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Resumen— En este trabajo se estudia el modelado
del tiempo de ejecución de esquemas paralelos de back-
tracking. Se estudian diferentes esquemas de progra-
mación identificando parámetros que influyen en el
tiempo de ejecución. Se propone una metodoloǵıa
de optimización basada en la selección automática de
parámetros para obtener ejecuciones con un tiempo
reducido. Se estudian las propiedades que debeŕıa
tener un esquema algoŕıtmico secuencial de backtrack-
ing para poder realizar internamente la paralelización.
De esta manera se pretende abstraer a los usuarios
finales de las complejidades de la programación para-
lela.

Palabras clave—autooptimización, programación pa-
ralela, recorridos de árboles, esquema algoŕıtmico de
backtracking.

I. Introducción

CADA vez es más habitual la aparición de
máquinas multiprocesadores capaces de acele-

rar la resolución de problemas computacionales de
alto coste. En los últimos dos o tres años, estas
máquinas están adquiriendo mayor importancia con
la aparición de los multicores en los ordenadores per-
sonales. Por este motivo, este campo ya no solo
queda reservado a grupos reducidos de usuarios y se
extiende a todos aquellos que utilizan un PC. Sin em-
bargo, las rutinas paralelas traen consigo parámetros
que deberemos seleccionar correctamente para mi-
nimizar el tiempo de ejecución: número de proce-
sadores a utilizar, número de hilos, geometŕıa de la
malla de procesos, tamaños de los bloques de comuni-
cación. . . [1] Seleccionar una configuración adecuada
para estos parámetros no es una tarea sencilla. In-
cluso un usuario experto en paralelismo seŕıa inca-
paz, a primera vista, de dar con la configuración
óptima o simplemente adecuada para ejecutar las
rutinas en máquinas totalmente distintas. Por este
motivo, para que las rutinas puedan ser usadas de
manera eficiente por los cient́ıficos que necesitan de
paralelismo pero no son expertos en computación pa-
ralela, es necesario que el proceso de selección de
parámetros sea automático y transparente al usuario,
y si es posible que incluso la obtención de un pro-
grama paralelo se realice de forma automática a par-
tir de código secuencial.

Desde hace algunos años se han desarrollado
técnicas de autooptimización de rutinas paralelas
con el fin de conseguir rutinas que se adapten au-
tomáticamente a las caracteŕısticas del sistema de
cómputo, reduciendo el periodo de tiempo necesario
para tener rutinas optimizadas para un nuevo sis-
tema. Entre otros campos, las técnicas de autoop-
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timización se han venido aplicando en problemas de
álgebra lineal [2, 3, 4], trabajos sobre las transfor-
madas de Fourier [5], sistemas de altas prestaciones
[6]...

Una de las técnicas para el desarrollo de rutinas
con capacidad de autooptimización se basa en la
parametrización del modelo de tiempo de ejecución.
Esta técnica se ha aplicado a rutinas de álgebra li-
neal con paso de mensajes [7], a la mejora de una
jerarqúıa de libreŕıas de álgebra lineal con autoopti-
mización [3], al diseño de polilibreŕıas para acelerar
la computación en álgebra linear [8] y se ha analizado
la posibilidad de adecuarla a entornos heterogéneos
[9, 10]. Además, en la propuesta de desarrollo futuro
de ScaLAPACK se incluye la posibilidad de utilizar
parametrización para obtener rutinas que sean más
fáciles de usar y que se ejecuten de manera más efi-
ciente [11].

Más recientemente se ha empezado a trabajar en
la aplicación de este tipo de técnicas a esquemas al-
goŕıtmicos paralelos [1], por ejemplo en algoritmos de
divide y vencerás [12], de programación dinámica [13]
y en recorrido de árboles de soluciones [14]. También
se trabaja en la aplicación de heuŕısticas en el mapeo
de tareas sobre sistemas heterogéneos [13, 15, 16].

