

Morphological and functional adaptations of pancreatic alpha-cells during late pregnancy in the mouse

Cristina Quesada-Candela, Eva Tudurí, Laura Marroquí, Paloma Alonso-Magdalena, Ivan Quesada, Ángel Nadal

PII: S0026-0495(19)30176-3

DOI: <https://doi.org/10.1016/j.metabol.2019.153963>

Reference: YMETA 153963

To appear in: *Metabolism*

Received date: 27 May 2019

Accepted date: 26 August 2019

Please cite this article as: C. Quesada-Candela, E. Tudurí, L. Marroquí, et al., Morphological and functional adaptations of pancreatic alpha-cells during late pregnancy in the mouse, *Metabolism*(2019), <https://doi.org/10.1016/j.metabol.2019.153963>

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Morphological and functional adaptations of pancreatic alpha-cells during late pregnancy in the mouse.

3

4 Cristina Quesada-Candela^{1,2,3}, Eva Tudurí^{1,2,3}, Laura Marroquí^{1,2,3}, Paloma Alonso-
5 Magdalena^{1,2,3}, Ivan Quesada^{1,2,3,*}, Ángel Nadal^{1,2,3,*}.

6

⁷ ¹Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández,
⁸ 03202, Elche, Spain.

9 ²Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche
10 (IDIIBE), Universitas Miguel Hernández, 03202, Elche, Spain.

11 ³Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders
12 (CIBERDEM), Spain.

13

14 *Correspondence should be addressed to:

15 ivanq@umh.es (I. Quesada); nadal@umh.es (A. Nadal)

16

17 **Abstract**

18 Background: Pregnancy represents a major metabolic challenge for the mother, and
19 involves a compensatory response of the pancreatic beta-cell to maintain
20 normoglycaemia. However, although pancreatic alpha-cells play a key role in glucose
21 homeostasis and seem to be involved in gestational diabetes, there is no information
22 about their potential adaptations or changes during pregnancy.

23 Material and methods: Non-pregnant (controls) and pregnant C57BL/6 mice at
24 gestational day 18.5 (G18.5) and their isolated pancreatic islets were used for *in vivo*
25 and *ex vivo* studies, respectively. The effect of pregnancy hormones was tested in
26 glucagon-secreting α -TC1.9 cells. Immunohistochemical analysis was performed in
27 pancreatic slices. Glucagon gene expression was monitored by RT-qPCR. Glucagon
28 secretion and plasma hormones were measured by ELISA.

29 Results: Pregnant mice on G18.5 exhibited alpha-cell hypertrophy as well as augmented
30 alpha-cell area and mass. This alpha-cell mass expansion was mainly due to increased
31 proliferation. No changes in alpha-cell apoptosis, ductal neogenesis, or alpha-to-beta
32 transdifferentiation were found compared with controls. Pregnant mice on G18.5
33 exhibited hypoglycaemia. Additionally, *in vitro* glucagon secretion at low glucose
34 levels was decreased in isolated islets from pregnant animals. Glucagon content was
35 also reduced. Experiments in α -TC1.9 cells indicated that, unlike estradiol and
36 progesterone, placental lactogens and prolactin stimulated alpha-cell proliferation.
37 Placental lactogens, prolactin and estradiol also inhibited glucagon release from α -
38 TC1.9 cells at low glucose levels.

39 Conclusions: The pancreatic alpha-cell in mice undergoes several morphofunctional
40 changes during late pregnancy, which may contribute to proper glucose homeostasis.
41 Gestational hormones are likely involved in these processes.

42

43 **Keywords:** pregnancy, pancreatic alpha-cell, glucagon, pregnancy hormones.

44

45 **Abbreviations:** GDM, gestational diabetes mellitus; G, glucose; INS, insulin; PL,
46 placental lactogen; PRL, prolactin; P, progesterone; E₂, estradiol.

47

48 **1. Introduction.**

49 To fulfill the energy requirements of the growing fetus, major physiological
50 adaptations occur in the gravid mother. During late pregnancy, maternal insulin
51 resistance in peripheral tissues allows for an adequate glucose gradient and supply to the
52 fetus [1,2]. Among other factors, increased levels of gestational hormones are known to
53 play a role in the decline of insulin sensitivity during late pregnancy [1]. Under this
54 particular scenario, pancreatic islets undergo multiple adaptations driven predominantly
55 by gestational hormones: placental lactogen (PL), prolactin (PRL), progesterone (P) and
56 estradiol (E₂) [3]. These adaptations constitute a physiological response to insulin
57 resistance in order to increase plasma insulin levels and maintain a normoglycemic state
58 in the mother. Adaptive changes in pancreatic beta-cells involve hyperplasia,
59 hypertrophy and increased secretory activity in both humans and rodents [1,2,4]. When
60 these maternal beta-cell adaptations are not able to compensate for insulin resistance,
61 hyperglycaemia and gestational diabetes mellitus (GDM) arises and leads to negative
62 outcomes in the mother and offspring. GDM increases the maternal risk of developing
63 Type 2 diabetes mellitus (T2DM) after delivery [1]. Moreover, GDM could also have
64 adverse metabolic consequences for the offspring, such as impaired development of the
65 endocrine pancreas, predisposition to obesity, glucose intolerance and T2DM later in
66 life [5].

67 In addition to insulin, glucagon release from pancreatic alpha-cells also regulates
68 glucose homeostasis [6]. Hypoglycemia stimulates secretion from these endocrine cells,
69 leading to a rise in plasma glucagon levels and glucagon-induced hepatic glucose
70 production to normalize glycaemia [6,7]. In recent years, accumulated evidence
71 indicates that alterations in both glucagon secretion and pancreatic alpha-cell mass and
72 function are involved in the development of hyperglycaemia and the etiopathogenesis of

73 diabetes [6,7]. Despite the importance of this islet cell population, the potential
74 adaptations of the pancreatic alpha-cell during pregnancy are essentially unknown.
75 Glucagon seems to play a significant role in the metabolism of placental glycogen cells
76 [8,9] and the lack of glucagon signaling leads to fetoplacental defects and alterations in
77 the maternal metabolic milieu in pregnant mice [10]. Like insulin, plasma glucagon
78 levels exhibit dynamic changes throughout gestation in humans and mice [11,12]. It has
79 been reported that the counter-regulatory glucagon response to hypoglycemia is
80 diminished in pregnancy [13]. Remarkably, GDM is associated with higher plasma
81 glucagon levels in late pregnancy [14] and with the lack of glucagon suppression in
82 response to glucose [15], which can contribute to hyperglycemia. Despite these
83 observations, virtually nothing is known about either the alterations or adaptations of
84 the alpha-cell during gestation or the potential contribution of pregnancy hormones in
85 pancreatic alpha-cell regulation. In the present study, we show that the pancreatic alpha-
86 cell also undergoes several morphological and functional changes during pregnancy and
87 that prolactin and placental lactogens may be involved in these alterations.

88

89 **2. Materials and Methods.**90 **2.1 Animals.**

91 The procedures used in this work were previously evaluated and approved by the
92 Animal Ethics Committee of the Miguel Hernandez University (UMH) in accordance
93 with current national and European legislation. Animals were 8-10 weeks-old C57BL/6
94 female mice, which were supplied by the UMH Animal Experimentation Service. The
95 animals were kept under controlled and standardized conditions with a light/dark cycle
96 of 12 hours, 22°C and *ad libitum* access to food and water. Non-pregnant female mice
97 were established as controls, while the study group included pregnant mice on
98 gestational days G12.5, G15.5 and G18.5. Mating was confirmed by the presence of a
99 vaginal plug and this day was established as G0.5.

100

101 **2.2 Cell culture.**

102 For the *in vitro* experiments, we used the glucagon-releasing cell line α -TC1.9
103 (ATCC, Manassas, VA, USA). According to the supplier, these cells were derived from
104 an adenoma, which was obtained in transgenic mice expressing the SV40 T antigen
105 oncogene under the control of the rat preproglucagon promoter. Because of the similar
106 secretory profile of α -TC1.9 cells to that of primary mouse alpha-cells, this cell line has
107 been frequently used as a model to study calcium signaling and glucagon release from
108 pancreatic alpha-cells [16]. α -TC1.9 cells were grown in DMEM (Invitrogen,
109 Barcelona, Spain) without phenol red and supplemented with 2 mM l-glutamine, 1.5 g/l
110 NaHCO₃, 10% inactivated FBS, 15 mM HEPES, 100 U/ml penicillin, 0.1 mg/ml
111 streptomycin, 0.1 mM non-essential amino acids, and a final glucose concentration of 3
112 g/l. Cells were treated for 8 days with the different pregnancy hormones: PL (500

113 ng/ml), PRL (500 ng/ml), P (100 ng/ml) and E₂ (100 pM). DMSO was used as vehicle.

