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“No hay nada en el mundo que capacite tanto a una persona para sobrevivir a cualquier 

situación como la conciencia de tener una tarea que cumplir.” 

Viktor E.Frankl, El hombre en busca de sentido 
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Resumen 

Este Trabajo de Fin de Grado aborda la optimización del sistema logístico del Puerto de Valencia 

mediante modelos de investigación operativa. Se plantean tres análisis: la optimización de rutas 

de barcos mediante el Problema de Rutas de Vehículos (VRP); la mejora de la planificación de 

actividades portuarias a través del método Técnicas de Revisión y Evaluación de Programas 

(PERT) y la gestión eficiente de inventarios mediante el modelo Cantidad Económica de Pedido 

(EOQ). El objetivo es contribuir a la eficiencia y sostenibilidad del puerto ofreciendo soluciones 

aplicables a otros entornos logísticos. 

 

  



 
 
 

Abstract 

This Final Degree Project addresses the optimization of the logistics system at the Port of Valencia 

through operations research models. Three analyses are presented: the optimization of ship routes 

using the Vehicle Routing Problem (VRP); the improvement of port activity planning through the 

Program Evaluation and Review Technique (PERT); and the efficient inventory management 

using the Economic Order Quantity (EOQ) model. The aim is to contribute to the efficiency and 

sustainability of the port by offering solutions applicable to other logistics environments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

Resum 

Aquest Treball de Fi de Grau aborda l’optimització del sistema logístic del Port de València 

mitjançant models d’investigació operativa. Es plantegen tres anàlisis: l’optimització de rutes de 

vaixells mitjançant el Problema de Rutes de Vehicles (VRP); la millora de la planificació 

d’activitats portuàries a través del mètode Tècniques de Revisió i Avaluació de Programes 

(PERT), i la gestió eficient d’inventaris mitjançant el model de Quantitat Econòmica de Comanda 

(EOQ). L’objectiu és contribuir a l’eficiència i sostenibilitat del port oferint solucions aplicables 

a altres entorns logístics. 
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1. Introducción  

El sector marítimo tiene un papel fundamental en el desarrollo de la economía de nuestro país. 

Una de las actividades más importantes de este sector es el transporte marítimo, actividad 

fundamental para el comercio internacional y que representa el 90% del movimiento de 

mercancías a nivel global (APR, 2024). Según la Asociación de Navieros Españoles (ANAVE, 

2024) se prevé que el comercio marítimo crecerá un 2% más en 2025 llegando hasta 12.800 

millones de toneladas (Mt). Este aumento viene dado por la implantación de rutas estratégicas 

como la del mar Rojo y el canal de Panamá. 

Actualmente, España, gracias a su ubicación estratégica y su extensa línea costera tiene un papel 

fundamental, contando con una red portuaria que facilita el comercio europeo e internacional. 

En este trabajo nos centraremos en el Puerto de Valencia, un referente clave en el Mediterráneo y 

Europa. Esta gestionado por la Autoridad Portuaria de Valencia, bajo la marca Valenciaport y 

administra también los puertos de Sagunto y Gandía. 

Si hablamos de tráfico, Valenciaport se posiciona en el cuarto puesto de Europa, siendo también 

el puerto más grande de España y la cuenca del mar Mediterráneo, con una capacidad de tráfico 

anual de más de 80 millones de toneladas de carga en 2024. Además, sus instalaciones abarcan 

más de 12 kilómetros de muelles y alrededor de 600 hectáreas, donde cuenta con terminales 

especializadas para el manejo de contenedores, graneles líquidos y sólidos, así como para el 

embarque y desembarque de pasajeros. La infraestructura portuaria se complementa con 

eficientes conexiones terrestres, entre ellas carreteras y vías ferroviarias que conectan con los 

principales núcleos productivos del país. Valenciaport representa un motor económico clave, 

generando alrededor de 15.000 empleos directos e indirectos, contribuyendo significativamente 

al desarrollo económico local y nacional. 

En un contexto tan competitivo y dinámico, surge la importancia de la investigación operativa 

como herramienta fundamental para optimizar y gestionar eficazmente los recursos disponibles 

en los puertos, permitiendo tomar decisiones estratégicas basadas en modelos analíticos, lo que 

facilita no solo reducir costes operativos, sino también mejorar la sostenibilidad ambiental y la 

calidad del servicio ofrecido. 

Este trabajo se estructura en torno a tres modelos principales de investigación operativa, aplicados 

al sistema logístico portuario del Puerto de Valencia. Cada uno de ellos aborda una parte critica 

del proceso logístico, permitiendo un análisis más profundo y riguroso de las operaciones 

portuarias. 



 
 
 

El Problema de Rutas de Vehículos (VRP) busca determinar el conjunto optimo de rutas que debe 

seguir un conjunto de vehículos para satisfacer una demanda, minimizando el coste total del 

transporte, entendido como la distancia recorrida, el consumo de combustible y el tiempo de 

desplazamiento. Este modelo nos resulta especialmente útil en el contexto portuario para 

planificar rutas eficientes de carga y descarga de contenedores mejorando la asignación de 

recursos y reduciendo los tiempos de operación. Para una comprensión más detalla de este 

modelo, se recomienda consultar el artículo de Christofides, N. (1976). 

La Técnica de Revisión y Evaluación de Programas (PERT), permite representar y analizar las 

tareas necesarias para completar un proyecto, optimizando la duración total de las operaciones. 

Su aplicación en puertos permite planificar con precisión el conjunto de actividades que se 

desarrollan desde la llegada de la mercancía hasta su expedición, mejorando la coordinación y la 

utilización de los recursos disponibles. Para profundizar en esta técnica, se sugiera revisar el 

trabajo de Yenes, J. M. M. (1967).  

Por último, el modelo de Cantidad Económica de Pedido (EOQ) se centra en la gestión optima de 

inventarios, determinando la cantidad ideal de pedido para minimizar el coste total asociados al 

almacenamiento. En el contexto portuario, este modelo es clave para la gestión de mercancías, 

favoreciendo al equilibrio entre disponibilidad y eficiencia económica. Para una explicación más 

detallada, se recomienda el articulo clásico de Harris (1913). 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

1.1 Importancia estratégica de la optimización de rutas marítimas 

Desde el punto de vista económico, una ruta ineficiente puede suponer un aumento de los costes 

logísticos derivados del mayor consumo de combustible, aumento de los tiempos de tránsito y 

menor utilización de la capacidad de los buques. En este sector las navieras compiten por reducir 

costes operativos y mejorar los tiempos de entrega, una gestión optima de las rutas es clave para 

mantener la competitividad de los puertos y las cadenas de suministro (Christofides N, 1976). 

En términos medioambientales, el transporte marítimo es responsable del 3% de las emisiones 

globales de gases de efecto invernadero, posicionándolo en uno de los principales contribuyentes 

al cambio climático (El País, 2025). Además de CO2, las embarcaciones emiten óxidos de azufre 

y nitrógeno, perjudiciales para la calidad del aire en zonas costeras y portuarias. A esto le 

añadimos otros problemas como la contaminación acústica, los vertidos, la introducción de 

especies invasoras mediante aguas de lastre y la alteración de ecosistemas marinos (Zabrocki et 

al., 2021). 

Frente a estos desafíos, la optimización de rutas representa una de las soluciones más eficientes. 

Mediante el Problema de Rutas de vehículos (VRP) se pueden diseñar trayectorias que minimicen 

las distancias recorridas y reduzcan el consumo energético. Existen además soluciones 

innovadoras que ya se han implementado, como el uso de velas de succión en buques o la 

utilización de combustibles alternativos como el metanol y el amoniaco verde, esto ha permitido 

ahorrar hasta un 15% de combustible (Cadena SER, 2025; HuffPost, 2025). 

