempo de ejecucion.

o FEstFuncion: se aproximan los datos obtenidos
en la instalacién a una funcién por medio de
un ajuste por minimos cuadrados. Por defecto
se aproxima a la funcién a/x pero el manager
puede definir nuevas.

El principal problema de todas estas aproxima-
ciones es que no incluimos la informacién de las en-
tradas que deseamos resolver. Esta informacién es
interesante de incorporar cuando las entradas mar-
can de forma significativa el recorrido, y esto es lo que
ocurre en recorridos de backtracking. Para cubrir es-
tos casos se completa la informacién procedente de la
instalacion con otra extraida directamente en tiempo
de ejecucién, y se pondera cada una de ellas con un
cierto factor: kmedia = f1 - kins + f2 - kEjec. Los co-
eficientes de peso pueden ser ajustados por el mana-
ger segun las caracteristicas del problema. En nues-
tros experimentos los hemos considerado f; = 0.5y
fa=0.5.

Se proponen dos alternativas para calcular kgjec:
agrupar valores contiguos de las entradas o selec-
cionar valores aleatoriamente procedentes de la en-
trada original. La filosofia de ambas es conseguir a
partir de la entrada concreta, entradas més pequenas
donde el tiempo que empleamos a resolverlas es des-
preciable frente al tiempo total de ejecucién. Por
ejemplo, una entrada de tamano 100 podriamos re-
ducirla a tamano 20 de modo que se ejecute en menos
tiempo, y conserve las propiedades de la original.

En la Tabla I se muestran los valores de k esti-
mados en los distintos casos. Se implementa una
solucién que resuelve el problema de la Mochila 0/1
ordenando los objetos de mayor a menor benefi-
cio/peso, intentando incluir primero objetos en la
mochila, y eliminando nodos cuyo peso exceda el de
la mochila o que sumando al beneficio el beneficio
obtenido con un avance rapido no se pueda mejorar
el beneficio actual. Se experimenta con tres entradas
aleatorias de tamanos 30, 35 y 40. Estos tamanos
de entrada son mayores que los que hemos configu-
rado en la fase de instalacion para estudiar como ex-
trapola nuestra técnica (generamos 50 pruebas para
cada tamano en el intervalo [5,25] incrementando de
5 en 5). Para cada entrada se obtiene el valor de &
real (kpeat), €l valor de k estimado por el método
EstMed (kpr), el valor de k estimado extrapolando
valores de instalaciéon por medio de una recta (kg) y
utilizando este dltimo método pero anadiendo infor-
macién de la ejecucién agrupando la entrada original
(krg). Como ultima columna se aflade el valor de
k utilizando unicamente informacién de la ejecucién
(kp).

Se puede concluir de la Tabla I, que para este tipo
de técnicas donde existe alta dependencia de las en-
tradas, merece la pena incluir algin tipo de infor-
macién de la ejecucion que modifique la que extrae-
mos durante el proceso de instalaciéon. En la Tabla IT
estudiamos la media del error de los cuatro métodos
propuestos. La media de error la calcularemos como

|kReal - kEstimadaVk'Real-
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TABLA 1
COMPARATIVA DE LOS VALORES DE k REAL Y LOS ESTIMADOS
CON LOS DIFERENTES METODOS.

Tam kReal knm kr krRE kg
30 0.999974 0.94 | 0.9877 0.9921 0.9966
0.999970 — — 0.9911 0.9946
0.999999 — — 0.9934 0.9992
35 0.999999 0.94 | 0.9880 0.9939 0.9997
0.999999 — — 0.9926 0.9971
0.999999 — — 0.9936 0.9991
40 0.999976 0.94 | 0.9884 | 0.9866 0.9849
0.999999 — — 0.9941 0.9998
0.997213 — — 0.9786 0.9688
TABLA II

TABLA COMPARATIVA DE PORCENTAJE DE ERROR CON CADA
UNO DE LOS METODOS.

kg kr krE kg
30 5.4% 1.2% | 0.7% | 0.3%
35 5.4% 1.1% 0.6% 0.1%
40 5.3% 1% 1.3% 1.5%

C. Seleccion entre diferentes versiones que resuelven
un mismo problema

Con el modelo de tiempo de ejecucién propuesto,
podemos utilizar nuestra metodologia para elegir en-
tre diferentes implementaciones que resuelven un
mismo problema. Se implementan cinco versiones di-
ferentes para resolver la Mochila 0/1 aunque en este
documento solo se incluye el estudio de tres de ellas.
Las versiones se diferencian en la forma de generar
los nodos y realizar las podas, en todas se realiza
algin tipo de poda. No se persigue obtener un al-
goritmo que resuelva el problema de forma éptima,
sino a partir de un algoritmo disenado por el usuario
optimizar su tiempo de ejecucién.