114 The media was refreshed every 48 hours.

115

116 **2.3 Immunocytochemistry and immunohistochemistry.**

117 For the immunohistochemistry, the pancreases were removed and fixed
118 overnight in 4% paraformaldehyde. Subsequently, the tissue was embedded in paraffin
119 and the sections were prepared for immunohistochemistry to identify glucagon-
120 containing cells. After dehydration, the sections were heated to 100°C in the presence of
121 citrate buffer (10mM, pH 6.0) for 20 min. Endogenous peroxidase was blocked by
122 incubation with a solution of 3% hydrogen peroxidase in 50% methanol for 30 min. The
123 sections were then incubated in 3% BSA in PBS for 1 h at room temperature to block
124 nonspecific binding [17-19]. Two to three pancreas sections separated by 200 µm were
125 measured per animal. The total pancreatic area, alpha-cell area and cell size were
126 measured using Metamorph Analysis Software (Nashville, TN, USA). In these
127 experiments, glucagon-containing cells were identified using a polyclonal anti-glucagon
128 rabbit antibody (1:100; Monosan, Uden, The Netherlands) as previously described [17-
129 19] with a hematoxylin counterstain to identify nuclei. Proliferation was analyzed using
130 a monoclonal anti-Ki67 rabbit antibody (1:400; Cell Signaling Technology, Danvers,
131 MS, USA) and a monoclonal anti-glucagon mouse antibody (1:1000; Sigma, Madrid,
132 Spain) to identify the alpha-cells in hematoxylin-counterstained samples. A kit for a
133 double immunostaining was used in this experiment (EnVision G2 Doublestain System,
134 Rabbit/Mouse; DAB+/Permanent Red) (Agilent DAKO, Santa Clara, CA, USA). In
135 both experiments, images were acquired using a Nikon Eclipse TE200 microscope (20X
136 objective). Apoptotic cell counting was analyzed in pancreas sections with the TUNEL
137 technique [18,19]. Images were acquired using a Zeiss Axiovert 200 fluorescence

138 microscope (40X objective). Ductal neogenesis was analyzed using the monoclonal
139 anti-pan-Cytokeratin mouse antibody (1:300; Santa Cruz Biotechnology, Dallas, TX,
140 USA), as previously described [18]. In this case, images were acquired using a Zeiss
141 Axio Observer Z1 microscope with ApoTome (40X objective). To identify glucagon
142 and insulin double-positive cells, a mouse monoclonal anti-glucagon antibody (1:100;
143 Sigma, Madrid, Spain) and a rabbit anti-insulin antibody (1:100; Santa Cruz
144 Biotechnology, Dallas, TX, USA) were used. Double-positive cells were manually
145 counted using the LAS X software (Leica Microsystems Inc. Buffalo Grove, IL, USA).
146 Alexa Fluor 546 goat anti-rabbit IgG and Alexa Fluor 488 goat anti-mouse IgG were
147 used as secondary antibodies in the apoptosis and neogenesis experiments, while Alexa
148 Fluor 488 goat anti-rabbit IgG and Alexa Fluor 546 goat anti-mouse IgG (1:500; Life
149 technologies, Carlsbad, CA, USA) were used in the immunostaining of glucagon-insulin
150 positive cells. Nuclei were stained with Hoechst 33342 (1:1000; Invitrogen, Barcelona,
151 Spain). Sections were mounted using ProLong Gold Antifade Reagent (Invitrogen,
152 Barcelona, Spain).

153 To study the proliferation rate in α -TC1.9 cells, the cells were seeded on
154 coverslips treated with poly-L-lysine (at least 100.000 cells/coverslip) and exposed for 8
155 days with the different hormones. The incubation medium was refreshed every 48
156 hours. On day 7, cells were incubated with 10 μ M BrdU for 24 hours. Cells were then
157 fixed with 4% paraformaldehyde and immunofluorescence was performed. First, cells
158 were immersed in 70% ethanol at 4°C for 30 min; then, cells were immersed in 2 N HCl
159 for 20 min, followed by incubation in a 0.1 M borax solution for 15 min at room
160 temperature and by a wash step after incubation with PBS. To prevent non-specific
161 binding, the cells were incubated for 1 h in 3% BSA in PBS at room temperature.
162 Staining was performed using monoclonal anti-BrdU mouse antibody (1:100; Agilent

163 Dako, Santa Clara, CA, USA) and propidium iodide to label the nuclei. The samples
164 were mounted using ProLong Gold Antifade Reagent (Invitrogen, Barcelona, Spain).
165 Images were acquired using a Zeiss LSM 510 confocal microscope (40X objective).

166

167 **2.4 Plasma measurements.**

168 Blood glucose was measured from the tail vein with an automatic glucometer
169 (Accu-Chek Compact plus; Roche, Mannheim, Germany). Blood samples were collected
170 from the saphenous vein using Microvette tubes (Sarstedt, Germany). For glucagon
171 measurements, blood samples were supplemented with aprotinin (20 mg/l) to protect
172 them from proteolysis. Plasma glucagon and insulin concentrations were determined by
173 ELISA (Crystal Chem Inc., Elk Grove Village, IL, USA).

174

175 **2.5 Glucagon secretion and content measurements.**

176 Mice were euthanized by cervical dislocation, and islets were isolated by
177 collagenase digestion as previously described [18]. Freshly isolated islets from non-
178 pregnant controls and G18.5 pregnant mice were left to recover for 2 hours at 37°C and
179 5% CO₂ in the isolation medium, which contained (in mM): 115 NaCl, 5 KCl, 10
180 NaHCO₃, 1.1 MgCl₂, 1.2 NaH₂CO₄, 2.5 CaCl₂, 25 HEPES, 5 glucose and 0.25% BSA
181 (pH 7.4). Groups of 15 islets were preincubated for 1 hour in 500 µl of medium with 0.5
182 mM glucose (G), 0.1% BSA and the following composition (in mM): 140 NaCl, 4.5
183 KCl, 1 MgCl₂ and 20 HEPES (pH 7.4). Islets were then exposed for 1 hour to 300 µl of
184 medium with the same composition and different stimuli: 0.5 mM G, 11 mM G, or 0.5
185 mM G plus 10 nM insulin. Finally, media were collected and glucagon concentrations
186 were measured by ELISA (Mercodia AB, Uppsala, Sweden). To determine glucagon
187 content, islets were collected and incubated overnight at 4°C in 20 µl of a lysis buffer

188 (75% ETOH, 24,6% dH2O and 0,4% of 30% HCl) and then centrifuged at 14.000 rpm
189 for 4 minutes. Glucagon content was measured in the supernatant by ELISA. Total
190 protein concentration was analyzed using the Bradford dye method [18].

191 **Measurement of glucagon** secretion from α -TC1.9 cells was performed with the
192 media described for experiments with isolated islets. On day 8 after hormonal treatment,
193 cells were preincubated for 2 hours with 500 μ l of secretion media with 5.6 mM G and
194 then, incubated for 1 hour with the appropriate stimuli: 0.5 mM G, 11 mM G or 0.5 mM
195 G plus 10 nM insulin. Next, 400 μ l were collected and used to measure glucagon
196 secretion by ELISA. To determine glucagon content, cells were recovered from the
197 wells and treated with 200 μ l of lysis buffer overnight at 4°C. To measure glucagon
198 release or content, aprotinin (20 mg/l) was included in all media [18].

199

200 **2.6 RNA isolation and real time PCR.**

201 After 8 days of hormonal treatment, total RNA from α -TC1.9 cells was extracted
202 using the RNeasy Mini kit (Qiagen, Madrid, Spain) and quantified by optical density at
203 260 and 280 nm using the NanoDrop 2000 spectrophotometer (Thermo Fisher
204 Scientific, Waltham, MA, USA). cDNA synthesis was carried out from 0.5 μ g of total
205 RNA using the High Capacity cDNA Reverse Transcription RNA kit (Applied
206 Biosystems, Foster City, CA, USA) under the following conditions: 10' at 25°C, 120' at
207 37°C and 5' at 85°C, cooling down the samples at 4°C after these steps. Quantitative
208 PCR assays were performed using a CFX96 Real Time System (Bio-Rad, Hercules, CA,
209 USA) with 1 μ l of cDNA in a total final volume of 10 μ l, containing 200 nM of each
210 primer and 1X IQ™ SYBR® Green Supermix (Bio-Rad, Hercules, CA, USA). Samples
211 were subjected to the following conditions: 3 min at 95°C, 45 cycles of 5 s at 95°C, 5 s
212 at 60°C and 10 s at 72°C, and a melting curve of 65 to 95°C with a slope of 0.1°C/s.

213 The housekeeping gene HPRT (Hypoxanthine-guanine phosphoribosyl transferase) was
214 used as the endogenous control for quantification. The resulting values were expressed
215 as relative expression compared with control levels ($2^{-\Delta\Delta C_t}$) [20]. Further information
216 about the primers sequences can be found in the Supplementary Table 1.

217

218 **2.6 Statistical analysis.**

219 Statistical analysis was performed with GraphPad Prism 7.0 software (GraphPad
220 Software Inc., San Diego, CA, USA). Data was shown as the mean \pm SEM. Student's t
221 test, one-way ANOVA or two-way ANOVA were applied according to the set of groups
222 that were compared. Non-parametric tests were performed when data did not meet the
223 assumption of normality. Except when indicated, a Dunnett's post hoc test or a
224 Bonferroni post hoc test was performed after one-way ANOVA or two-way ANOVA
225 analysis, respectively. Results were considered significant at $p < 0.05$.