El Puerto de Valencia, tiene un papel protagonista en este proceso, debido, al alto volumen de 

actividad, su conexión con más de 1.000 puertos en todo el mundo y su ubicación estratégica en 

las principales rutas comerciales marítimas es imprescindible contar con una planificación 

eficiente y sostenible. La aplicación de problemas de investigación operativa como el VRP 

permitirá contribuir a un sistema portuario más responsable con el entorno y alineado con los 

objetivos de desarrollo sostenible de la Agenda 2030. 

 

  



 
 
 

1.2 Aplicación actual del Modelo PERT en Logística Portuaria 

En la gestión logística portuaria, la técnica PERT (Program Evaluation and Review Technique) 

se ha consolidado como una herramienta operativa clave para la planificación y control de 

proyectos debido a su capacidad de manejar la complejidad e incertidumbre de las operaciones 

portuarias. Este modelo PERT es especialmente útil en proyectos portuarios de gran envergadura 

(expansiones de terminales, introducción de nuevos sistemas logísticos, etc.) donde intervienen 

múltiples fases interdependientes. Entre sus beneficios concretos destaca la identificación de la 

ruta crítica, es decir, la secuencia de tareas que determina la duración mínima del proyecto, 

ayudando así a los gestores portuarios a focalizar los recursos en las actividades más sensibles a 

retrasos. Asimismo, PERT facilita una planificación más precisa de los tiempos de ejecución y 

una toma de decisiones informada, al proporcionar una visión integral de todo el proceso logístico. 

Esto se traduce en beneficios operativos tangibles, como la reducción de plazos y la mejora de la 

eficiencia en la cadena de suministro portuaria. Diversos casos reales avalan la utilidad de PERT 

en entornos portuarios: por ejemplo, Collier et al. (2018) aplicaron PERT/CPM en un puerto de 

contenedores automatizado, demostrando que este método permite planificar estratégicamente 

proyectos de expansión de capacidad y operaciones en un puerto con inversiones de miles de 

millones de dólares y millones de movimientos de contenedores al año, identificando los hitos 

críticos para minimizar perturbaciones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

1.3 Aplicación actual del Modelo EOQ en Logística Portuaria 

El modelo de Cantidad Económica de Pedido (EOQ), propuesto originalmente por Harris en 1913, 

se mantiene como una herramienta clásica para determinar el tamaño de pedido óptimo que 

minimice el coste total de aprovisionamiento y almacenamiento. En el contexto de los puertos, su 

utilidad operativa es notable: una política de inventario basada en EOQ permite equilibrar la 

disponibilidad de repuestos críticos con la eficiencia económica, evitando los costes asociados 

tanto a faltantes de stock como a excesos de inventario. La indisponibilidad de piezas esenciales 

(por ejemplo, un cable de izado para una grúa) puede paralizar las operaciones portuarias durante 

horas o días, generando elevados costes económicos y retrasos en la cadena logística. Por ello, 

esta aplicación, contribuye a reducir estos tiempos de inactividad y asegurar la continuidad del 

servicio al menor coste posible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

2. Modelos de Investigación Operativa 

2.1 Optimización de rutas mediante el Problema de Rutas de Vehículos 

(VRP) 

El problema de Rutas de Vehículos es una cuestión fundamental en logística y transporte con 

aplicaciones en sectores como la distribución de mercancías, la planificación de redes de 

transporte y la gestión de flotas. Su objetivo es determinar un conjunto óptimo de rutas para un 

grupo de vehículos que deben visitar distintos puntos minimizando costes y cumpliendo con 

ciertos requisitos (Tan, S.-Y., & Yeh, W.-C. 2021). 

 

2.1.1 Elementos del Modelo 

Para empezar, debemos definir la red que conecta los distintos nodos visitados entre sí, así como 

los costes de desplazamiento entre ellos y las demandas de dichos nodos. 

Sea la red G = (V,E,C), donde V representa el conjunto de nodos visitados, incluyendo el nodo de 

partida y llegada que denotaremos por 0. Cada nodo tendrá una demanda asociada di, para todo 

nodo i. Las conexiones entre los nodos están representadas por el conjunto de aristas E, cada una 

con un costo asociado cij, que corresponde a la distancia entre los nodos i y j. En este caso, se 

asume que siempre existe un camino entre cada par de nodos, por lo que la red G es completa. 

Disponemos de una flota de K vehículos, a los cuales se les asignará a cada uno de ellos una ruta 

específica. Cada vehículo debe recorrer su ruta de manera eficiente, comenzando y terminando 

en el nodo de partida, sin repetir visitas a un mismo nodo dentro de su itinerario y respetando la 

cantidad establecida C, siendo esta la capacidad máxima de cada uno de ellos. 

Suponiendo que cada nodo ha de ser visitado una única vez, por un único vehículo tal que todas 

las rutas deben empezar y acabar en el mismo punto y las sumas de las demandas de los clientes 

visitados no puede exceder la capacidad del vehículo, nos interesa encontrar el conjunto de rutas 

de mínimo coste. 

 

 

 

 



 
 
 

2.2.2 Variables 

En primer lugar, definiremos las variables donde yik=1 si el vehículo k, k ∈ {1,…,K}, visita el 

nodo i, i∈ V\{0} en caso contrario yik=0. Y xijk=1 si el vehículo k, k ∈ {1,…,K}, viaja desde el 

nodo i, i∈ V hasta el nodo j, j∈ V\{i} en caso contrario xijk=0. 

Estas variables permiten describir la asignación de nodos a cada ruta como la secuencia de 

desplazamientos que componen la ruta de cada barco. 

 

2.2.3 Función Objetivo y Restricciones 

El objetivo del modelo es minimizar el coste total del transporte, expresado matemáticamente de 

la siguiente forma: 

min ∑ ∑ ∑ 𝑐𝑖𝑗

𝐾

𝑘=1𝑗∈𝑉\{𝑖}𝑖∈𝑉

⋅ 𝑥𝑖𝑗𝑘 

Para garantizar que nuestro modelo sea factible, se incluyen las siguientes restricciones: 

1. Asignación de visitas única. 

Esta restricción garantiza que cada nodo será atendido por un único vehículo. Así, se asegura que 

no haya duplicidad en las visitas y que todos los nodos de demanda queden correctamente 

cubiertos. 

∑ 𝑦𝑖𝑘

𝐾

𝑘=1

= 1,  ∀𝑖 ∈ 𝑉 ∖ {0} 

 

2. Todos los vehículos salen del depósito. 

Se establece que todos los vehículos inician su ruta en el nodo depósito. Esta condición refleja el 

punto de partida común para todas las rutas y asegura que el modelo respete la disponibilidad 

total de vehículos. 

∑ 𝑦0𝑘

𝐾

𝑘=1

= 𝐾 

 

 



 
 
 

3. Equilibrio de flujo para cada nodo. 

Si un vehículo entra a un nodo, también debe salir de el, manteniendo un equilibrio en el flujo. 

∑ 𝑥𝑖𝑗𝑘

𝑗∈𝑉\{𝑖}

= ∑ 𝑥𝑗𝑖𝑘

𝑗∈𝑉\{𝑖}

= 𝑦𝑖𝑘 ,  ∀𝑖 ∈ 𝑉,  𝑘 = 1, … , 𝐾 

 

4. Límite de capacidad 

Cada vehículo tiene una capacidad máxima que no puede ser superada. Esta restricción asegura 

que la suma de las demandas de los nodos asignados a un vehículo no exceda su capacidad de 

carga. 