El problema que se plantea es que no se conoce
a priori que version tardard menos tiempo en ejecu-
tarse para cada entrada. Por ejemplo, tenemos las
versiones Verl, Ver2 y Ver3, y no se sabe cual sera
mas rapida. Sin utilizar el modelo se elegiria una
version fija para todas las entradas, sin embargo, si
utilizamos el modelo se estimard, para cada entrada,
la versién que la resuelva més rapidamente.

En la Tabla IIT disponemos del cociente de error
medio (frente al tiempo éptimo) al utilizar el es-
quema propuesto por el modelo o eligiendo fija una
de las tres versiones. El esquema que comente
menor error es la Ver3, sin embargo para usuarios
inexpertos seria complicado detectar que este ofrece
mejores prestaciones. Eligiendo el modelo, la ganan-
cia obtenida respecto a una mala eleccién es mayor
que el error cometido frente a la Vers. Utilizando
esta metodologia somos capaces de detectar la ten-
dencia de comportamiento de cada version.

III. RECORRIDOS PARALELOS DE backtracking

Existen diversos esquemas paralelos aplicables a
la técnica de backtracking. Este trabajo se centra en
esquemas de tipo maestro esclavo (M/F). La idea ge-
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TABLA III
TABLA DE VALORES MEDIOS DE COEFICIENTES ENTRE LOS
TIEMPOS REALES Y LOS OBTENIDOS CON EL MODELO.
COMPARATIVA ENTRE LOS DIFERENTES ESQUEMAS.

TRModelo TRyer1 TRyers TRyers
TRopt TRopt TRopt TRopt
1.21 1.80 1.61 1.09

neral serd distribuir el espacio de buisqueda entre los
distintos procesadores disponibles, de forma que cada
uno busque la soluciéon del problema en un subespa-
cio de soluciones distinto. El proceso maestro esté
encargado de coordinar el trabajo de los esclavos:
distribucién de los subproblemas, gestién de las co-
municaciones... [22] Si se realizan podas durante la
ejecucion, los subespacios de bisqueda no tienen por
qué ser iguales y existiran dependencias entre ellos.
Estas dependencias hacen que la distribucién del es-
pacio de busqueda sea un factor importante a la hora
de disenar las soluciones paralelas.

En un esquema M/E aplicado a backtracking, el
proceso maestro recorre en primer lugar el arbol de
busqueda hasta nivel [. Una vez alcanzado este nivel,
se guarda la informacién de los nodos encontrados
a esta profundidad. Posteriormente se van haciendo
nuevos recorridos desde los nodos almacenados hasta
el tdltimo nivel. Cada uno de estos recorridos se
puede considerar un backtracking secuencial indepen-
diente. EIl nimero de nodos que se encuentran a
nivel [ corresponderd con el total de trabajos que
puede asignar a los procesos esclavos (backtracking
secundarios). Son los backtrackings secundarios los
que realmente se realizan en paralelo, y no podran
empezar hasta que el proceso maestro no haya ter-
minado el primer recorrido. Vamos a estudiar dos al-
ternativas en la asignacién de los procesos por parte
del proceso maestro: asignacién estatica y asignacién
dindmica.

Si seguimos un esquema de asignacién estatica,
a cada procesador se le asignan un numero fijo
de subtrabajos. Cada procesador unicamente debe
dedicarse a resolver aquellos problemas que le han
sido asignados inicialmente. Denominaremos estos
esquemas como FMFEAE. Se pueden adoptar dife-
rentes criterios para realizar la asignacién de ta-
reas: distribuciéon por bloques donde se asignan blo-
ques contiguos de subtrabajos (AsigB), distribucién
ciclica (AsigC), distribucién aleatoria (AsigA)... Si
seguimos un esquema de asignacién dindmica, es-
quema EMEAD, los subtrabajos los sirve el proceso
maestro a los esclavos bajo demanda. Esta opcion
favorece una distribucién autobalanceada.