226

227

228 **3. Results.**

229 **3.1 Pregnant mice exhibit increased pancreatic alpha-cell mass due to hypertrophy**
230 **and hyperplasia on gestational day G18.5.**

231 To study the morphological characteristics of the pancreatic alpha-cell during
232 pregnancy, we first analyzed the alpha-cell population at different time points during
233 mouse gestation: G12.5, G15.5 and G18.5. Major beta-cell morphological changes have
234 been reported at these time periods [4,21]. The alpha-cell area and mass were
235 significantly increased on G18.5 (Fig. 1A, B). Additionally, the alpha-cell size was
236 augmented on G18.5 and there was a high tendency for increased alpha-cell number per
237 islet compared with controls (Fig. 1C, D). These morphological changes suggested that
238 hypertrophy and, probably, hyperplasia were part of the regulatory events involved in
239 the alpha-cell mass expansion observed on G18.5. This alpha-cell mass increase
240 occurred with a similar temporal pattern as that described for the expansion of the
241 pancreatic beta-cell during mouse pregnancy, which peaks around G16-G18.5 [22,23].
242 Given that different morphological parameters were significantly altered on G18.5, we
243 focused on this time point in the following experiments.

244

245 **3.2 Alpha-cell mass expansion during late pregnancy is mainly due to increased**
246 **alpha-cell proliferation.**

247 Although it has been claimed that pancreatic beta-cell mass expansion during
248 gestation is essentially driven by enhanced proliferation, other processes like apoptosis,
249 neogenesis and transdifferentiation have also been proposed [1,2,4]. To determine the
250 processes responsible for the pancreatic alpha-cell mass expansion, we first analyzed
251 proliferation by measuring Ki-67 antigen expression in glucagon-positive cells [19]. A
252 two-fold increase in alpha-cell proliferation was observed on G18.5 (Fig. 1E).

253 Additionally, the apoptotic rate was found to be very low in pancreatic alpha-cells and
254 no significant differences were observed on G18.5 compared with controls (Fig. 1F).

255 Given that few studies have suggested that beta-cell neogenesis from ductal cells
256 may also play a role during pregnancy in humans [24] and mice [21,25,26], we explored
257 whether this process was also contributing to alpha-cell growth during gestation. The
258 analysis of the presence of glucagon-containing cells co-stained with the ductal marker
259 pan-cytokeratin (PanCK) [19] revealed that their occurrence was low and not different
260 between both groups (Fig. 2A, B). In order to determine whether islet-cell
261 transdifferentiation may also occur during gestation as part of the pancreas adaptive
262 response, we performed an immunofluorescence analysis to quantify the presence of
263 glucagon and insulin double-positive cells [27,28]. We observed 4 double-positive cells
264 out of 1602 total alpha-cells in controls (n=3) and 6 double-positive cells out of 1815
265 alpha-cells in pregnant mice (n=3) (Fig. 2C), suggesting a negligible involvement of
266 alpha-beta reprogramming. Overall, these results indicate that alpha-cell proliferation is
267 probably the main contributor to the increased alpha-cell mass during late pregnancy.

268

269 **3.3 Pregnant mice on G18.5 exhibit hypoglucagonaemia and impaired glucagon
270 secretion.**

271 When plasma parameters associated with glucose homeostasis were analyzed,
272 we found a decrease in glycaemia in pregnant mice on G18.5 compared with controls
273 (Fig. 3A). Pregnant animals also exhibited hypoglucagonaemia (Fig. 3B), while plasma
274 insulin levels showed a non-significant increase (Fig. 3C). To evaluate alpha-cell
275 functional activity, we performed a static glucagon secretion experiment using freshly
276 isolated islets. Islets were challenged with stimulatory (0.5 mM) or inhibitory (11 mM)
277 glucose (G) concentrations for the pancreatic alpha-cell [29] and also with insulin,

278 which reduces glucagon release [30]. As expected, islets from non-pregnant mice
279 exhibited vigorous glucagon secretion at 0.5 mM G, while hormonal release was
280 significantly inhibited in the presence of 11 mM G or 10 nM insulin (Fig. 3D),
281 consistent with prior studies [29,30]. Remarkably, glucagon secretion at 0.5 mM G was
282 significantly reduced in islets from pregnant mice compared to controls (Fig. 3D and
283 Supplementary Fig. 1 for secretion normalized to glucagon islet content and total islet
284 protein, respectively). Glucagon content was decreased in pancreatic islets from
285 pregnant animals compared with controls, although this only reached statistical
286 significance in the insulin condition (Fig. 3E).

287

288 **3.4 Lactogenic hormones and estradiol affect proliferation, glucagon release and
289 proglucagon mRNA expression in α -TC1.9 cells.**

290 PL, PRL, P and E₂ hormones promote different aspects of the adaptive response
291 of the pancreatic beta-cell during pregnancy [3]. To assess whether these hormones also
292 function to regulate the alpha-cell changes described above, we analyzed proliferation
293 and glucagon release from α -TC1.9 cells. These cells were treated for 8 days with
294 hormone concentrations within the range described in pregnant mice [3,31-34] and in
295 similar *in vitro* studies [32,35]. While PL and PRL stimulated proliferation, E₂ induced
296 the opposite effect (Fig. 4).

297 Based on the results obtained from the *ex vivo* glucagon secretion studies (Fig.
298 3), we also examined the potential role of pregnancy hormones in glucagon release from
299 α -TC1.9 cells. After 8 days of hormone exposure [32], glucagon secretion was analyzed
300 after incubation of cells with 0.5 mM G, 11 mM G or 0.5 mM G plus 10 nM insulin for
301 1 hour. Similar to isolated islets (Fig. 3), α -TC1.9 cells treated with vehicle exhibited
302 maximal glucagon secretion at 0.5 mM G and significant decreases at both 11 mM G

303 and 0.5 mM G plus insulin. Interestingly, glucagon release at 0.5 mM G was
304 significantly inhibited in the cells treated with PL, PRL and E₂ (Fig 5A). Similar results
305 were obtained when glucagon release was normalized to islet protein content
306 (Supplementary Fig. 2A). No differences were found between groups in the glucagon
307 content or in glucagon gene expression, with the exception of a decrease in glucagon
308 mRNA after E₂ exposure (Fig. 5B, C and Supplementary Fig. 2B, C). Overall, our
309 findings in both pancreatic alpha-cells and α -TC1.9 cells indicate that the gestational
310 hormones PRL, PL and E₂ are likely involved in the alpha-cell alterations during
311 pregnancy.

312

313

314 **4. Discussion.**

315 During pregnancy, the mother undergoes major hormonal and metabolic changes
316 to meet the energy requirements of the growing fetus. These changes involve a maternal
317 decrease in peripheral insulin sensitivity to ensure the glucose gradient for the fetus. To
318 maintain glucose homeostasis in this situation, important morphofunctional adaptations
319 take place in the pancreatic beta-cell to increase hormonal secretion and compensate for
320 the insulin resistance [1,2,4,36]. A deficient pancreatic beta-cell adaptation can lead to
321 impaired glucose homeostasis and GDM [1,2,5]. It has been described that pregnancy
322 hormones play a key role in the development of both insulin resistance and beta-cell
323 adaptations during gestation [3], yet there is little information about the alterations of
324 the pancreatic alpha-cell during pregnancy and the potential function of gestational
325 hormones.

326 In the present study, we analyzed the morphofunctional features of pancreatic
327 alpha-cells during pregnancy. We found a significant increase in alpha-cell mass at
328 G18.5, which was mainly associated with hypertrophy and hyperplasia, a situation
329 similar to that reported in beta-cells [4,22]. These findings are in accordance with a
330 previous study showing alpha-cell expansion during pregnancy in a similar period [22].
331 The increase in alpha-cell mass on G18.5 was not associated with changes in apoptosis,
332 which remained at low levels, similar to what has been reported for beta-cells during
333 pregnancy [24,37]. This result was not unexpected, since alpha-cell apoptosis is very
334 low in non-pregnant mice [38] and this islet cell type exhibits a high resistance to pro-
335 apoptotic stimuli compared with beta-cells [39].

336 Although proliferation seems to be the major contributor to beta-cell mass
337 growth in rodent pregnancy, few studies have observed that up to 10-25% of beta-cells
338 may come from other non-beta-cell sources [2,25,26]. In this regard, neogenesis from

339 ductal cells has been postulated as an important contributor to beta-cell mass during
340 human pregnancy [24]. However, since other studies failed to detect beta-cell
341 neogenesis [40,41], this issue remains controversial. Of note, we found a low proportion
342 of glucagon-containing cells expressing the ductal marker PanCK that did not change
343 between control and pregnant animals. Thus, these findings indicate that pancreatic
344 ductal cells do not act as an alpha-cell source during pregnancy. Transdifferentiation
345 among different islet cell types has been reported under some pathophysiological
346 conditions and with genetically modified animal models [27,28]. In our study, we
347 observed a similar very low number of islet cells expressing both insulin and glucagon
348 in control and pregnant mice, which suggests that transdifferentiation programs may not
349 have a significant impact on alpha-cell mass during pregnancy.