Seŕıa interesante incorporar estás técnicas de au-
tooptimización a esqueletos algoŕıtmicos paralelos.
De esta manera se simplificará al usuario la progra-
mación, abstrayéndole tanto del paralelismo como
de la optimización. Los usuarios solo tendŕıan que
programar en secuencial los fragmentos del esquema
necesarios. Internamente se paralelizaŕıa el problema
eligiendo los mejores parámetros para su ejecución.
Hay multitud de trabajos sobre diseño de esqueletos
paralelos [17], algunos de ellos dedicados a técnicas
de recorrido de árboles [18, 19].

En este documento se resume el trabajo [20] donde
se estudian los mecanismos de autooptimización en
esquemas paralelos de backtracking. En los esquemas
de recorrido de árboles de soluciones se presenta la
dificultad adicional de estimar el número de nodos
generados, lo que depende no solo del algoritmo y
el tamaño del problema, sino también de la entrada
particular a resolver.

El contenido de este documento se estructura en
una primera parte donde se estudia el modelado de
los recorridos secuenciales, aśı como los resultados
experimentales (Sección II). En la segunda parte nos
centramos en esquemas paralelos (Sección III), su
modelado (Sección IV) y los experimentos realizados
(Sección V). Para finalizar se resumen las principales
conclusiones y los trabajos futuros (Sección VI).
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II. Recorrido secuencial de árboles por
medio de backtracking

A. Modelado de los recorridos secuenciales

Continuando con los trabajos sobre el modelado
de rutinas realizados en [1], se utilizará un modelo
del tiempo de ejecución que refleje las caracteŕısticas
de cómputo y de comunicaciones del sistema sobre
el que se ejecutará (hardware y software básico ins-
talado), y del algoritmo estudiado. Se parte de un
modelo anaĺıtico del tiempo de la forma:

t(s) = f(s, AP, SP ) (1)

Donde s representa el tamaño y tipo de la en-
trada del problema. Al segundo parámetro lo hemos
denominado parámetros del sistema (SPs) y serán
espećıficos de cada uno de los sistemas computa-
cionales donde deseamos ejecutar nuestra rutina, por
lo que deberán ser calculados para cada nuevo sis-
tema donde se instale. El tercer parámetro corre-
sponde con los parámetros del algoritmo (APs) y son
los que seŕıa labor del usuario de nuestra rutina ajus-
tar, para cada una de las máquinas donde se ejecute
y cada una de las entradas a resolver.

Normalmente los valores de los parámetros del sis-
tema estarán influenciados por los parámetros del
algoritmo. Por esto, los parámetros del sistema se
pueden expresar como una función de las propiedades
del problema y de los parámetros del algoritmo:

t(s) = f(s, AP, g(s, AP )) (2)

En este trabajo se utiliza esta metodoloǵıa de
parametrización para modelar el tiempo de eje-
cución de la técnica de backtracking. Se diseña
una metodoloǵıa independiente del tipo de recorrido
que realicemos (búsqueda de una solución u opti-
mización), la representación del árbol... [21] Aunque
no todos los esquemas de backtracking realizan po-
das sobre el espacio de búsqueda, se modela este tipo
de recorridos que es el más general. Al producirse
podas en el espacio de búsqueda no se conoce el por-
centaje exacto de nodos recorridos. El número de
nodos podados es dependiente de la forma y reco-
rrido del árbol, aśı como la propia naturaleza de las
entradas. Para modelar este comportamiento se in-
troduce en el modelo un parámetro que representa el
porcentaje de nodos no podados para una determi-
nada ejecución. A este porcentaje lo llamamos k, con
{k ε R | 0 ≤ k ≤ 1}. Teóricamente y para cada una
de las entradas el valor de k es 1 − NP

NT . Donde NP
es el número total de nodos podados en el recorrido
y NT es el número total de nodos del recorrido. El
problema es que estos datos no son conocidos hasta
que no se resuelve el problema.