Cuando se realizan podas, compartir informacion
local entre los distintos procesadores aumenta sig-
nificativamente el indice de poda, y disminuye el
tiempo de ejecucién. Compartir esta informacién
plantea problemas en arquitecturas donde la comuni-
cacién entre los procesadores tiene un coste asociado.
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Establecer el intervalo de intercambio de informacién
(e) adecuado para cada maquina y problema es una
tarea dificil, porque serd dependiente de la miquina,
del tipo problema y de las entradas. En esquemas
de asignacién dindmica ocurre algo similar, el pro-
ceso maestro no distribuird los trabajos de uno en
uno para no consumir excesivo tiempo en las comu-
nicaciones. El nimero de subtrabajos a enviar (t)
serd también configurable. Otros parametros ajusta-
bles que intervienen en el tiempo de ejecucion son: el
valor del pardmetro [ y el niimero de procesadores a
utilizar p (no siempre elegir mayor valor para p nos
llevard a menores tiempo de ejecucién). Si se utiliza
asignacién estatica también podremos seleccionar el
tipo de asignacién a utilizar (A).

IV. MODELADO DE LOS RECORRIDOS PARALELOS

Estas soluciones paralelas traen consigo un au-
mento del nimero de APs respecto a los esquemas
secuenciales, y es mas complicado elegir una buena
configuraciéon. Una primera aproximacién del tiempo
de ejecucién de un esquema M/FE estard compuesto
por una parte secuencial y una parte paralela:

t(n,p, 5) = tSec(Z) + tPar(n - l,p, 3) (4)

Vamos a centrarnos en un esquema de asignacién
estatica sin intercambio de informacién. El tiempo
empleado en la parte paralela de este algoritmo de-
pende de la duracién de los subproblemas y del tipo
de asignacion utilizada. Al producirse un desbalan-
ceo en la distribucién de los subtrabajos, el tiempo
paralelo a considerar en el modelo serd el de aquel
procesador que tarde mas tiempo en resolver los pro-
blemas que le han sido asignados.

Se supone una asignacién de subtrabajos a los
procesadores disponibles (A). Esta asignacién se de-
fine como una estructura de “Numero de subtraba-
jos” (NS) elementos donde cada uno de sus com-
ponentes adquirird un valor en el intervalo de en-
teros [0..p—1] (donde p es el ntimero de procesadores
disponibles). Se define esta asignacién como:

A(),¥i=0.NS—1 A@)e[0.p—1]  (5)

Por tanto se puede identificar el tiempo que se em-
plea en la parte paralela del esquema tpg, como:

NS—-1
p—1
Jj=0

i=0,A(i)=j

l,s) (6)

tSecuencial (n -

Se ha disenado una estrategia de estimacion que
permite aproximar la configuracién de pardmetros
que lleva a los tiempos de ejecuciéon minimos. Entre
los diferentes parametros identificados en el modelo,
k y TCN no son pardmetros configurables. Por con-
tra, p, [ y A si deben ser seleccionados por el usuario
(son APs).

Utilizando la metodologia de estimaciéon de los
recorridos secuenciales anadiendo informacién de la
ejecucién, podemos estimar cuanto tiempo vamos a
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dedicar a cada uno de los subtrabajos. Para mini-
mizar el tiempo de ejecucién de la rutina, se debe
minimizar la ecuacion:

min(l,p,A,s) {tSEC(na l) + tPaT (TL - lapa Aa 8)} (7)

Y el valor de esta ecuacién depende directamente
de la asignacién de subtrabajos que hagamos a los
procesadores. Una vez estimada la duracién de los
subtrabajos, debemos encontrar la asignacién de ta-
reas a procesadores que minimiza la ecuacién 7. Lo
ideal seria encontrar la solucién 6ptima pero nos lle-
varia demasiado tiempo. Utilizaremos un algoritmo
voraz (AsigVoraz) para obtener una solucién aproxi-
mada: se recorren todos los subtrabajos y se asigna
cada uno de ellos al procesador que menos incre-
mente, segin la distribucién parcial hasta ese mo-
mento, el tiempo de ejecucién del modelo. También
se pueden utilizar distintas técnicas metaheuristicas
[16].