350 Although E₂ and P may also have an effect on beta-cell proliferation [32,42], PL
351 and PRL have been described as key regulators of gestational beta-cell replication
352 [1,22,23,37]. Treatment of α -TC1.9 cells with PL and PRL increased proliferation,
353 suggesting an important role for these hormones, which is similar to findings in beta-
354 cells [32]. The PRL receptor has been reported in neonatal rat pancreatic alpha-cells
355 [43]. However, while PRL activated the JAK/STAT5 pathway in rat beta-cells, this
356 effect was not observed in alpha-cells [35]. This suggests that PRL may activate STAT-
357 independent signaling routes in glucagon-secreting cells, as has been reported in other
358 cell types [44]. Unlike PL and PRL, E₂ diminished α -TC1.9 cell proliferation.
359 Progesterone also produced a similar trend, as expected since this hormone counteracts
360 PRL-induced rat beta-cell proliferation [32]. The role of E₂ in beta-cell proliferation is
361 still unclear: while this hormone partially reverses PRL-induced BrdU incorporation in
362 rat islets [32], it has been shown that E₂ increases proliferation in insulinoma INS1 cells
363 and dispersed rat beta-cells after 48 hours of culture [42]. Given that these studies were

364 performed with pharmacological doses, it is difficult to draw conclusions to the
365 physiological context. Thus, although E₂ proliferative effects on the beta-cell may differ
366 depending on experimental conditions, our findings indicate that E₂ may decrease alpha-
367 cell replication. Overall, all these results indicate that PRL and PL may have a
368 prominent function in the regulation of the alpha-cell mass expansion during pregnancy,
369 as has been reported for the pancreatic beta-cell [2,4,32].

370 It is well known that plasma insulin levels and glucose-stimulated insulin
371 secretion (GSIS) from pancreatic beta-cells follow a dynamic pattern during pregnancy
372 [1,2,32,36,45,46]. One of the most important adaptive changes in pregnancy is a
373 lowering of the threshold for GSIS [45,46]. This threshold changes throughout
374 pregnancy peaking at G15, when islets release 8-fold more insulin at 5.6 mM glucose.
375 At G19, this effect is diminished to 4-fold increase in insulin secretion, and reaches
376 control levels at G20 [45,46]. Additionally, it has been reported in mice that whole body
377 insulin sensitivity both is higher at G19 compared with G16 and is similar to non-
378 pregnant animals [47]. This insulin sensitivity level at G19 near control conditions [47],
379 together with a decreased threshold for GSIS at this gestational day [45], may explain
380 the lower glucose levels and the trend to high insulin concentrations found in the
381 present work. A similar scenario has been previously described in late pregnancy in
382 mice [5]. Likewise, higher insulinemia at mid gestation compared with late pregnancy
383 and non-pregnant controls has also been described in mice [21]. This situation should be
384 considered as an aspect of late pregnancy reconditioning to prepare the mother for labor
385 and lactation [46].

386 Contrary to the situation of beta-cells, there is nearly no evidence about
387 glucagon secretion from pancreatic alpha-cells during pregnancy. In agreement with a
388 previous study [12], we observed that pregnant mice exhibited hypoglucagonemia on

389 G18.5. In women, plasma glucagon concentrations rise during the first and second
390 trimesters but they decrease at late pregnancy [11]. The hypoglycagonemia observed in
391 pregnant animals was further supported by *in vitro* glucagon release experiments
392 showing that alpha-cell secretion from freshly isolated islets was down-regulated in
393 pregnant mice. Additionally, glucagon content also seemed to be reduced in the islets
394 from pregnant female. Because paracrine influences should not affect alpha-cells at 0.5
395 mM glucose [6,7,29], the reduced glucagon secretion may reflect a direct action on
396 these cells, probably a down-regulation at the level of glucose-sensing, signal
397 transduction and/or exocytosis. In pregnant rats, basal glucagon release from isolated
398 islets was also found to be reduced at 2.5 mM glucose [48]. The lower plasma glucagon
399 levels found during late gestation could be the result of a **direct regulation by**
400 pregnancy-induced **factors and/or by** paracrine inhibitory signals acting on alpha-cells,
401 like insulin or serotonin [12,30,49], whose intra-islet secretion from beta-cells is
402 increased during gestation [1,50]. In the present work, the *in vitro* experiments with α -
403 TC1.9 cells also point to a direct role for gestational hormones in late pregnancy
404 **hypoglycagonemia**. PL, PRL and E_2 all diminished glucagon secretion at 0.5 mM G. A
405 previous study using purified primary alpha-cells also showed that exposure to 10 nM
406 E_2 for 48 hours down-regulated glucagon content and release [51]. In line with this, E_2
407 produced an inhibitory effect on α -TC1.9 cells at the level of secretion and glucagon
408 mRNA expression in our experiments. To the best of our knowledge, there are no
409 previous data describing PL and PRL actions on alpha-cell secretion. Overall, these
410 results indicate that PL, PRL and E_2 are likely involved in the inhibitory effect observed
411 in glucagon secretion from isolated islets in pregnant mice. In any case, given the
412 complexity of the signals that regulate the adaptations of the endocrine pancreas during
413 gestation [36], we cannot rule out the involvement of other hormones.

414 It has been reported that genetic ablation of either prohormone convertase 2 or
415 glucagon leads to alpha-cell hyperplasia and hypertrophy [52-54]. These results have
416 been interpreted as a compensatory response to the limited hepatic glucagon signaling
417 associated with the lower plasma glucagon levels in these animals [54]. Thus, it is
418 plausible that the alpha-cell hyperplasia and hypertrophy described here in pregnant
419 mice could be derived from their hypoglucagonemia. Recent findings have also shown
420 that interrupted glucagon receptor signaling can induce hepatic amino-acid release and
421 hyperaminoacidemia, which seems to be linked to mTOR-mediated alpha-cell
422 proliferation [55]. Further studies will be required to better understand the whole
423 scenario.

424 In addition to the potential *in vivo* interactions described above that may take
425 place during pregnancy, the results obtained with the alpha-cell line also point to a
426 direct role of PL and PRL in the dual actions on alpha-cells during gestation. Activation
427 of the PRL receptor involves the stimulation of at least three main signaling pathways in
428 the pancreatic beta-cell and other cell types: JAK2/STAT5, MAPK and PI3K [1,44]. In
429 the case of mouse alpha-cells and alpha-TC1 cells, activation of the PI3K pathway has
430 been associated with both the inhibition of glucagon secretion [6,30] and the increase of
431 proliferation [56]. Thus, it is plausible that PRL receptor activation may produce
432 opposite actions on alpha-cell proliferation and secretion through PI3K signaling. A
433 similar situation has also been described for insulin via PI3K [6,7,30,56] and for
434 glucagon-like peptide 1 (GLP-1) via the PKA signaling pathway [6,7,57,58].

435 In any case, we should take with some caution the PRL and PL effects observed
436 in our *in vitro* model, when compared with *in vivo* conditions. The control of pancreatic
437 alpha-cell secretion is a complex process compared with that of the beta-cell [7,59,60].
438 It has been shown that, in addition to glucagon, pancreatic alpha-cells can also secrete

439 other signaling molecules like GLP-1, acetylcholine, GIP (gastric inhibitory
440 polypeptide) and glutamate, which can subsequently affect alpha-cell function by
441 autocrine regulation [6,7,59,60]. These processes can be induced under certain
442 conditions, and usually involve long-term stimulation (like chronic *in vitro* conditions)
443 rather than short-term acute modulation. Additionally, several stimuli like glucose or
444 adrenaline have been shown to produce a dose-dependent biphasic action on glucagon
445 release [57,60], which has been attributed to the particular electrical activity and ATP-
446 dependent K⁺ channel activity pattern that specifically regulates pancreatic alpha-cell
447 secretion [57,60]. Thus, we cannot totally discard that, in other conditions, PRL and PL
448 may induce alternative secretory effects on pancreatic alpha-cells during pregnancy,
449 which represents a complex scenario with multiple signals.

450 In summary, the present findings show that the pancreatic alpha-cell undergoes
451 important morphofunctional changes during pregnancy. These changes are likely
452 regulated by the main pregnancy hormones that have been implicated in the adaptive
453 response of the pancreatic beta-cell during this physiological condition. These alpha-cell
454 adaptations during an insulin-resistant condition might be crucial for the maintenance of
455 an adequate glucose and metabolic milieu for the mother and the fetus. Indeed, the key
456 role of glucagon during pregnancy has been previously pointed out by studies showing
457 that interruption of glucagon signaling results in fetoplacental defects and alterations in
458 the fetal metabolic environment [10], and that this hormone regulates the metabolism of
459 placental glycogen cells [8, 9]. Therefore, the attenuated alpha-cell function on G18.5
460 described here could be an adaptation to prevent a potential evolution to a
461 hyperglycemic state. Indeed, since GDM has been associated with several alterations in
462 the function of these islet cells and glucagon hypersecretion [13-15], an inadequate
463 pancreatic alpha-cell adaptation to pregnancy may promote a hyperglycemic condition.

464 Our current findings provide novel information about the complex adaptations of the
465 endocrine pancreas during pregnancy to have a more complete view of the general
466 scenario. These data would be also interesting for the design of new therapeutic
467 strategies in GDM.

468

469 **Acknowledgements.**

470 We thank M.S. Ramon, M.L. Navarro and G. Expósito for their expert technical
471 assistance, and J.L. Yanowitz from the University of Pittsburgh School of Medicine for
472 her assistance with English. This research was supported by grants from the Ministerio
473 de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación (AEI), Fondo
474 Europeo de Desarrollo Regional (FEDER) and Generalitat Valenciana: BFU2017-
475 86579-R and PROMETEO II/2015/016 to AN and BFU2016-77125-R to IQ. LM holds
476 a Juan de la Cierva fellowship from the Ministerio de Ciencia, Innovación y
477 Universidades (IJCI-2015-24482). CIBERDEM is an initiative of the Instituto de Salud
478 Carlos III.