Se modela el tiempo de ejecución de un reco-
rrido secuencial utilizando la técnica de backtracking
como:

t(n) = k · NNG · TCN (3)

Donde t(n) representa el tiempo de ejecución para
una entrada de tamaño n. La variable NNG equivale

al número de nodos generados y dependerá del tipo
de árbol que genere el problema al que nos enfrenta-
mos. En este trabajo se van a considerar árboles de
l niveles donde cada uno de los nodos generará h no-
dos hijos, siendo NNG totales del árbol hl+1−1

h−1 . TCN
es el tiempo de cómputo de un nodo.

Se podŕıan utilizar otros modelos del tiempo de
ejecución, pero presentaŕıan la misma problemática.
Lo que nos interesa es estudiar una metodoloǵıa ge-
neral para estimar los parámetros, y la que aqúı se
utiliza para este modelo particular podŕıa extenderse
a otros modelos.

B. Estrategias de estimación de los parámetros

Una vez se dispone del modelo del tiempo de eje-
cución, se deben programar estrategias para la es-
timación de los parámetros que lo componen. Esta
estimación deberá realizarse antes de ejecutar nues-
tra rutina y sin que la decisión que debemos tomar
nos lleve un tiempo excesivo en el momento de la
ejecución, ya que supone un tiempo adicional al de
resolver el problema.

Se propone una metodoloǵıa de trabajo dividida
en una fase de instalación y una fase de ejecución.
Durante la fase de instalación se realizan experimen-
tos para extraer información general del problema,
para ello existe una rutina de instalación que será
configurada por un manager. Esta configuración
(número de experimentos, tamaño de las entradas,
información a registrar, tiempo máximo de insta-
lación...) dependerá de los conocimientos que tenga
el manager sobre el tipo de entradas a resolver. A
partir de esta configuración se irán generando y re-
solviendo entradas aleatorias del problema; para ello
la metodoloǵıa exige que se programe, además del
programa que resuelve el problema, un generador de
entradas aleatorias configurable. En la fase de eje-
cución se completará esta información general con la
extráıda de la entrada concreta a resolver.

Respecto a la estimación de TCN, en ocasiones
será el mismo para todos los nodos del árbol, inde-
pendientemente del nivel. Sin embargo, este tiempo
puede ser más complejo de estimar: depender de la
operación de generación de los nodos, de la operación
de poda, del nivel actual... En nuestros experimen-
tos se calcula como el cociente entre lo que tarda en
ejecutarse la rutina y el número de nodos generados.

En cuanto a la estimación de k, se ha experimen-
tado con tres posibles estrategias para estimarla a
partir de los datos obtenidos en la fase de instalación:

• EstMedia: se realizan pruebas durante la insta-
lación para distintos tamaños y se obtiene una
media del ı́ndice de poda de todas las ejecu-
ciones. Será el mismo valor para todas las en-
tradas.

• EstRecta: se considera que el valor del ı́ndice de
poda dependerá de los tamaños de la entrada.
Almacenaremos valores de los ı́ndices de poda
agrupados para los distintos tamaños en tiempo
de instalación, y extrapolaremos por medio de
una recta para nuevos tamaños que recibamos
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en tiempo de ejecución.
• EstFuncion: se aproximan los datos obtenidos

en la instalación a una función por medio de
un ajuste por mı́nimos cuadrados. Por defecto
se aproxima a la función a/x pero el manager
puede definir nuevas.

El principal problema de todas estas aproxima-
ciones es que no incluimos la información de las en-
tradas que deseamos resolver. Esta información es
interesante de incorporar cuando las entradas mar-
can de forma significativa el recorrido, y esto es lo que
ocurre en recorridos de backtracking. Para cubrir es-
tos casos se completa la información procedente de la
instalación con otra extráıda directamente en tiempo
de ejecución, y se pondera cada una de ellas con un
cierto factor: kmedia = f1 · kIns + f2 · kEjec. Los co-
eficientes de peso pueden ser ajustados por el mana-
ger según las caracteŕısticas del problema. En nues-
tros experimentos los hemos considerado f1 = 0.5 y
f2 = 0.5.