V. RESULTADOS EXPERIMENTALES

En este trabajo hemos implementado un esquema
EMFEAF sin intercambio de informacién en memoria
compartida por medio de OpenMP. Se implemen-
tan las asignaciones ya mencionadas: asignaciones
bésicas (bloques, ciclica y aleatoria) y la asignacién
voraz de los subtrabajos (AsigVoraz).

Para modelar la ganancia que podria suponer uti-
lizar esta técnica para un usuario de la rutina, defi-
nimos tres perfiles de usuarios. El UsOpt es capaz
de dar siempre con la combinacién de parametros
que nos lleva a la ejecucién éptima, para cualquiera
de las entradas. El UsMed elegird como pardmetros
valores que empiricamente se consideran adecua-
dos. Por ultimo, definimos el UsLow que carece
de conocimientos de paralelismo y elegira valores al
azar, por lo que sus decisiones pueden no ser acer-
tadas.

En la Tabla IV se muestran cinco filas correspon-
dientes a la resolucién de cinco entradas diferentes de
tamano 40. Se utiliza la misma configuracién para
la fase de instalacién que en el experimento secuen-
cial y se estima k por el método krg. Las primeras
cuatro columnas representan los parametros de con-
figuracién seleccionados por el modelo (I, p, A) y el
tiempo de ejecucién con esta configuraciéon (TR). A
continuacion se muestran los tiempos de ejecucion
con los parametros seleccionados por los distintos
perfiles de usuarios. La configuracién del UsMed es
(I, p, A)=(5, 4, AsigC) y la del UsLow es (10, 2,
AsigB). En negrita se representan las configuraciones
que nos llevan a los mejores tiempos.

Cabe destacar la gran diferencia en el tiempo de
ejecucion para entradas del mismo tamano. Esto se
debe a la gran dependencia de las entradas en este
tipo de recorridos, lo que hace especialmente dificil
la estimacién del parametro k.

De la Tabla IV se concluye que para entradas con
recorridos més pesados (cuarta y quinta fila) uti-
lizar el algoritmo voraz para realizar la asignacion
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TABLA IV
TIEMPOS DE EJECUCION (EN SEGUNDOS) CON LOS PARAMETROS
SELECCIONADOS POR EL MODELO, COMPARADOS CON LOS
TIEMPOS QUE CONSEGUIRfAN TRES PERFILES DE USUARIOS.

[ [p]A] TR [ UsOpt [ UsMed | UsLow |
2 4 c 21.26 13.18 21.26 27.27
2 4 c 0.095 0.07057 0.0949 0.1116
1 1 c 0.00031 0.00029 | 0.00043 | 0.00037
18 4 v 49.13 67.37 90.78 128.326
4 4 v 117.56 121.54 150.93 228.02

de tareas obtiene resultados mejores que los que ob-
tendriamos utilizando asignaciones bésicas (ciclicas
y bloques). Sin embargo, para entradas cuya natu-
raleza nos lleva a dedicar un tiempo relativamente
pequeno, los parametros elegidos por el modelo no
suponen ninguna ventaja. FEn general, el tiempo
medio ganado al utilizar el modelo para entradas pe-
sadas supera al tiempo que perdemos para entradas
ligeras.

Por ultimo se ha implementado un esquema M/E
con asignacion estatica e intercambio de informacion.
Los pardmetros a configurar serdn (I, p, e), y fi-
jamos A a AsigC para simplificar el estudio. Va-
mos a implementar esta solucién para un entorno
de memoria distribuida utilizando el estandar de
paso de mensajes MPI. Con este experimento se pre-
tende estudiar lo que pasaria en entornos donde hay
un alto coste de las comunicaciones. En este es-
quema, con la utilizacién del modelo del tiempo de
ejecucién no se han obtenido buenos resultados. La
metodologia seguida consiste en, a partir de los datos
obtenidos durante la fase de instalacién (variando los
pardmetros ajustables), tomar como configuracion
basica de los parametros, aquella que nos haya lle-
vado a mejores tiempo de ejecucion para los tamanos
de entrada resueltos. En tiempo de ejecucién, una
vez conocida la entrada se realizard una busqueda
local alrededor de la configuracion bdsica, con una
entrada reducida de la original. A medida que se
vayan mejorando los resultados iremos modificando
la configuracién. Una vez se empiecen a obtener peo-
res resultados se detendra la biisqueda.