479

480 **Declarations of interests.**

481 The authors have no interests to declare.

482

483 **Author contributions.**

484 I.Q. and A.N. designed the experiments; C.Q.C. and E.T. performed and
485 analyzed the experiments; C.Q.C., E.T., P.A.M., L.M., I.Q. and A.N. interpreted the
486 results; C.Q.C., I.Q. and A.N. wrote the manuscript. All authors contributed to the
487 discussion, reviewed the manuscript and approved the final version of the article.

488

489 **References.**

490 1. Baeyens L, Hindi S, Sorenson RL, et al. β -Cell adaptation in pregnancy. *Diabetes*
491 *Obes Metab*. 2016;18(Suppl 1):63-70.

492 2. Banerjee RR. Piecing together the puzzle of pancreatic islet adaptation in pregnancy.
493 *Ann NY Acad Sci* 2018;1411(1):120-39.

494 3. Nadal A, Alonso-Magdalena P, Soriano S, et al. The role of oestrogens in the
495 adaptation of islets to insulin resistance. *J Physiol* 2009;587(Pt 21):5031-7.

496 4. Rieck S, Kaestner KH. Expansion of beta-cell mass in response to pregnancy. *Trends*
497 *Endocrinol Metab* 2010;21(3):151-8.

498 5. Kahraman S, Dirice E, De Jesus DF, et al. Maternal insulin resistance and transient
499 hyperglycemia impact the metabolic and endocrine phenotypes of offspring. *Am J*
500 *Physiol Endocrinol Metab*. 2014;307(10):906-18.

501 6. Quesada I, Tuduri E, Ripoll C, et al. Physiology of the pancreatic alpha-cell and
502 glucagon secretion: role in glucose homeostasis and diabetes. *J Endocrinol*
503 2008;199(1):5-19.

504 7. Gromada J, Chabosseau P, Rutter GA. The alpha-cell in diabetes mellitus. *Nat Rev*
505 *Endocrinol* 2018;14(12):694-704.

506 8. Coan PM, Conroy N, Burton GJ, et al. Origin and characteristics of glycogen cells in
507 the developing murine placenta. *Dev Dyn* 2006;235(12):3280-94.

508 9. Perlman R, Halabi C, Bick T, et al. The human placenta as a target tissue for
509 glucagon. *Biochem Biophys Res Commun* 1988;151(3):1019-24.

510 10. Ouhilal S, Vuguin P, Cui L, et al. Hypoglycemia, hyperglucagonemia, and
511 fetoplacental defects in glucagon receptor knockout mice: a role for glucagon action in
512 pregnancy maintenance. *Am J Physiol Endocrinol Metab* 2012;302(5):E522-31.

513 11. Luyckx AS, Gerard J, Gaspard U, et al. Plasma glucagon levels in normal women
514 during pregnancy. *Diabetologia* 1975;11(6):549-54.

515 12. Moffett RC, Vasu S, Thorens B, et al. Incretin receptor null mice reveal key role of
516 GLP-1 but not GIP in pancreatic beta cell adaptation to pregnancy. *PLoS One*
517 2014;9(6):e96863.

518 13. Canniff KM, Smith MS, Lacy DB, et al. Glucagon secretion and autonomic
519 signaling during hypoglycemia in late pregnancy. *Am J Physiol Regul Integr Comp*
520 *Physiol* 2006;291(3):R788-95.

521 14. Grigorakis SI, Alevizaki M, Beis C, et al. Hormonal parameters in gestational
522 diabetes mellitus during the third trimester: high glucagon levels. *Gynecol Obstet Invest*
523 2000;49(2):106-9.

524 15. Beis C, Grigorakis SI, Philippou G, et al. Lack of suppression of plasma glucagon
525 levels in late pregnancy persists postpartum only in women with previous gestational
526 diabetes mellitus. *Acta Diabetol* 2005;42(1):31-5.

527 16. Ravier MA, Rutter GA. Glucose or insulin, but not zinc ions, inhibit glucagon
528 secretion from mouse pancreatic alpha-cells. *Diabetes* 2005;54(6):1789-97.

529 17. Alonso-Magdalena P, Ropero AB, Garcia-Arevalo M, et al. Antidiabetic actions of
530 an estrogen receptor beta selective agonist. *Diabetes* 2013;62(6):2015-25.

531 18. Merino B, Alonso-Magdalena P, Lluesma M, et al. Pancreatic alpha-cells from
532 female mice undergo morphofunctional changes during compensatory adaptations of the
533 endocrine pancreas to diet-induced obesity. *Sci Rep* 2015;5:11622.

534 19. Montanya E, Tellez N. Pancreatic remodeling: beta-cell apoptosis, proliferation and
535 neogenesis, and the measurement of beta-cell mass and of individual beta-cell size.
536 *Methods Mol Biol* 2009;560:137-58.

537 20. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time
538 quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 2001;25:402-8.

539 21. Beamish CA, Zhang L, Szlapinski SK, et al. An increase in immature beta-cells
540 lacking Glut2 precedes the expansion of beta-cell mass in the pregnant mouse. *PLoS*
541 *One* 2017;12(7):e0182256.

542 22. Xu Y, Wang X, Gao L, et al. Prolactin-stimulated survivin induction is required for
543 beta cell mass expansion during pregnancy in mice. *Diabetologia* 2015;58(9):2064-73.

544 23. Karnik SK, Chen H, McLean GW, et al. Menin controls growth of pancreatic beta-
545 cells in pregnant mice and promotes gestational diabetes mellitus. *Science*
546 2007;318(5851):806-9.

547 24. Butler AE, Cao-Minh L, Galasso R, et al. Adaptive changes in pancreatic beta cell
548 fractional area and beta cell turnover in human pregnancy. *Diabetologia*
549 2010;53(10):2167-76.

550 25. Abouna S, Old RW, Pelengaris S, et al. Non-beta-cell progenitors of beta-cells in
551 pregnant mice. *Organogenesis* 2010;6(2):125-33.

552 26. Toselli C, Hyslop CM, Hughes M, et al. Contribution of a non-beta-cell source to
553 beta-cell mass during pregnancy. *PLoS One* 2014;9(6):e100398.

554 27. Cigliola V, Ghila L, Thorel F, et al. Pancreatic islet-autonomous insulin and
555 smoothened-mediated signalling modulate identity changes of glucagon(+) alpha-cells.
556 *Nat Cell Biol* 2018;20(11):1267-77.

557 28. Piran R, Lee SH, Li CR, et al. Pharmacological induction of pancreatic islet cell
558 transdifferentiation: relevance to type I diabetes. *Cell Death Dis* 2014;5:e1357.

559 29. Vieira E, Salehi A, Gylfe E. Glucose inhibit glucagon secretion by a direct effect on
560 mouse pancreatic alpha cells. *Diabetologia* 2007;50:370-9.

561 30. Kawamori D, Kurpad AJ, Hu J, et al. Insulin signaling in alpha cells modulates
562 glucagon secretion in vivo. *Cell Metab* 2009;9(4):350-61.

563 31. Goyvaerts L, Lemaire K, Arijs I, et al. Prolactin receptors and placental lactogen
564 drive male mouse pancreatic islets to pregnancy-related mRNA changes. *PLoS One*
565 2015;10(3):e0121868.

566 32. Sorenson RL, Brelje TC, Roth C. Effects of steroid and lactogenic hormones on
567 islets of Langerhans: a new hypothesis for the role of pregnancy steroids in the
568 adaptation of islets to pregnancy. *Endocrinology* 1993;133(5):2227-8.

569 33. Hoiriis Nielsen J, Nielsen V, Molsted Pedersen L, et al. Effects of pregnancy
570 hormones on pancreatic islets in organ culture. *Acta Endocrinol (Copenh)*
571 1986;111(3):336-41.

572 34. Barkley MS, Geschwind II, Bradford GE. The gestational pattern of estradiol,
573 testosterone and progesterone secretion in selected strains of mice. *Biology of*
574 *reproduction* 1979;20(4):733-8.

575 35. Brelje TC, Svensson AM, Stout LE, et al. An immunohistochemical approach to
576 monitor the prolactin-induced activation of the JAK2/STAT5 pathway in pancreatic
577 islets of Langerhans. *J Histochem Cytochem* 2002;50(3):365-83.

578 36. Napso T, Yong HEJ, Lopez-Tello J, et al. The Role of Placental Hormones in
579 Mediating Maternal Adaptations to Support Pregnancy and Lactation. *Front Physiol*
580 2018;9:1091.

581 37. Huang C, Snider F, Cross JC. Prolactin receptor is required for normal glucose
582 homeostasis and modulation of beta-cell mass during pregnancy. *Endocrinology*
583 2009;150(4):1618-26.

584 38. Nielsen SS, Christensen GL, Holst JJ, et al. Regulation of Pancreatic alpha-Cell
585 Function and Proliferation by Bone Morphogenetic Protein 4 (BMP4) In Vitro.
586 *Endocrinology* 2016;157(10):3809-20.