Se proponen dos alternativas para calcular kEjec:
agrupar valores contiguos de las entradas o selec-
cionar valores aleatoriamente procedentes de la en-
trada original. La filosof́ıa de ambas es conseguir a
partir de la entrada concreta, entradas más pequeñas
donde el tiempo que empleamos a resolverlas es des-
preciable frente al tiempo total de ejecución. Por
ejemplo, una entrada de tamaño 100 podŕıamos re-
ducirla a tamaño 20 de modo que se ejecute en menos
tiempo, y conserve las propiedades de la original.

En la Tabla I se muestran los valores de k esti-
mados en los distintos casos. Se implementa una
solución que resuelve el problema de la Mochila 0/1
ordenando los objetos de mayor a menor benefi-
cio/peso, intentando incluir primero objetos en la
mochila, y eliminando nodos cuyo peso exceda el de
la mochila o que sumando al beneficio el beneficio
obtenido con un avance rápido no se pueda mejorar
el beneficio actual. Se experimenta con tres entradas
aleatorias de tamaños 30, 35 y 40. Estos tamaños
de entrada son mayores que los que hemos configu-
rado en la fase de instalación para estudiar como ex-
trapola nuestra técnica (generamos 50 pruebas para
cada tamaño en el intervalo [5,25] incrementando de
5 en 5). Para cada entrada se obtiene el valor de k
real (kReal), el valor de k estimado por el método
EstMed (kM ), el valor de k estimado extrapolando
valores de instalación por medio de una recta (kR) y
utilizando este último método pero añadiendo infor-
mación de la ejecución agrupando la entrada original
(kRE). Como última columna se añade el valor de
k utilizando únicamente información de la ejecución
(kE).

Se puede concluir de la Tabla I, que para este tipo
de técnicas donde existe alta dependencia de las en-
tradas, merece la pena incluir algún tipo de infor-
mación de la ejecución que modifique la que extrae-
mos durante el proceso de instalación. En la Tabla II
estudiamos la media del error de los cuatro métodos
propuestos. La media de error la calcularemos como
|kReal − kEstimada|/kReal.

TABLA I

Comparativa de los valores de k real y los estimados

con los diferentes métodos.

Tam kReal kM kR kRE kE

30 0.999974 0.94 0.9877 0.9921 0.9966
0.999970 — — 0.9911 0.9946
0.999999 — — 0.9934 0.9992

35 0.999999 0.94 0.9880 0.9939 0.9997
0.999999 — — 0.9926 0.9971
0.999999 — — 0.9936 0.9991

40 0.999976 0.94 0.9884 0.9866 0.9849
0.999999 — — 0.9941 0.9998
0.997213 — — 0.9786 0.9688

TABLA II

Tabla comparativa de porcentaje de error con cada

uno de los métodos.

kM kR kRE kE

30 5.4% 1.2% 0.7% 0.3%
35 5.4% 1.1% 0.6% 0.1%
40 5.3% 1% 1.3% 1.5%

C. Selección entre diferentes versiones que resuelven
un mismo problema

Con el modelo de tiempo de ejecución propuesto,
podemos utilizar nuestra metodoloǵıa para elegir en-
tre diferentes implementaciones que resuelven un
mismo problema. Se implementan cinco versiones di-
ferentes para resolver la Mochila 0/1 aunque en este
documento solo se incluye el estudio de tres de ellas.
Las versiones se diferencian en la forma de generar
los nodos y realizar las podas, en todas se realiza
algún tipo de poda. No se persigue obtener un al-
goritmo que resuelva el problema de forma óptima,
sino a partir de un algoritmo diseñado por el usuario
optimizar su tiempo de ejecución.