El experimento se ha realizado en un cluster de 16
nucleos. Se comparan los resultados del modelo con
los obtenidos por los tres perfiles de usuarios utiliza-
dos en la prueba anterior, a excepcion del usuario
medio que es sustituido por un otro que utiliza como
pardmetros los de la configuracién bdsica (UslInst).
El manager configurara la rutina de instalacion para
generar una bateria de 50 entradas aleatorias para
cada tamano entre [5, 40] con incrementos de 5 en
5. En este experimento, el manager describird la
méquina configurando: p entre 1 y 16, [ entre 1 y
25, y e tomard los valores 100, 500, 1000, 1500, 5000,
10000, 1000000. A partir de los experimentos de la
fase de instalacién la configuracion bdsica obtenida
es (Ip,e)=(13,12,10000). El UserLow elegira valores
al azar configurando (I,p,e)=(10,5,100). En la Tabla
V se muestra los resultados al aplicar el modelo a
cuatro entradas de tamano 40.
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TABLA V
TIEMPOS DE EJECUCION (EN SEGUNDOS) CON LOS PARAMETROS
SELECCIONADOS POR EL MODELO, COMPARADOS CON LOS
TIEMPOS QUE CONSEGUIRfAN TRES PERFILES DE USUARIOS.

[ 1, p, e) [ TR ][ UsOpt | Uslnst | UsLow |
(12, 14, 1000) 29.40 7.37 11.64 170.57
(13, 10, 1000) 0.135 0.030 0.033 0.4804
(13, 12, 1000) | 0.00031 0.0002 0.0002 0.000234
(16, 16, 1000) 90.67 24.65 54.37 1233.31

De los resultados de la Tabla V se concluye que ele-
gir los pardmetros obtenidos en tiempo de instalacion
nos acerca al éptimo respecto a elecciones aleatorias
de los usuarios. Las buisquedas locales se comportan
de manera inadecuada al basarse en problemas de
tamano reducido a partir del original, y esto desvir-
tua el valor de e; se deberfan extrapolar los valores
de la busqueda local al tamano real. En la para-
lelizacién de los recorridos de backtraking una mala
configuracién de los pardmetros podria llevarnos in-
cluso a tiempos mayores que la solucién secuencial, y
esto lo evitamos al utilizar los parametros propuestos
tras la instalacion.

VI. CONCLUSIONES Y TRABAJOS FUTUROS

El modelado del tiempo de ejecuciéon en esque-
mas de backtracking, plantea problemas al existir
alta dependencia de las entradas, por lo que es nece-
sario incluir informacién de la entrada para actua-
lizar la informacién obtenida en la instalacién. En
los esquemas paralelos los problemas de configura-
cién de los parametros se agudizan por aumentar
en numero y por las dependencias entre ellos. La
metodologia propuesta obtiene resultados parcial-
mente favorables. Aunque no obtenemos configu-
raciones que nos lleven a los tiempos de ejecucién
optimos, se abstrae a los usuarios de la decisién de
configuracion proponiendo valores que permiten re-
ducir los tiempo secuenciales.

Se identifican como trabajos futuros: extender el
estudio de los esquemas con intercambio de infor-
macién a otro tipo de plataformas, proponer nuevas
técnicas para afinar la estimacion de los nodos gene-
rados y acercarnos mas al tiempo de ejecucién real,
implementar un esquema secuencial con paraleliza-
cién interna y autoconfiguracién, aumentar el banco
de pruebas con tamanos més grandes de las entradas,
aplicar la metodologia a un problema real y estudiar
otras técnicas de recorrido de drboles (Branch and
bound).
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