587 39. Marroqui L, Masini M, Merino B, et al. Pancreatic alpha Cells are Resistant to
588 Metabolic Stress-induced Apoptosis in Type 2 Diabetes. *EBioMedicine* 2015;2(5):378-
589 85.

590 40. Zhao X. Increase of beta cell mass by beta cell replication, but not neogenesis, in the
591 maternal pancreas in mice. *Endocr J* 2014;61(6):623-8.

592 41. Parsons JA, Bartke A, Sorenson RL. Number and size of islets of Langerhans in
593 pregnant, human growth hormone-expressing transgenic, and pituitary dwarf mice:
594 effect of lactogenic hormones. *Endocrinology* 1995;136(5):2013-21.

595 42. Jacovetti C, Abderrahmani A, Parnaud G, et al. MicroRNAs contribute to
596 compensatory beta cell expansion during pregnancy and obesity. *J Clin Invest*
597 2012;122(10):3541-51.

598 43. Sorenson RL, Stout LE. Prolactin receptors and JAK2 in islets of Langerhans: an
599 immunohistochemical analysis. *Endocrinology* 1995;136(9):4092-8.

600 44. Binart N, Bachelot A, Bouilly J. Impact of prolactin receptor isoforms on
601 reproduction. *Trends Endocrinol Metab* 2010;21(6):362-8.

602 45. Parsons JA, Brelje TC, Sorenson RL. Adaptation of islets of Langerhans to
603 pregnancy: increased islet cell proliferation and insulin secretion correlates with the
604 onset of placental lactogen secretion. *Endocrinology* 1992;130(3):1459-66.

605 46. Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: beta-cell
606 growth, enhanced insulin secretion and the role of lactogenic hormones. *Horm Metab
607 Res* 1997;29(6):301-7.

608 47. Musial B, Fernandez-Twinn DS, Vaughan OR, et al. Proximity to Delivery Alters
609 Insulin Sensitivity and Glucose Metabolism in Pregnant Mice. *Diabetes*
610 2016;65(4):851-60.

611 48. Moes H, Schuiling GA, Koiter TR. Arginine stimulated glucagon and insulin
612 secretion by islets of Langerhans of pregnant and lactating rats. *Horm Metab Res*
613 1993;25(5):246-9.

614 49. Almaca J, Molina J, Menegaz D, et al. Human Beta Cells Produce and Release
615 Serotonin to Inhibit Glucagon Secretion from Alpha Cells. *Cell Rep* 2016;17(12):3281-
616 91.

617 50. Kim H, Toyofuku Y, Lynn FC, et al. Serotonin regulates pancreatic beta cell mass
618 during pregnancy. *Nat Med* 2010;16(7):804-8.

619 51. Handgraaf S, Dusaulcy R, Visentin F, et al. 17-beta Estradiol regulates proglucagon-
620 derived peptide secretion in mouse and human alpha- and L cells. *JCI Insight* 2018;3(7).

621 52. Furuta M, Yano H, Zhou A, et al. Defective prohormone processing and altered
622 pancreatic islet morphology in mice lacking active SPC2. *Proc Natl Acad Sci U S A*
623 1997;94(13):6646-51.

624 53. Hayashi Y, Yamamoto M, Mizoguchi H, et al. Mice deficient for glucagon gene-
625 derived peptides display normoglycemia and hyperplasia of islet $\{\alpha\}$ -cells but not
626 of intestinal L-cells. *Mol Endocrinol* 2009;23(12):1990-9.

627 54. Hayashi Y, Seino Y. Regulation of amino acid metabolism and alpha-cell
628 proliferation by glucagon. *J Diabetes Investig* 2018;9(3):464-472.

629 55. Solloway MJ, Madjidi A, Gu C, et al. Glucagon Couples Hepatic Amino Acid
630 Catabolism to mTOR-Dependent Regulation of α -Cell Mass. *Cell Rep* 2015;12(3):495-
631 510.

632 56. Liu Z, Kim W, Chen Z, et al. Insulin and glucagon regulate pancreatic α -cell
633 proliferation. *PLoS One* 2011;6(1):e16096.

634 57. De Marinis YZ, Salehi A, Ward CE, et al. GLP-1 inhibits and adrenaline stimulates
635 glucagon release by differential modulation of N- and L-type Ca^{2+} channel-dependent
636 exocytosis. *Cell Metab* 2010;11(6):543-553.

637 58. Lee YS, Lee C, Choung JS, et al. Glucagon-Like Peptide 1 Increases β -Cell
638 Regeneration by Promoting α - to β -Cell Transdifferentiation. *Diabetes*
639 2018;67(12):2601-2614.

640 59. Sandoval DA, D'Alessio DA. Physiology of proglucagon peptides: role of glucagon
641 and GLP-1 in health and disease. *Physiol Rev* 2015;95(2):513-48.

642 60. Walker JN, Ramracheya R, Zhang Q, et al. Regulation of glucagon secretion by
643 glucose: paracrine, intrinsic or both? *Diabetes Obes Metab* 2011;13 Suppl 1:95-105.

644

645

646 **Figure legends**

647 **Figure 1.** Increase in alpha-cell mass, area and cell size in pregnant mice on G18.5. **(A-**
648 **D)** Different morphological parameters were measured on gestational days G12.5,
649 G15.5 and G18.5 in pregnant mice and non-pregnant controls. **(A)** Alpha-cell area (n=5
650 mice per group). **(B)** Alpha-cell mass (n=5 mice per group). **(C)** Alpha-cell number per
651 islet (100 islets were randomly selected from 5 mice per group). **(D)** Alpha-cell size
652 (100 islets were randomly selected from 5 mice per group). **(E)** Alpha-cell proliferation
653 (%) in non-pregnant (control) and pregnant mice on G18.5 (n=4 controls; n=5 pregnant
654 mice). **(C)** Alpha-cell apoptosis (%) analyzed by TUNEL in control and pregnant mice
655 (n=5 mice each group). Values represent mean \pm SEM. *p<0.05. One way-ANOVA
656 followed by Dunnet's post hoc test (A, B); One way-ANOVA followed by Fisher's
657 Least Significant Difference (LSD) test (C); Kruskal-Wallis followed by Dunn's post
658 hoc test (D). Mann-Whitney test (E); Student's t test (F).

659

660 **Figure 2.** Ductal glucagon-containing and insulin-glucagon double-positive cells are not
661 increased in pregnant mice on G18.5. **(A)** Percentage of double-positive cells for
662 glucagon and PanCK in control and pregnant mice on G18.5 (n=5 mice each group). **(B)**
663 Representative images showing the cellular staining for glucagon (red), PanCk (green)
664 and the nuclear labeling with Hoechst (blue) in pancreatic sections from controls and
665 pregnant mice. Boxed areas are enlarged on the right. White arrows indicate double-
666 positive cells. **(C)** Representative images showing the cellular staining for glucagon
667 (red), insulin (green) and the nuclear labeling with Hoechst (grey) in pancreatic sections
668 from controls and pregnant mice. Boxed areas are enlarged on the right. White arrows
669 indicate double-positive cells. Values represent mean \pm SEM. *p<0.05. Student's t test
670 (A).

671

672 **Figure 3.** Plasma parameters and *ex vivo* glucagon secretion on G18.5. **(A)** Glycaemia
673 in control and pregnant mice (n=16 and n=8 animals, respectively). **(B)** Glucagon
674 plasma levels in control and pregnant mice (n=11 and n=9 animals, respectively). **(C)**
675 Insulin plasma levels in control and pregnant mice (n=12 and n=8 animals,
676 respectively). All plasma parameters were measured in non-fasted state conditions **(D)**
677 Glucagon secretion normalized by content from freshly isolated islets of controls and
678 pregnant mice at 0.5 mM glucose (G), 11 mM G and 0.5 mM glucose plus 10 nM
679 insulin (INS) (n=18-19 control mice; n=11 pregnant mice; 15 islets per animal and
680 condition were used). **(E)** Glucagon content in each condition in non-pregnant mice and
681 pregnant G18.5 mice (n=19-20 control mice; n=12 pregnant mice; 15 islets per animal
682 and condition were used). Values represent mean \pm SEM. *p<0.05; **p<0.01;
683 ***p<0.001. Student's t test (A-C); Two-way ANOVA followed by Bonferroni's post
684 hoc test (D-E).

685

686 **Figure 4.** Effects of the pregnancy hormones P, PL, PRL and E₂ on the proliferation of
687 α -TC1.9 cells. **(A)** Quantification of BrdU-positive cells relative to control conditions
688 (vehicle) in α -TC1.9 cells treated for 8 days with PL (500 ng/ml), PRL (500 ng/ml), P
689 (100 ng/ml) and E₂ (100 pmol/l). Three different experiments were performed (n= 8
690 coverslips per condition; at least 2.000 cells were counted per coverslip). **(B)**
691 Representative images showing nuclei stained for propidium iodide (red) and BrdU
692 (green). Values represent mean \pm SEM. *p<0.05. One way-ANOVA followed by
693 Fisher's Least Significant Difference (LSD) test (A).