∑ 𝑑𝑖𝑦𝑖𝑘

𝑖∈𝑉\{0}

≤ 𝐶,  ∀𝑘 = 1, … , 𝐾 

 

5. Evitar subrutas: 

Se debe impedir que se formen subrutas independientes entre nodos. De esta forma, se garantiza 

la coherencia de las rutas dentro de la red.  

∑ ∑ 𝑥𝑖𝑗𝑘

𝑗∉𝑆𝑖∈𝑆

≥ 𝑦ℎ𝑘 ,  ∀𝑆 ⊆ 𝑉 ∖ {0},  ℎ ∈ 𝑆,  𝑘 = 1, … , 𝐾 

 

6. Restricciones de integridad 

Se establece que todas las variables de decisión sean binarias. 

𝑦𝑖𝑘 ∈ {0,1},  ∀𝑖 ∈ 𝑉,  𝑘 = 1, … , 𝐾 

𝑥𝑖𝑗𝑘 ∈ {0,1},  ∀𝑖, 𝑗 ∈ 𝑉,  𝑘 = 1, … , 𝐾 

 

Hay que tener en cuenta que el VRP presentado es un problema de programación lineal entera. 

Los métodos de resolución clásicos como ramificación y acotación o planos de corte solo son 

aplicables en problemas pequeños. Es por ello que vamos a proponer un algoritmo constructivo 

para la resolución de este tipo de problemas. 

 



 
 
 

2.2.4 Algoritmo de Ahorros de Clarke y Wright 

El algoritmo de ahorros propuesto por Clarke y Wright es uno de los métodos heurísticos más 

eficaces y utilizados en la resolución de problemas de rutas de vehículos (VRP), debido a su 

simplicidad y rapidez. Su principal función es analizar el ahorro en distancia o coste que se obtiene 

al enlazar directamente dos nodos en una misma ruta, en lugar de visitarlos de forma separada 

desde el depósito. Este enfoque fue introducido por Clarke y Wright en 1964, donde presentaron 

una heurística constructiva basada en el concepto de “ahorro” para combinar rutas individuales 

en rutas más eficientes (Clarke, G., & Wright, J. W. 1964). 

El ahorro entre dos clientes i y j se define como:  

𝑆𝑖𝑗 = 𝑐𝑖0 + 𝑐0𝑗 − 𝑐𝑖𝑗 

Donde 𝑐𝑖0 y 𝑐0𝑗representan los costes de ida y vuelta al depósito si los nodos se atienden por 

separado, y 𝑐𝑖𝑗 el coste de unirlos en una misma ruta. 

A continuación, se describe el procedimiento general en forma estructurada: 

 

Fase inicial. 

Se genera, para cada nodo 𝑖 ∈ 𝑉 ∖ {0} , una ruta individual del tipo (0, i, 0), es decir, que parte y 

termina en el depósito. 

Paso 1 

Se calculan los ahorros 𝑆𝑖𝑗 = 𝑐𝑖0 + 𝑐0𝑗 − 𝑐𝑖𝑗 para todo 𝑖 , 𝑗 ∈ 𝑉 ∖ {0}. 

Paso 2 

Se ordenan los ahorros de forma descendente, dando prioridad a los pares de que clientes que 

ofrecen un mayor ahorro al ser unidos. 

Paso 3 

Considerar 𝑆𝑖𝑗 = max 𝑆𝑙𝑡. Si 𝑆𝑖𝑗 > 0 y considerando ri y rj, las rutas que contienen a i y j, si en ri , 

i es el último nodo y en rj, j es el primer nodo y, además, las demandas de dichos nodos no superan 

la capacidad del vehículo, la ruta es factible, eliminar los arcos (𝑖, 0) y (𝑗, 0) e implementar las 

ruta (i, j). Eliminar los ahorros 𝑆𝑖𝑗 = 𝑆𝑗𝑖. 

 



 
 
 

Paso 4 

Se continúa fusionando rutas mientras existan ahorros positivos y combinaciones viables. 

Cabe destacar que el cálculo de los ahorros solo debe realizarse una única vez al inicio del 

algoritmo. Por tanto, es recomendable almacenarlos para evitar una repetición innecesaria en cada 

iteración del procedimiento. Por otro lado, es importante tener en cuenta que diferentes 

combinaciones de rutas pueden presentar ahorros idénticos, lo que nos puede llevar a obtener 

soluciones finales distintas. 

A continuación, se presenta un ejemplo práctico de un problema de rutas de vehículos que nos 

permitirá ver el funcionamiento de este algoritmo. 

 

2.2.5 Un ejemplo de rutas de vehículos 

Un barco de carga debe visitar cuatro almacenes de distribución regional, (A1, A2, A3, A4), y la 

ruta debe empezar y terminar en el centro logístico principal, 0. Sabemos que el barco es único y 

tiene una capacidad de 12 toneladas. No existe ningún otro tipo de restricciones. 

Por tanto, en nuestro problema tenemos un grafo G=(V,E,C), tal que V={0,A1,A2,A3,A4} y E 

corresponde a los arcos (i,j) de viajar desde el nodo i hasta el nodo j. Además, K=1 y C=12. 

Ahora, se nos indica que los almacenes A1, A2 y A4 tienen una demanda igual a 3, 2 y 2 toneladas 

respectivamente, mientras que A3 tiene una demanda de 4 toneladas. 

Las distancias entre dos puntos i, j ∈ V están representadas en la Tabla 1.1. En ella, podemos 

observar que se obtiene una matriz simétrica, lo que implica que la distancia es igual en ambas 

direcciones. 

 

 0 A1 A2 A3 A4 

0 - 10 8 12 7 

A1 10 - 6 9 5 

A2 8 6 - 5 4 

A3 12 9 5 - 6 

A4 7 5 4 6 - 

Tabla 1.1. Distancias entre nodos. 



 
 
 

Ahora que tenemos todos los datos del problema, procedemos a la resolución del problema 

mediante el algoritmo de ahorros. Implementamos las 4 rutas individuales desde el centro 

logístico a cada cliente y regreso, de la forma (0, 𝑖, 0) tal que 𝑖 ∈ 𝑉 \{0} .  

Por tanto, el coste total inicial de estas rutas es:  

𝐶𝑇 = 𝑐01 + 𝑐10 + 𝑐02 + 𝑐20 + 𝑐03 + 𝑐30 + 𝑐04 + 𝑐40 = 2(10 + 8 + 12 + 7) = 74 

A continuación, calculamos los ahorros, Paso 1, al ser la matriz de distancias simétrica, se tiene 

que 𝑆𝑖𝑗 = 𝑆𝑗𝑖 para cualquier par 𝑖 , 𝑗 ∈ 𝑉 ∖ {0}. Y aplicamos la formula: 

𝑆𝑖𝑗 = 𝑐𝑖0 + 𝑐0𝑗 − 𝑐𝑖𝑗 

Obtenemos los siguientes ahorros: 

𝑆𝐴1,𝐴2 = 10 + 8 − 6 = 12 

𝑆𝐴1,𝐴3 = 10 + 12 − 9 = 13 

𝑆𝐴1,𝐴4 = 10 + 7 − 5 = 12 

𝑆𝐴2,𝐴3 = 8 + 12 − 5 = 15 

𝑆𝐴2,𝐴4 = 8 + 7 − 4 = 11 

𝑆𝐴3,𝐴4 = 12 + 7 − 6 = 13 

En el Paso 2, ordenamos los ahorros de forma no creciente 

𝑆𝐴2,𝐴3 = 15 > 𝑆𝐴1,𝐴3 = 13 = 𝑆𝐴3,𝐴4 > 𝑆𝐴1,𝐴2 = 12 = 𝑆𝐴1,𝐴4 > 𝑆𝐴2,𝐴4 = 11 

Pasamos al Paso 3, donde comenzamos seleccionando el mayor ahorro disponible. En este caso 

𝑆𝐴2,𝐴3  =  15. La suma de sus demandas es 2 + 4 = 6 toneladas, esta es menor a la capacidad de 

12 toneladas que posee el camión, por lo tanto, es una ruta factible. Como A2 es el último cliente 

en su ruta, (0, A2, 0), y A3 el primero en la suya, (0, A3,0), podemos eliminar los arcos (A2,0) y 

(0, A3) e implementar el arco (A2, A3). La nueva ruta resultante es (0, A2, A3,0). Eliminamos los 

ahorros 𝑆𝐴2,𝐴3 𝑦 𝑆𝐴2,𝐴3.  