El problema que se plantea es que no se conoce
a priori que versión tardará menos tiempo en ejecu-
tarse para cada entrada. Por ejemplo, tenemos las
versiones Ver1, Ver2 y Ver3, y no se sabe cual será
más rápida. Sin utilizar el modelo se elegiŕıa una
versión fija para todas las entradas, sin embargo, si
utilizamos el modelo se estimará, para cada entrada,
la versión que la resuelva más rápidamente.

En la Tabla III disponemos del cociente de error
medio (frente al tiempo óptimo) al utilizar el es-
quema propuesto por el modelo o eligiendo fija una
de las tres versiones. El esquema que comente
menor error es la Ver3, sin embargo para usuarios
inexpertos seŕıa complicado detectar que este ofrece
mejores prestaciones. Eligiendo el modelo, la ganan-
cia obtenida respecto a una mala elección es mayor
que el error cometido frente a la Ver3. Utilizando
esta metodoloǵıa somos capaces de detectar la ten-
dencia de comportamiento de cada versión.

III. Recorridos paralelos de backtracking

Existen diversos esquemas paralelos aplicables a
la técnica de backtracking. Este trabajo se centra en
esquemas de tipo maestro esclavo (M/E ). La idea ge-

15 A Coruña, 16-18 de septiembre de 2009



TABLA III

Tabla de valores medios de coeficientes entre los

tiempos reales y los obtenidos con el modelo.

Comparativa entre los diferentes esquemas.

TRModelo
TROpt

TRV er1
TROpt

TRV er2
TROpt

TRV er3
TROpt

1.21 1.80 1.61 1.09

neral será distribuir el espacio de búsqueda entre los
distintos procesadores disponibles, de forma que cada
uno busque la solución del problema en un subespa-
cio de soluciones distinto. El proceso maestro está
encargado de coordinar el trabajo de los esclavos:
distribución de los subproblemas, gestión de las co-
municaciones... [22] Si se realizan podas durante la
ejecución, los subespacios de búsqueda no tienen por
qué ser iguales y existirán dependencias entre ellos.
Estas dependencias hacen que la distribución del es-
pacio de búsqueda sea un factor importante a la hora
de diseñar las soluciones paralelas.

En un esquema M/E aplicado a backtracking, el
proceso maestro recorre en primer lugar el árbol de
búsqueda hasta nivel l. Una vez alcanzado este nivel,
se guarda la información de los nodos encontrados
a esta profundidad. Posteriormente se van haciendo
nuevos recorridos desde los nodos almacenados hasta
el último nivel. Cada uno de estos recorridos se
puede considerar un backtracking secuencial indepen-
diente. El número de nodos que se encuentran a
nivel l corresponderá con el total de trabajos que
puede asignar a los procesos esclavos (backtracking
secundarios). Son los backtrackings secundarios los
que realmente se realizan en paralelo, y no podrán
empezar hasta que el proceso maestro no haya ter-
minado el primer recorrido. Vamos a estudiar dos al-
ternativas en la asignación de los procesos por parte
del proceso maestro: asignación estática y asignación
dinámica.

Si seguimos un esquema de asignación estática,
a cada procesador se le asignan un número fijo
de subtrabajos. Cada procesador únicamente debe
dedicarse a resolver aquellos problemas que le han
sido asignados inicialmente. Denominaremos estos
esquemas como EMEAE. Se pueden adoptar dife-
rentes criterios para realizar la asignación de ta-
reas: distribución por bloques donde se asignan blo-
ques contiguos de subtrabajos (AsigB), distribución
ćıclica (AsigC ), distribución aleatoria (AsigA)... Si
seguimos un esquema de asignación dinámica, es-
quema EMEAD, los subtrabajos los sirve el proceso
maestro a los esclavos bajo demanda. Esta opción
favorece una distribución autobalanceada.