694

695 **Figure 5.** Effect of pregnancy hormones on glucagon secretion, content and
696 proglucagon mRNA expression in α -TC1.9 cells. Cells were treated for 8 days with PL
697 (500 ng/ml), PRL (500 ng/ml), P (100 ng/ml) and E₂ (100 pmol/l). **(A)** Glucagon release
698 from α -TC1.9 cells normalized by glucagon content was measured after 1 hour
699 incubation in 0.5 mM G, 11 mM G or 0.5 mM G plus 10 nM insulin. **(B)** Glucagon
700 content normalized by total protein from α -TC1.9 cells exposed at 0.5 mM glucose in A.
701 **(C)** Proglucagon mRNA expression relative to the control (vehicle). Three different
702 experiments were performed: n=7-9 wells per condition in (A), n=8-9 wells per
703 condition in (B), and n=6 wells per condition in (C). Values represent mean \pm SEM.
704 Two-way ANOVA followed by Bonferroni's post hoc test was performed in (A), where
705 letters indicate p<0.05: a, 11 mM G and 0.5 mM G + 10 nM INS versus 0.5 mM G in
706 vehicle experiments; b, 0.5 mM G in hormone-treated conditions versus 0.5 mM G in
707 vehicle; c, 11 mM G in PRL conditions versus 11 mM G vehicle. One-way ANOVA
708 followed by Dunnet's post hoc test was performed in (B) and (C), *p<0.05.
709

710 **Highlights**

711 • Pregnancy promotes pancreatic alpha-cell mass expansion.

712 • Alpha-cell proliferation and size are increased during late pregnancy.

713 • Hypoglucagonemia and impaired glucagon secretion are present during late

714 pregnancy.

715 • Pregnancy hormones are potentially involved in these alpha-cell alterations.

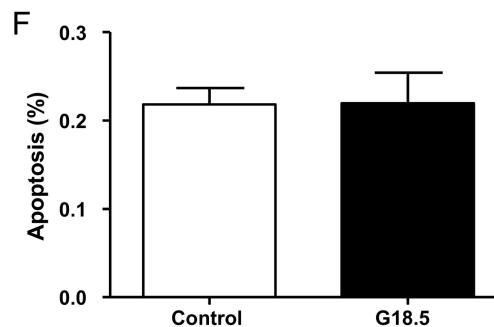
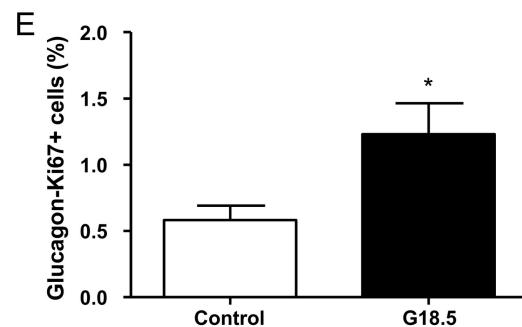
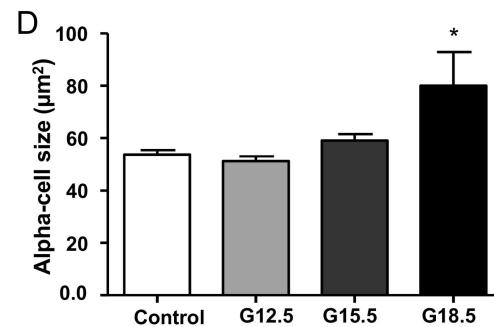
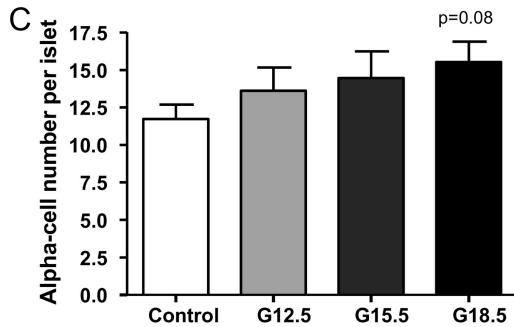
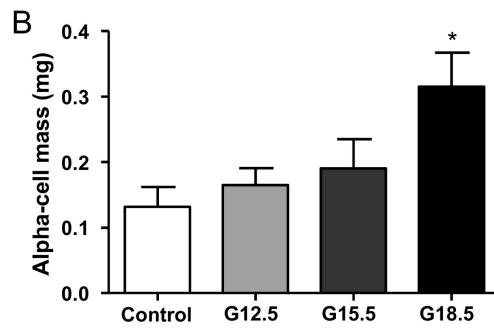
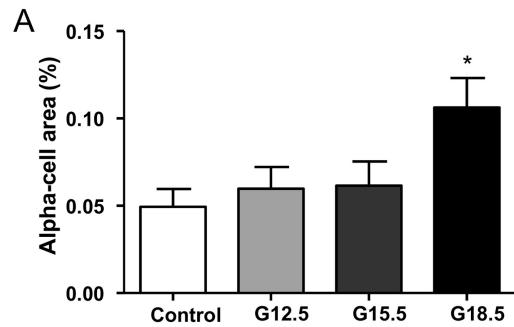







Figure 1

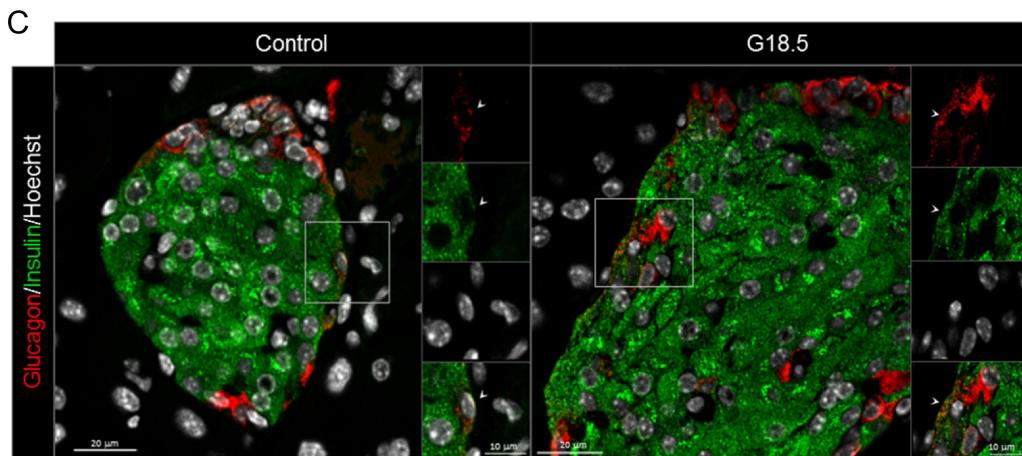
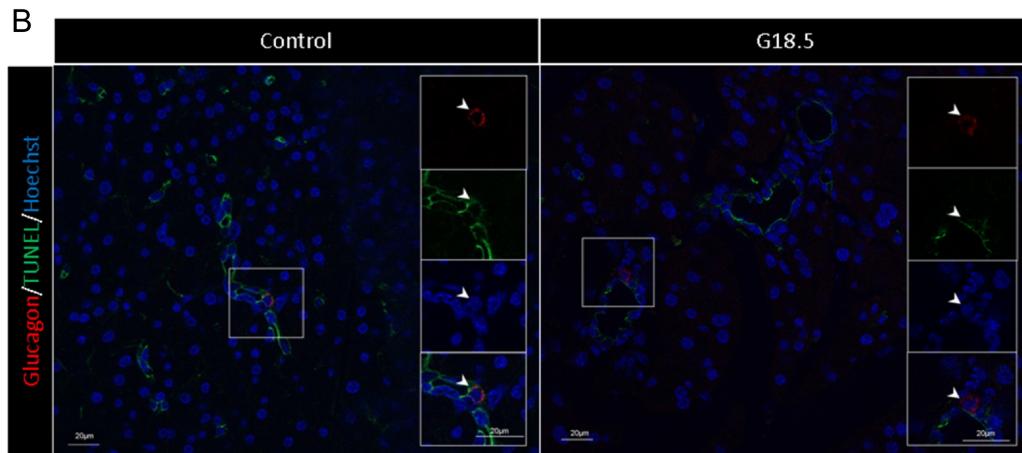
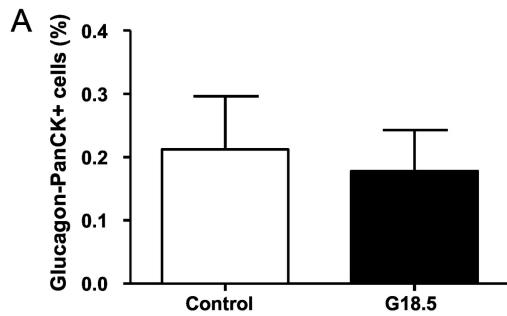
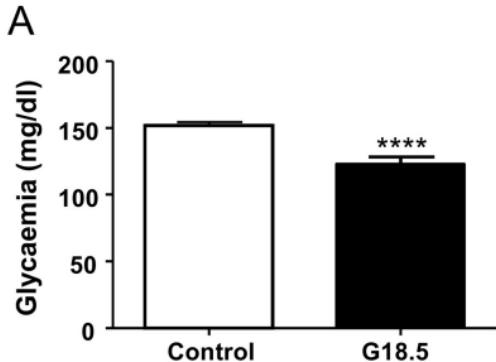
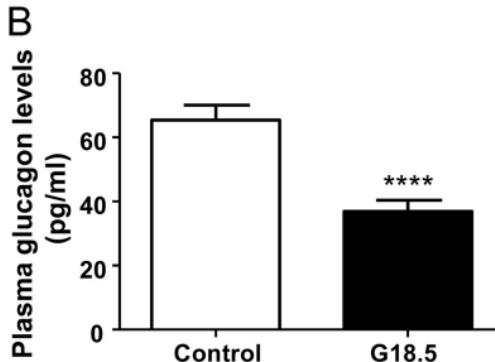
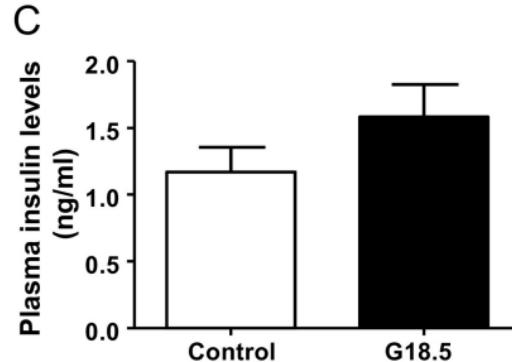
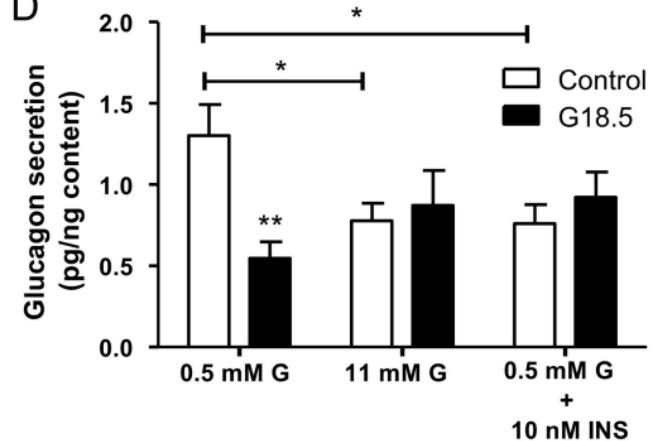