El siguiente ahorro más alto es 𝑆𝐴1,𝐴3 , evaluamos la posibilidad de añadir el nodo A1 después de 

A3, siempre que no sobrepase la capacidad máxima del barco. La suma de las demandas en la 

ruta sería 𝑑𝐴2 + 𝑑𝐴3 + 𝑑𝐴1= 2+4+3 = 9, cumple los requisitos. Por tanto, se añade el cliente A1 a 

la ruta después de A3, que da lugar a la ruta (0, A2, A3, A1, 0). 



 
 
 

El siguiente ahorro en la lista es 𝑆𝐴3,𝐴4, pero no podemos aplicarlo ya que después de A3 va el 

cliente A1 y antes de A3 nos encontramos el cliente A2, lo que impide conectar A3 con A4 por lo 

que descartamos esta opción.  

Analizamos el ahorro 𝑆𝐴1,𝐴2. Sin embargo, ambos clientes ya están integrados en la ruta actual, 

por lo que no podemos considerar esta combinación. 

Por último, se evalúa el ahorro 𝑆𝐴1,𝐴4 que si puede utilizarse. Si añadimos el cliente A4 después 

de A1, la demanda acumulada de la ruta sería 2 + 4 + 3 + 2 = 11, cumple con los requisitos de 

capacidad del barco. Por tanto, nuestra ruta final sería (0, A2, A3, A1, A4, 0). 

No existen más fusiones posibles sin superar la capacidad del camión o sin reutilizar nodos ya 

asignados, por lo tanto, el algoritmo termina.  

La distancia total recorrida se obtiene como:  

𝐶VRP = 𝑐0,𝐴2 + 𝑐𝐴2,𝐴3 + 𝑐𝐴3,𝐴1 + 𝑐𝐴1,𝐴4 + 𝑐𝐴4,0 = 8 + 5 + 9 + 5 + 7 = 34 km 

Por lo tanto, la solución final del problema es: 

𝐶VRP = 34 km 

En la siguiente figura puede verse representada la solución obtenida para el problema de rutas 

de vehículos, donde se muestran los nodos visitados, las conexiones realizadas y las distancias 

recorridas en cada tramo. 

 

 

 

 

 

 

 

Figura 1.2: Solución del ejemplo del problema de rutas de vehículos. 

 

 



 
 
 

2.2 Optimización del tiempo en actividades portuarias mediante el 

Problema de Técnicas de Revisión y Evaluación de Programas (PERT) 

El método Técnicas de Revisión y Evaluación de Programas es una herramienta clave en la 

planificación y gestión de proyectos, la cual, permite analizar la duración de distintas actividades 

independientes, especialmente cuando los tiempos son inciertos. Es útil en contextos logísticos, 

como el portuario, donde permite optimizar la secuencia de operaciones para reducir tiempos y 

mejorar la eficiencia del sistema (Kerzner, 2017). 

El objetivo principal es calcular, entre otras cosas, la duración mínima del proyecto, es decir, el 

menor tiempo necesario para completarlo respetando la precedencia entre actividades. 

 

2.2.1 Elementos del modelo 

El modelo PERT se basa en representar un proyecto mediante una red dirigida acíclica, en la que 

se reflejan las relaciones de precedencia entre actividades. Esta red se define como un grafo 𝐺 =

(𝑋, 𝑁) , donde 𝑋 es el conjunto de nodos y 𝑁 es el conjunto de arcos (actividades) del proyecto. 

El grafo cuenta con un único nodo inicial y un nodo final. Además, 𝑥0 ∈ 𝑅+
𝑛 es el vector de 

duraciones planificadas, tal que 𝑥𝑖
0 ≥ 0 para cada actividad 𝑖 ∈ 𝑁. Cada arco 𝑖 se identifica con 

(𝑥𝑖1, 𝑥𝑖2) donde 𝑥𝑖1 ∈ 𝑋 es el nodo inicial y 𝑥𝑖2 ∈ 𝑋 es el nodo final. Para cada nodo 𝑥 ∈ 𝑋 se 

define como Pred(𝑥) = {𝑖 ∈ 𝑁: 𝑥𝑖2 = 𝑥} el conjunto de actividades inmediatamente predecesoras 

a nodo 𝑥 y Suc(𝑥) = {𝑖 ∈ 𝑁: 𝑥𝑖1 = 𝑥} como el conjunto de actividades inmediatamente sucesoras 

al nodo 𝑥. Algunas actividades pueden tener duración cero y representar dependencias lógicas sin 

actividad real. 

Para cada actividad 𝑖 ∈ 𝑁 , se definen (Gonçalves-Dosantos et al., 2020): 

El tiempo más temprano de una actividad 𝑖, 𝐷𝑖
𝐸(𝐺, 𝑥0) , se define como, el tiempo mínimo 

requerido para completar todas las actividades predecesoras inmediatas de 𝑥𝑖,1 , es decir, el tiempo 

más temprano en el que la actividad 𝑖 puede comenzar, teniendo en cuenta la estructura del grafo: 

𝐷𝑖
𝐸(𝐺, 𝑥0) = max

𝑗∈Pred(𝑥𝑖,1)
{𝐷𝑗

𝐸(𝐺, 𝑥0) + 𝑥𝑗
0} 

El tiempo más tardío de finalización, 𝐷𝑖
𝐿(𝐺, 𝑥0) , es el último momento en el que la actividad 

puede terminar sin retrasar el proyecto: 

 𝐷𝑖
𝐿(𝐺, 𝑥0) = max

𝑗∈𝑁
{𝐷𝑗

𝐸(𝐺, 𝑥0) + 𝑥𝑗
0}  si Suc(𝑥𝑖,2) = ∅ 



 
 
 

𝐷𝑖
𝐿(𝐺, 𝑥0) = min

𝑗∈Suc(𝑥𝑖,2)
{𝐷𝑗

𝐿(𝐺, 𝑥0) − 𝑥𝑗
0} en otro caso 

Con estos valores, se obtiene la duración mínima del proyecto como: 

𝐷(𝐺, 𝑥0) = max
𝑖∈𝑁

{𝐷𝑖
𝐸(𝐺, 𝑥0) + 𝑥𝑖

0} 

La holgura total de una actividad, denotada 𝑆𝑖(𝐺, 𝑥0) , mide cuánto puede retrasarse una actividad 

sin afectar la duración total del proyecto: 