Cuando se realizan podas, compartir información
local entre los distintos procesadores aumenta sig-
nificativamente el ı́ndice de poda, y disminuye el
tiempo de ejecución. Compartir esta información
plantea problemas en arquitecturas donde la comuni-
cación entre los procesadores tiene un coste asociado.

Establecer el intervalo de intercambio de información
(e) adecuado para cada máquina y problema es una
tarea dif́ıcil, porque será dependiente de la máquina,
del tipo problema y de las entradas. En esquemas
de asignación dinámica ocurre algo similar, el pro-
ceso maestro no distribuirá los trabajos de uno en
uno para no consumir excesivo tiempo en las comu-
nicaciones. El número de subtrabajos a enviar (t)
será también configurable. Otros parámetros ajusta-
bles que intervienen en el tiempo de ejecución son: el
valor del parámetro l y el número de procesadores a
utilizar p (no siempre elegir mayor valor para p nos
llevará a menores tiempo de ejecución). Si se utiliza
asignación estática también podremos seleccionar el
tipo de asignación a utilizar (A).

IV. Modelado de los recorridos paralelos

Estas soluciones paralelas traen consigo un au-
mento del número de APs respecto a los esquemas
secuenciales, y es más complicado elegir una buena
configuración. Una primera aproximación del tiempo
de ejecución de un esquema M/E estará compuesto
por una parte secuencial y una parte paralela:

t(n, p, s) = tSec(l) + tPar(n− l, p, s) (4)

Vamos a centrarnos en un esquema de asignación
estática sin intercambio de información. El tiempo
empleado en la parte paralela de este algoritmo de-
pende de la duración de los subproblemas y del tipo
de asignación utilizada. Al producirse un desbalan-
ceo en la distribución de los subtrabajos, el tiempo
paralelo a considerar en el modelo será el de aquel
procesador que tarde más tiempo en resolver los pro-
blemas que le han sido asignados.

Se supone una asignación de subtrabajos a los
procesadores disponibles (A). Esta asignación se de-
fine como una estructura de “Número de subtraba-
jos” (NS) elementos donde cada uno de sus com-
ponentes adquirirá un valor en el intervalo de en-
teros [0..p−1] (donde p es el número de procesadores
disponibles). Se define esta asignación como:

A (i),∀i = 0..NS − 1 A(i)ε[0..p− 1] (5)

Por tanto se puede identificar el tiempo que se em-
plea en la parte paralela del esquema tPar como:

maxp−1
j=0






NS−1∑

i=0,A(i)=j

tSecuencial(n− l, s)




 (6)

Se ha diseñado una estrategia de estimación que
permite aproximar la configuración de parámetros
que lleva a los tiempos de ejecución mı́nimos. Entre
los diferentes parámetros identificados en el modelo,
k y TCN no son parámetros configurables. Por con-
tra, p, l y A śı deben ser seleccionados por el usuario
(son APs).

Utilizando la metodoloǵıa de estimación de los
recorridos secuenciales añadiendo información de la
ejecución, podemos estimar cuanto tiempo vamos a
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dedicar a cada uno de los subtrabajos. Para mini-
mizar el tiempo de ejecución de la rutina, se debe
minimizar la ecuación:

min(l,p,A,s) {tSec(n, l) + tPar(n− l, p, A, s)} (7)

Y el valor de esta ecuación depende directamente
de la asignación de subtrabajos que hagamos a los
procesadores. Una vez estimada la duración de los
subtrabajos, debemos encontrar la asignación de ta-
reas a procesadores que minimiza la ecuación 7. Lo
ideal seŕıa encontrar la solución óptima pero nos lle-
vaŕıa demasiado tiempo. Utilizaremos un algoritmo
voraz (AsigVoraz ) para obtener una solución aproxi-
mada: se recorren todos los subtrabajos y se asigna
cada uno de ellos al procesador que menos incre-
mente, según la distribución parcial hasta ese mo-
mento, el tiempo de ejecución del modelo. También
se pueden utilizar distintas técnicas metaheuŕısticas
[16].