Figure 2


A


B

C

D

E

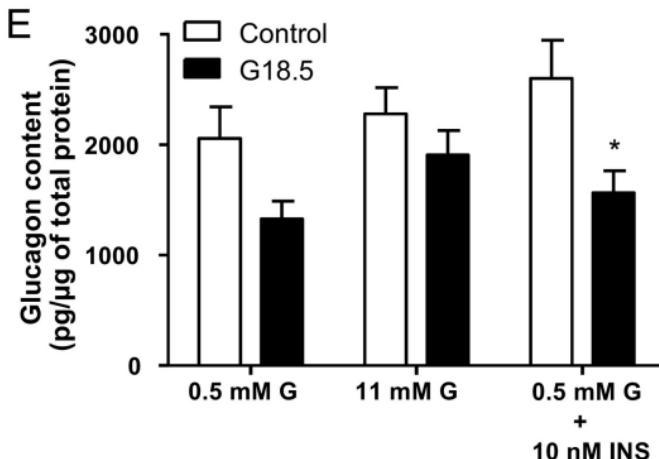


Figure 3

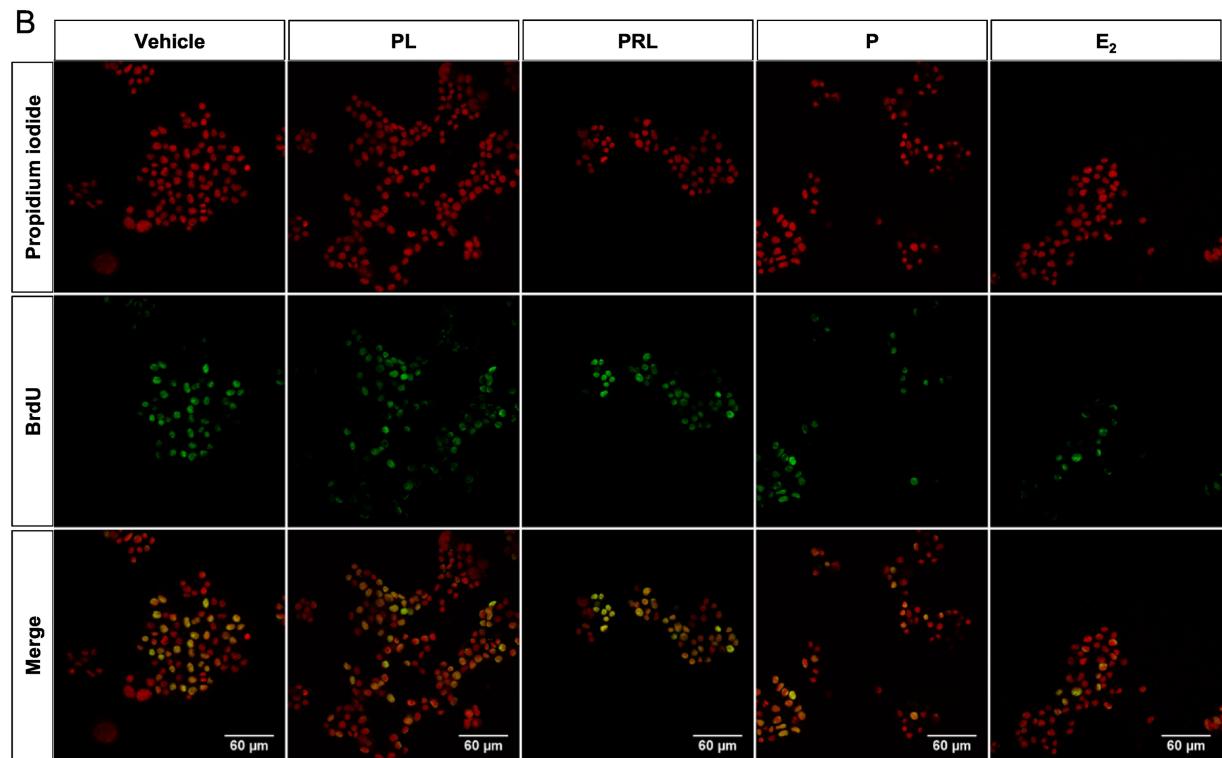
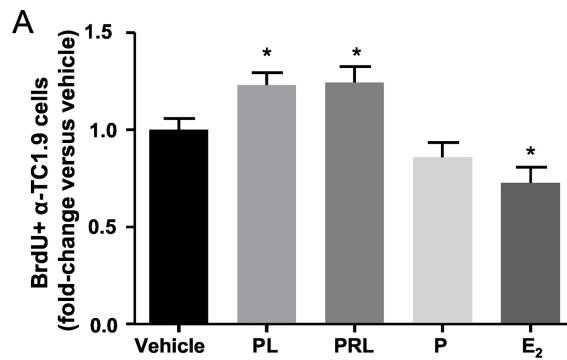



Figure 4

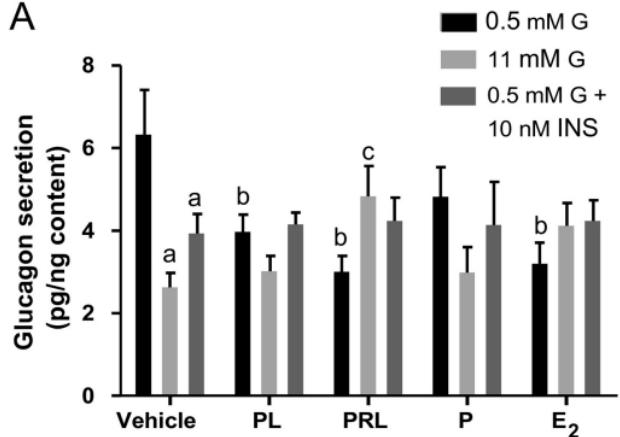
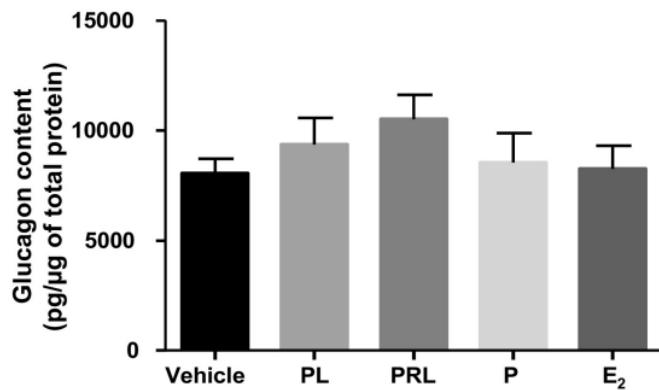
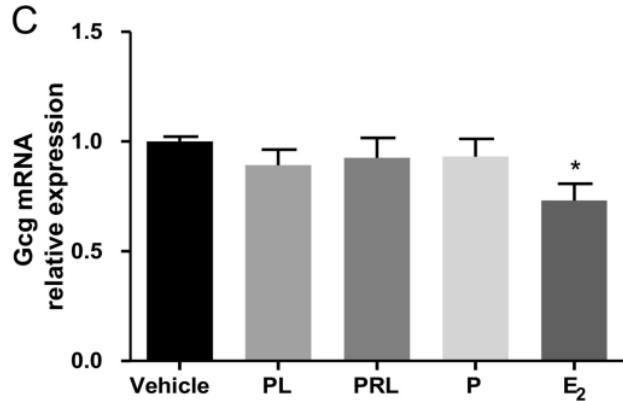



A**B****C**

Figure 5