𝑆𝑖(𝐺, 𝑥0) = 𝐷𝑖
𝐿(𝐺, 𝑥0) − 𝐷𝑖

𝐸(𝐺, 𝑥0) − 𝑥𝑖
0 

Si la holgura de una actividad es igual a 0, entonces esta actividad es crítica, es decir, cualquier 

perturbación en su duración modifica la duración del proyecto. También se pueden definir otros 

dos tipos de holgura: 

• La holgura libre de una actividad 𝑖, 𝐹𝑆𝑖(𝐺, 𝑥0), es el tiempo máximo que puede retrasarse 

una actividad sin afectar el inicio temprano de sus sucesoras: 

𝐹𝑆𝑖(𝐺, 𝑥0) = min
𝑗∈Suc(𝑥𝑖,2)

{𝐷𝑗
𝐸(𝐺, 𝑥0)} − 𝐷𝑖

𝐸(𝐺, 𝑥0) − 𝑥𝑖
0 

• La holgura independiente de una actividad 𝑖, 𝐼𝑆𝑖(𝐺, 𝑥0), representa el retraso máximo 

permitido en la duración de una actividad sin alterar los tiempos de otras actividades: 

𝐼𝑆𝑖(𝐺, 𝑥0) = max { min
𝑗∈Suc(𝑥𝑖,2)

(𝐷𝑗
𝐸(𝐺, 𝑥0))} − 𝐷𝑖

𝐿(𝐺, 𝑥0) − 𝑥𝑖
0 

Dada la holgura de una actividad, definimos el tiempo más tardío de inicio como el último 

momento en el que una actividad 𝑖 puede comenzar sin retrasar el proyecto: 

𝐷𝑖
𝐸𝐿(𝐺, 𝑥0) = 𝐷𝑖

𝐸(𝐺, 𝑥0) + 𝑆𝑖(𝐺, 𝑥0) 

Y el tiempo más temprano de finalización como el tiempo más temprano en el que una actividad 

𝑖 puede terminar si se inicia lo antes posible: 

𝐷𝑖
𝐿𝐸(𝐺, 𝑥0) = 𝐷𝑖

𝐿(𝐺, 𝑥0) − 𝑆𝑖(𝐺, 𝑥0) 

 

 

 

 

 

 



 
 
 

2.2.2 Un Ejemplo del Modelo PERT 

Para mostrar la aplicación práctica de los conceptos previamente expuestos se presentará un 

ejemplo práctico del modelo PERT donde se plantea un evento en una universidad donde el 

proceso completo se compone de varias actividades con relaciones de dependencia entre ellas. El 

objetivo es calcular la duración mínima necesaria para llevar a cabo todo el proyecto e identificar 

la ruta crítica. 

La siguiente tabla recoge las siete actividades que componen el proyecto, indicando para cada una 

su descripción, los procedentes inmediatos y la duración estimada. 

Actividad Descripción Precedentes 
Duración 

(días) 

A Definir la fecha del evento – 2 

B Reservar sala A 3 

C Confirmar ponentes A 5 

D 
Diseñar y lanzar campaña de 

difusión 
B, C 4 

E Inscripción de asistentes D 5 

F Preparar material  D 2 

H Realizar el evento E, F 1 

 

En la Figura 2.1 se muestra la red PERT correspondiente, en la que se representan visualmente 

las dependencias entre actividades y se facilitan los cálculos necesarios para localizar la ruta 

crítica y la duración total del proyecto.  



 
 
 

 

Figura 2.1: Diagrama PERT. 

 

Empezamos calculando el tiempo más temprano 

𝐷𝐴
𝐸(𝐺, 𝑥0) = 0 

𝐷𝐵
𝐸(𝐺, 𝑥0) = max{𝐷𝐴

𝐸(𝐺, 𝑥0) + 𝑋𝐴
0} = 2 

𝐷𝐶
𝐸(𝐺, 𝑥0) = max{𝐷𝐴

𝐸(𝐺, 𝑥0) + 𝑋𝐴
0} = 0 +  2 =  2 

𝐷𝐷
𝐸(𝐺, 𝑥0) = max{𝐷𝐴

𝐸(𝐺, 𝑥0) + 𝑋𝐴
0, 𝐷𝐵

𝐸(𝐺, 𝑥0) + 𝑋𝐵
0, 𝐷𝐶

𝐸(𝐺, 𝑥0) + 𝑋𝐶
0 } =  max{2,5,7 }  =  7 

𝐷𝐸
𝐸(𝐺, 𝑥0) = max{𝐷𝐴

𝐸(𝐺, 𝑥0) + 𝑋𝐴
0, 𝐷𝐵

𝐸(𝐺, 𝑥0) + 𝑋𝐵
0, 𝐷𝐶

𝐸(𝐺, 𝑥0) + 𝑋𝐶
0 , 𝐷𝐷

𝐸(𝐺, 𝑥0) + 𝑋𝐷
0   }

=  max{2,5,7,11}  =  11 

𝐷𝐹
𝐸(𝐺, 𝑥0) = max{𝐷𝐴

𝐸(𝐺, 𝑥0) + 𝑋𝐴
0,  𝐷𝐵

𝐸(𝐺, 𝑥0) + 𝑋𝐵
0, 𝐷𝐶

𝐸(𝐺, 𝑥0) + 𝑋𝐶
0 , 𝐷𝐷

𝐸(𝐺, 𝑥0) + 𝑋𝐷
0  }

=  max{2,5,7,11}  =  11 

𝐷𝐻
𝐸(𝐺, 𝑥0) = max{𝐷𝐴

𝐸(𝐺, 𝑥0) + 𝑋𝐴
0, 𝐷𝐵

𝐸(𝐺, 𝑥0) + 𝑋𝐵
0, 𝐷𝐶

𝐸(𝐺, 𝑥0) + 𝑋𝐶
0 , 𝐷𝐷

𝐸(𝐺, 𝑥0)

+ 𝑋𝐷
0  , 𝐷𝐸

𝐸(𝐺, 𝑥0) + 𝑋𝐸
0, 𝐷𝐹

𝐸(𝐺, 𝑥0) + 𝑋𝐹
0 } =  max{2,5,7,11 ,16,13}  =  16 

 

Calculamos el tiempo más tardío de finalización  

𝐷𝐻
𝐿 (𝐺, 𝑥0) = max{𝐷𝐴

𝐸(𝐺, 𝑥0) + 𝑋𝐴
0, 𝐷𝐵

𝐸(𝐺, 𝑥0) + 𝑋𝐵
0, 𝐷𝐶

𝐸(𝐺, 𝑥0) + 𝑋𝐶
0 , 𝐷𝐷

𝐸(𝐺, 𝑥0)

+ 𝑋𝐷
0 ,  𝐷𝐸

𝐸(𝐺, 𝑥0) + 𝑋𝐸
0,  𝐷𝐹

𝐸(𝐺, 𝑥0) + 𝑋𝐹
0 , 𝐷𝐻

𝐸(𝐺, 𝑥0) + 𝑋𝐻
0 }  = 𝑚𝑎𝑥{0 + 2, 2

+ 3, 2 + 5, 7 + 4, 11 + 5, 11 + 2, 16 + 1}  =  𝑚𝑎𝑥{2,5,7,11,16,13,17}  = 17 

𝐷𝐹
𝐿(𝐺, 𝑥0) = min{𝐷𝐻

𝐿  (𝐺, 𝑥0) − 𝑋𝐻
0 } = min{17 − 1} = 16 

𝐷𝐸
𝐿(𝐺, 𝑥0) = min{𝐷𝐻

𝐿  (𝐺, 𝑥0) − 𝑋𝐻
0 } = min{17 − 1} = 16 



 
 