V. Resultados experimentales

En este trabajo hemos implementado un esquema
EMEAE sin intercambio de información en memoria
compartida por medio de OpenMP. Se implemen-
tan las asignaciones ya mencionadas: asignaciones
básicas (bloques, ćıclica y aleatoria) y la asignación
voraz de los subtrabajos (AsigVoraz ).

Para modelar la ganancia que podŕıa suponer uti-
lizar esta técnica para un usuario de la rutina, defi-
nimos tres perfiles de usuarios. El UsOpt es capaz
de dar siempre con la combinación de parámetros
que nos lleva a la ejecución óptima, para cualquiera
de las entradas. El UsMed elegirá como parámetros
valores que emṕıricamente se consideran adecua-
dos. Por último, definimos el UsLow que carece
de conocimientos de paralelismo y elegirá valores al
azar, por lo que sus decisiones pueden no ser acer-
tadas.

En la Tabla IV se muestran cinco filas correspon-
dientes a la resolución de cinco entradas diferentes de
tamaño 40. Se utiliza la misma configuración para
la fase de instalación que en el experimento secuen-
cial y se estima k por el método kRE . Las primeras
cuatro columnas representan los parámetros de con-
figuración seleccionados por el modelo (l, p, A) y el
tiempo de ejecución con esta configuración (TR). A
continuación se muestran los tiempos de ejecución
con los parámetros seleccionados por los distintos
perfiles de usuarios. La configuración del UsMed es
(l, p, A)=(5, 4, AsigC ) y la del UsLow es (10, 2,
AsigB). En negrita se representan las configuraciones
que nos llevan a los mejores tiempos.

Cabe destacar la gran diferencia en el tiempo de
ejecución para entradas del mismo tamaño. Esto se
debe a la gran dependencia de las entradas en este
tipo de recorridos, lo que hace especialmente dif́ıcil
la estimación del parámetro k.

De la Tabla IV se concluye que para entradas con
recorridos más pesados (cuarta y quinta fila) uti-
lizar el algoritmo voraz para realizar la asignación

TABLA IV

Tiempos de ejecución (en segundos) con los parámetros

seleccionados por el modelo, comparados con los

tiempos que conseguiŕıan tres perfiles de usuarios.

l p A TR UsOpt UsMed UsLow

2 4 c 21.26 13.18 21.26 27.27
2 4 c 0.095 0.07057 0.0949 0.1116
1 1 c 0.00031 0.00029 0.00043 0.00037
18 4 v 49.13 67.37 90.78 128.326
4 4 v 117.56 121.54 150.93 228.02

de tareas obtiene resultados mejores que los que ob-
tendŕıamos utilizando asignaciones básicas (ćıclicas
y bloques). Sin embargo, para entradas cuya natu-
raleza nos lleva a dedicar un tiempo relativamente
pequeño, los parámetros elegidos por el modelo no
suponen ninguna ventaja. En general, el tiempo
medio ganado al utilizar el modelo para entradas pe-
sadas supera al tiempo que perdemos para entradas
ligeras.

Por último se ha implementado un esquema M/E
con asignación estática e intercambio de información.
Los parámetros a configurar serán (l, p, e), y fi-
jamos A a AsigC para simplificar el estudio. Va-
mos a implementar esta solución para un entorno
de memoria distribuida utilizando el estándar de
paso de mensajes MPI. Con este experimento se pre-
tende estudiar lo que pasaŕıa en entornos donde hay
un alto coste de las comunicaciones. En este es-
quema, con la utilización del modelo del tiempo de
ejecución no se han obtenido buenos resultados. La
metodoloǵıa seguida consiste en, a partir de los datos
obtenidos durante la fase de instalación (variando los
parámetros ajustables), tomar como configuración
básica de los parámetros, aquella que nos haya lle-
vado a mejores tiempo de ejecución para los tamaños
de entrada resueltos. En tiempo de ejecución, una
vez conocida la entrada se realizará una búsqueda
local alrededor de la configuración básica, con una
entrada reducida de la original. A medida que se
vayan mejorando los resultados iremos modificando
la configuración. Una vez se empiecen a obtener peo-
res resultados se detendrá la búsqueda.