 

𝐷𝐷
𝐿(𝐺, 𝑥0) = min{𝐷𝐸

𝐿 (𝐺, 𝑥0) −  𝑋𝐸
0, 𝐷𝐻

𝐿 (𝐺, 𝑥0)  − 𝑋𝐻
0 , 𝐷𝐹

𝐿(𝐺, 𝑥0)  −  𝑋𝐹
0}

= min{17 − 1, 16 −  5, 16 −  2} = min{16 , 11, 14} = 11 

𝐷𝐵
𝐿(𝐺, 𝑥0) = min{𝐷𝐷

𝐿(𝐺, 𝑥0)  − 𝑋𝐷
0 , 𝐷𝐸

𝐿 (𝐺, 𝑥0) −  𝑋𝐸
0, 𝐷𝐻

𝐿 (𝐺, 𝑥0)  −  𝑋𝐻
0 , 𝐷𝐹

𝐿(𝐺, 𝑥0)  −  𝑋𝐹
0}

= min{11 − 4 ,17 − 1, 16 −  5, 16 −  2} = min{7, 16 , 11, 14} = 7 

𝐷𝐶
𝐿(𝐺, 𝑥0) = min{𝐷𝐷

𝐿  (𝐺, 𝑥0) −  𝑋𝐷
0 , 𝐷𝐸

𝐿(𝐺, 𝑥0)  −  𝑋𝐸
0, 𝐷𝐻

𝐿 (𝐺, 𝑥0)  − 𝑋𝐻
0 , 𝐷𝐹

𝐿(𝐺, 𝑥0)  − 𝑋𝐹
0}

= min{11 − 4 ,17 − 1, 16 −  5, 16 −  2} = min{7, 16 , 11, 14} = 7 

𝐷𝐴
𝐿(𝐺, 𝑥0) = min{𝐷𝐵

𝐿(𝐺, 𝑥0)  − 𝑋𝐵
0, 𝐷𝐶

𝐿 (𝐺, 𝑥0) − 𝑋𝐶
0, 𝐷𝐷

𝐿(𝐺, 𝑥0)  − 𝑋𝐷
0 , 𝐷𝐸

𝐿 (𝐺, 𝑥0) − 𝑋𝐸
0,

𝐷𝐻
𝐿 (𝐺, 𝑥0)  −  𝑋𝐻

0 ,  𝐷𝐹
𝐿 (𝐺, 𝑥0) −  𝑋𝐹

0}

= min{7 − 3 , 7 − 5 ,11 − 4 ,17 − 1, 16 −  5, 16 −  2}

= min{4, 2, 7, 16 , 11, 14} = 2 

 

El cálculo de holguras es: 

𝑆𝐴(𝐺, 𝑋0) = 𝐷𝐴
𝐿(𝐺, 𝑋0) − 𝐷𝐴

𝐸(𝐺, 𝑋0) − 𝑋𝐴
0 = 2 – 0 – 2 = 0 

𝑆𝐵(𝐺, 𝑋0) = 𝐷𝐵
𝐿(𝐺, 𝑋0) − 𝐷𝐵

𝐸(𝐺, 𝑋0) − 𝑋𝐵
0 = 7 – 2 – 3 = 2 

𝑆𝐶(𝐺, 𝑋0) = 𝐷𝐶
𝐿(𝐺, 𝑋0) − 𝐷𝐶

𝐸(𝐺, 𝑋0) − 𝑋𝐶
0 = 7 – 2 – 5 = 0 

𝑆𝐷(𝐺, 𝑋0) = 𝐷𝐷
𝐿(𝐺, 𝑋0) − 𝐷𝐷

𝐸(𝐺, 𝑋0) − 𝑋𝐷
0  = 11 – 7 – 4 = 0 

𝑆𝐸(𝐺, 𝑋0) = 𝐷𝐸
𝐿(𝐺, 𝑋0) − 𝐷𝐸

𝐸(𝐺, 𝑋0) − 𝑋𝐸
0 = 16 – 11 – 5 = 0 

𝑆𝐹(𝐺, 𝑋0) = 𝐷𝐹
𝐿(𝐺, 𝑋0) − 𝐷𝐹

𝐸(𝐺, 𝑋0) − 𝑋𝐹
0  = 16 – 11 – 2 = 3 

𝑆𝐻(𝐺, 𝑋0) = 𝐷𝐻
𝐿 (𝐺, 𝑋0) − 𝐷𝐻

𝐸(𝐺, 𝑋0) − 𝑋𝐻
0  = 17 – 16 – 1 = 0 

 

Cuando la holgura es igual a 0, significa que la actividad pertenece al camino crítico del proyecto. 

En este caso las actividades críticas son A, C, D, E, H. En cambio, cuando la holgura es mayor 

que 0, la actividad puede retrasarse hasta ese número de unidades de tiempo sin afectar al 

proyecto. 

Para finalizar, calcularemos la duración mínima del proyecto: 

𝐷(𝐺, 𝑥0) = max
𝑖∈𝑁

{𝐷𝑖
𝐸(𝐺, 𝑥0) + 𝑥𝑖

0} = 𝑚𝑎𝑥{0 + 2, 2 + 3, 2 + 5, 7 + 4, 11 + 5, 11 + 2, 16 + 1}

= 17  

 



 
 
 

Recogemos los datos en la siguiente tabla:  

Actividad Tiempo más temprano 
Tiempo más 

tardío 
Holgura  

A 0 2 0  

B 2 7 2  

C 2 7 0  

D 7 11 0  

E 11 16 0  

F 11 16 3  

H 16 17 0  

Duración mínima 

del proyecto 
17    

 

En la Figura 2.2 se destaca en color rojo el camino crítico, el cual está compuesto por aquellas 

actividades críticas que determinan la duración mínima del proyecto. Cualquier retraso en estas 

tareas afectaría directamente al plazo total de ejecución. 

 

 

 

 

 

 

Figura 2.2: Diagrama camino crítico. 

 

 



 
 
 

2.3 Gestión de inventarios mediante Problema de Cantidad Económica 

de Pedido (EOQ) 

El modelo de Cantidad Económica de Pedido (EOQ) es una herramienta clásica en la gestión de 

inventarios que permite determinar la cantidad óptima de pedido para minimizar los costes 

asociados al almacenamiento y la reposición de productos. Su aplicación resulta de gran utilidad 

en logística portuaria, donde una buena planificación del inventario contribuye a mejorar la 

eficiencia operativa, reducir costes y evitar acumulaciones innecesarias o escasez de productos 

(Christopher, M. 2016). 

 

2.3.1 Elementos del Modelo 

Los elementos que definen el modelo son λ es la demanda anual del producto, es constante y 

conocida, 𝑘 es el coste fijo asociado a la preparación de cada pedido, 𝑐 es el coste unitario del 

producto, 𝐼 es la tasa de almacenamiento por euro invertido, ℎ =  𝐼 ⋅ 𝑐 es el coste de 

almacenamiento por unidad y por año, 𝑄 cantidad pedida en cada reposición y, por último, 𝑍(𝑄) 

es la función de coste total asociada a una política de inventario de tamaño 𝑄. 

El objetivo del modelo es determinar el tamaño de pedido optimo 𝑄 ∗ que consiga minimizar el 

coste total anual. La función objetivo se define como: 

𝑍(𝑄) = 𝑐 ⋅ λ +
𝑘 ⋅ 𝜆

𝑄
+

ℎ ⋅ 𝑄

2
 

La cantidad óptima de pedido 𝑄 ∗ se obtiene resolviendo el problema de minimización de 𝑍(𝑄). 

Derivando respecto a 𝑄 e igualando a cero se obtiene: 

𝑄∗ = √
2𝐾𝑑

ℎ
 

El número óptimo de pedidos anuales 𝑁∗, refleja la frecuencia con la que debe realizarse el 

pedido de tamaño 𝑄∗ para satisfacer la demanda anual 𝜆 con coste mínimo. Se obtiene 

directamente de: 

𝑁∗  =  
λ

𝑄∗
 =  √

λ ℎ

2 𝐾
 



 
 
 

La duración óptima del ciclo de reposición, denotada como 𝑡∗ , indica el intervalo de tiempo que 

debe transcurrir entre dos pedidos consecutivos de tamaño 𝑄∗. Se define como el cociente entre 

el tamaño de pedido y la demanda anual, es decir: 

𝑡∗  =  
𝑄∗

λ
 =  √

2 𝐾

λ ℎ
 

   

2.3.2 Ejemplo del Modelo EOQ 

A continuación, se muestra un caso práctico que ejemplifica la implementación del modelo EOQ 

descrito anteriormente. Una empresa necesita almacenar su producto para satisfacer la demanda 

constante de sus clientes durante el año. El objetivo es determinar cuántos paquetes debe pedir 

cada vez que realice un pedido para minimizar los costes de inventarios. 

La demanda anual del producto es de 𝜆 = 5800 paquetes, el coste fijo de preparación es de 𝑘 = 

50 euros, el coste de adquisición de cada paquete de folios es de 𝑐 = 2 euros. El coste de 

almacenamiento anual es el 35% del valor del producto almacenado, es decir, 𝐼 = 0,35, por lo 

tanto, ℎ = 𝐼 ⋅ 𝑐 = 0,35 ⋅ 2 = 0,7 euros por paquete y por año. 

Aplicando la formula del modelo EOQ tenemos: 

• La cantidad económica de pedido: 

𝑄∗ = √
2𝑘λ

ℎ
= √

2 ⋅ 50 ⋅ 5800

0,7
≈ 910,26 paquetes 

• El número óptimo de pedidos al año: 

𝑁 =
λ

𝑄∗
=

5800

910,26
≈ 6,37 ⇒ 𝑒𝑛𝑡𝑟𝑒 6 𝑦 7 pedidos al año 

• Duración de los ciclos de reposición: 

𝑇 =
𝑄∗

λ
=

910,26

5800
≈ 0,157 años ⇒ aproximadamente cada 1,9 meses 

 

 

 

 

 



 
 
 

3.  Modelos de Investigación Operativa aplicados a la 

Logística en Puertos 

3.1 Aplicación del Problema de Rutas de Vehículos (VRP) 

En el contexto de este trabajo, el VRP se aplicará a la optimización de rutas marítimas de tres 

barcos que proceden del Puerto de Valencia y donde operan hacia distintos puertos europeos. La 

finalidad de este estudio es aplicar técnicas de optimización para reducir las distancias recorridas 

y mejorar la eficiencia en el transporte. Una mejor planificación de las rutas puede significar 

reducir costes operativos, minimizar el consumo de combustible y disminuir el impacto 

ambiental. Además, contribuye a reforzar la competitividad del Puerto de Valencia, uno de los 

principales centros logísticos de la región mediterránea.  

Para realizar este estudio, se cuenta con datos reales relativos a las distancias, en kilómetros, entre 

los puertos. Estas distancias se han recogido en una matriz, en la que cada fila y columna 

representan un puerto, y la intersección indica la distancia estimada entre dichos puntos. Con esto, 

disponemos de la información necesaria para modelar el grafo 𝐺 = (𝑉, 𝐸, 𝐶), siendo V el conjunto 

de puertos formado por Algeciras, Atenas, Barcelona, Bilbao, Casablanca, Copenhagen, Cádiz, 

Estambul, Estocolmo, Gdansk, Hamburgo, Helsinki, Lisboa, Londres, Marsella, Nápoles, Oslo, 

Rotterdam, San Petersburgo, incluido el Puerto de Valencia (nodo de salida y llegada) y el resto 

de los puertos europeos, E es el conjunto de aristas que representan las conexiones marítimas 

posibles entre puertos y, por último, C es la matriz de distancias, Tabla 3.2 que se localiza en el 

Anexo, asociada a cada arista, en este caso, se asume que es simétrica. 

La flota de ValenciaPort dispone de 3 buques idénticos, con una capacidad de 28.000 TEU que 

parten del depósito 0 (Puerto de Valencia) y deben atender los 19 puertos europeos. 

El problema se modela con un Vehicle Routing Problem con número máximo de rutas K = 3, 

mediante el algoritmo de ahorros presentado en la sección 2.2.4 Clarke & Wright (1964) y cuyo 

código podemos encontrar en el Anexo (Código 5.1). 

 



 
 
 

 

Imagen 3.1 Rutas Iniciales. 

Antes de aplicar técnicas de optimización se parte del itinerario inicial, compuesto por tres 

recorridos independientes (Imagen 3.1). La siguiente Tabla 3.3 resume las distancias totales 

asociadas a los recorridos iniciales, obtenidas a partir de la matriz de distancias de la Tabla 3.2: 

 

Barco Secuencia actual 
Distancia 

total  

Azul 
Valencia → Barcelona → Nápoles → Lisboa → Londres → Róterdam → Hamburgo → 

Oslo → Copenhague → Estocolmo → Helsinki → San Petersburgo → Valencia 
11 479,93 

Rojo 
Valencia → Barcelona → Marsella → Atenas → Estambul → Algeciras → Bilbao → 

Róterdam → Hamburgo → Valencia 
10 918,55 

Verde 
Valencia → Cádiz → Casablanca → Lisboa → Bilbao → Londres → Róterdam → 

Gdansk → Valencia 
8 588,38 

Total  

 

30 986,86 

 Tabla 3.3 Tabla de Distancias Asociadas.  

 

Este valor de referencia de 30.986,86 representa el coste operativo actual, en términos de 

Kilómetros. 



 
 
 

Tras ejecutar la función clarke_wright_max_routes() con los parámetros descritos, se obtiene la 

Tabla 3.4, donde se recogen las nuevas rutas, las cargas consolidadas y el coste total: 

Ruta Secuencia obtenida Carga Coste 

1 
Valencia → Marsella → Hamburgo → Atenas → Helsinki → Lisboa → 

Valencia 
24 500 6 153,9 

2 
Valencia → Cádiz → Bilbao → Estocolmo → Oslo → Barcelona → 

 Gdansk → Algeciras → Estambul → Nápoles → Valencia 

 

22 500 12 378,2 

3 
Valencia → Casablanca → San Petersburgo → Copenhague → Róterdam 

→ Londres → Valencia 
27 000 9 370,8 

Total  74 000 27 902,9 

 Tabla 3.4 Resultados computacionales.   

 

La solución heurística respeta la capacidad de los tres buques y reduce en 9,95 % el coste frente 

a la planificación original (30 986,86). 

ΔCoste =
30 986,86 −  27 902,9

27 902,9
 × 100 ≈  9,95% 

En síntesis, la aplicación del VRP al contexto portuario demuestra que una gestión científica de 

las rutas puede traducirse en ventajas económicas y ambientales tangibles, reforzando la 

competitividad del Puerto de Valencia y sentando las bases para futuras mejoras en la cadena 

logística marítima. 