El experimento se ha realizado en un cluster de 16
núcleos. Se comparan los resultados del modelo con
los obtenidos por los tres perfiles de usuarios utiliza-
dos en la prueba anterior, a excepción del usuario
medio que es sustituido por un otro que utiliza como
parámetros los de la configuración básica (UsInst).
El manager configurará la rutina de instalación para
generar una bateŕıa de 50 entradas aleatorias para
cada tamaño entre [5, 40] con incrementos de 5 en
5. En este experimento, el manager describirá la
máquina configurando: p entre 1 y 16, l entre 1 y
25, y e tomará los valores 100, 500, 1000, 1500, 5000,
10000, 1000000. A partir de los experimentos de la
fase de instalación la configuración básica obtenida
es (l,p,e)=(13,12,10000). El UserLow elegirá valores
al azar configurando (l,p,e)=(10,5,100). En la Tabla
V se muestra los resultados al aplicar el modelo a
cuatro entradas de tamaño 40.
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TABLA V

Tiempos de ejecución (en segundos) con los parámetros

seleccionados por el modelo, comparados con los

tiempos que conseguiŕıan tres perfiles de usuarios.

(l , p, e) TR UsOpt UsInst UsLow

(12, 14, 1000) 29.40 7.37 11.64 170.57
(13, 10, 1000) 0.135 0.030 0.033 0.4804
(13, 12, 1000) 0.00031 0.0002 0.0002 0.000234
(16, 16, 1000) 90.67 24.65 54.37 1233.31

De los resultados de la Tabla V se concluye que ele-
gir los parámetros obtenidos en tiempo de instalación
nos acerca al óptimo respecto a elecciones aleatorias
de los usuarios. Las búsquedas locales se comportan
de manera inadecuada al basarse en problemas de
tamaño reducido a partir del original, y esto desvir-
tua el valor de e; se debeŕıan extrapolar los valores
de la búsqueda local al tamaño real. En la para-
lelización de los recorridos de backtraking una mala
configuración de los parámetros podŕıa llevarnos in-
cluso a tiempos mayores que la solución secuencial, y
esto lo evitamos al utilizar los parámetros propuestos
tras la instalación.

VI. Conclusiones y trabajos futuros

El modelado del tiempo de ejecución en esque-
mas de backtracking, plantea problemas al existir
alta dependencia de las entradas, por lo que es nece-
sario incluir información de la entrada para actua-
lizar la información obtenida en la instalación. En
los esquemas paralelos los problemas de configura-
ción de los parámetros se agudizan por aumentar
en número y por las dependencias entre ellos. La
metodoloǵıa propuesta obtiene resultados parcial-
mente favorables. Aunque no obtenemos configu-
raciones que nos lleven a los tiempos de ejecución
óptimos, se abstrae a los usuarios de la decisión de
configuración proponiendo valores que permiten re-
ducir los tiempo secuenciales.

Se identifican como trabajos futuros: extender el
estudio de los esquemas con intercambio de infor-
mación a otro tipo de plataformas, proponer nuevas
técnicas para afinar la estimación de los nodos gene-
rados y acercarnos más al tiempo de ejecución real,
implementar un esquema secuencial con paraleliza-
ción interna y autoconfiguración, aumentar el banco
de pruebas con tamaños más grandes de las entradas,
aplicar la metodoloǵıa a un problema real y estudiar
otras técnicas de recorrido de árboles (Branch and
bound).

References

[1] F. Almeida, J. M. Beltrán, M. Boratto, D. Giménez, J.
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