 

 

 

 

 

 



 
 
 

3.2  Aplicación del Problema de Técnicas de Revisión y Evaluación de 

Programas (PERT) 

En este trabajo utilizaremos el modelo PERT para optimizar la planificación de las distintas 

actividades que forman parte del proceso logístico en el Puerto de Valencia. La finalidad de esta 

aplicación es identificar la duración mínima del proceso logístico y detectar aquellas actividades 

críticas cuyo retraso afectaría directamente al cumplimiento de los plazos. 

Esto resulta especialmente útil en un contexto portuario, donde la gestión eficiente del tiempo no 

solo mejora el rendimiento operativo, sino que también contribuye a reducir los costes y reforzar 

la fiabilidad de la cadena logística. 

En la siguiente tabla recoge las diferentes actividades que se realizan en el puerto, así como los 

tiempos necesarios para completar cada una de ellas. 

 Actividad Predecesoras 
Duración 

(días) 

A Preparación y embalaje de la mercancía – 1 

B Carga de las mercancías en los camiones A 5 

C Transporte al puerto de origen B 2 

D Gestión de inventarios A 1 

E Arribo y control en aduana del puerto C, D 2 

F Recopilación de la documentación D 4 

G Inspección automática (flujo habitual) F 1 

H Inspección automática (vía directa) E, F 2 

I Descarga y almacenamiento en el puerto G, H 1 

J Carga de la mercancía en el buque I, F 2 

K Salida del buque hacia destino J 3 

L Confirmación de entrega en destino K 1 

Tabla 4.1 Datos iniciales. 



 
 
 

Tabla 4.2 Resultados Computacionales. 

En este ejercicio se ha implementado el algoritmo PERT en R mediante el paquete 

ProjectManagement, definiendo la matriz de precedencias y las duraciones de las doce actividades 

involucradas (A–L). Obtenemos los siguientes resultados recogidos en la siguiente Tabla: 

Finalmente, se determina que la duración mínima del proyector es de 19 días. El camino crítico, 

corresponde a la cadena de actividades A → B → C → E → H → I → J → K → L, cuyas holguras 

son nulas y, por tanto, condicionan directamente la fecha de finalización. 

 

 

Actividad Descripción Duración  ES EF LS LF Holgura 
¿Ruta 

crítica? 

A 
Preparación y 

embalaje 
1 0 1 0 1 0 ✔ 

B Carga en camiones 5 1 6 1 6 0 ✔ 

C Transporte al puerto 2 6 8 6 8 0 ✔ 

D 
Gestión de 

inventarios 
1 1 2 5 6 4 — 

E Control aduanero 2 8 10 8 10 0 ✔ 

F Documentación 4 2 6 6 10 4 — 

G Inspección habitual 1 6 7 11 12 5 — 

H Inspección vía directa 2 10 12 10 12 0 ✔ 

I 
Descarga y 

almacenaje 
1 12 13 12 13 0 ✔ 

J Carga al buque 2 13 15 13 15 0 ✔ 

K Zarpe del buque 3 15 18 15 18 0 ✔ 

L 
Confirmación de 

entrega 
1 18 19 18 19 0 ✔ 



 
 
 

3.3  Aplicación del Problema Cantidad Económica de Pedido (EOQ) 

En el contexto logístico portuario, una gestión adecuada de inventarios es esencial para asegurar 

el flujo continuo de las operaciones. Los puertos, al manejar una gran cantidad de mercancías 

requieren numerosos equipos de apoyo, por lo que es imprescindible disponer de un inventario 

de repuestos que permita atender con rapidez cualquier necesidad operativa o de mantenimiento.  

No tener disponibles artículos como un cable de izado o una polea para una grúa, puede paralizar 

durante horas o días las operaciones de carga y descarga, generando elevados costes económicos 

y retrasos en la cadena logística. 

El modelo EOQ proporciona una forma sencilla de ajustar estos inventarios, minimizando los 

costes de adquisición y almacenamiento, como el de riesgo de rotura de stock en componentes 

esenciales para el funcionamiento del puerto. 

En el Puerto de Valencia se gestiona un inventario de cables de izado, necesarios para el 

mantenimiento de las grúas. Estos cables deben reemplazarse periódicamente para garantizar la 

seguridad y la eficiencia de las operaciones. 

El tamaño de pedido resultante tiene dos implicaciones operativas, en primer lugar, genera la 

actividad D (Gestión de inventarios) del PERT, cuyo inicio coincide con la llegada del lote, y en 

segundo lugar, establece el volumen base de mercancía que los buques deberán trasladar 

alimentando el problema VRP. 

La demanda anual de cables es de 𝜆 = 1250, el coste fijo por pedido 𝑘 = 2150 euros, el coste de 

adquisición de cada cable es de 𝑐 = 1500 euros. La tasa de coste de almacenamiento anual es el 

20% del valor del producto almacenado, es decir, 𝐼 = 0.20, por lo tanto, el coste de 

almacenamiento anual por cable es: ℎ = 𝐼 ⋅ 𝑐 = 0,20 ⋅ 1500 = 300 euros. 

Aplicando el modelo EOQ obtenemos: 

• Cantidad económica de pedido: 

𝑄∗ = √
2𝑘λ

ℎ
= √

2 ⋅ 2150 ⋅ 1250

300
= √

5 375 000

300
= √17 916,67 ≈ 133,85 cables 

• Número óptimo de pedidos al año: 

𝑁 =
λ

𝑄∗
=

1250

133,85
≈ 9,34 pedidos al año 

 

 

 



 
 
 

• Duración optima del ciclo de reposición: 

𝑇 =
𝑄∗

𝜆 
=

133,85

1250
≈ 1,3 ciclos por año 

EL modelo EOQ determina que el puerto debe realizar pedidos de aproximadamente 134 cables 

en cada ciclo, con una frecuencia aproximada de 1,3 meses, lo que corresponde a 10 pedidos al 

año, para conseguir mantener su inventario de repuestos en niveles óptimos. 

 

 

 



 
 
 

4. Conclusiones  

La aplicación de los tres modelos de investigación operativa, Problema de Rutas de Vehículos 

(VRP), Técnica de Revisión y Evaluación de Programas (PERT) y Cantidad Económica de Pedido 

(EOQ), ha demostrado ser válida para abordar problemas de logística portuaria en un entorno real 

como el de ValenciaPort. 

En primer lugar, la heurística de Clarke & Wright aplicada al VRP permitió consolidar la carga 

de los tres buques estudiados y reducir en torno a un diez por ciento la distancia total navegada, 

lo que se traduce en un ahorro de costes y beneficios medioambientales.  

En segundo lugar, el análisis PERT reveló que el proyecto completo puede ejecutarse en 

diecinueve días siempre que se preste especial atención a la secuencia crítica A → B → C → E 

→ H → I → J → K → L, de modo que cualquier retraso en esas nueve tareas repercutiría 

directamente en la fecha de finalización. 

 Por último, el modelo EOQ determinó que un pedido de unas 134 unidades, con diez pedidos 

anuales y un ciclo de unas cinco semanas, minimiza el coste conjunto de aprovisionamiento y 

almacenamiento para los cables de izado, evitando tanto roturas de stock como acumulaciones 

innecesarias.  
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6. Anexo 

Código 5.1 Problema de Rutas de Vehículo. 

clarke_wright_max_routes <- function(demand, distance_matrix, 
vehicle_capacity, max_routes) { 

  # demand: vector de longitud n-1 (clientes). Se asume que el 
depósito es el índice 1 en la matriz. 

  # distance_matrix: matriz cuadrada (n x n) con n = 
length(demand) + 1 

  # vehicle_capacity: capacidad de cada vehículo (escalar) 

  # max_routes: número máximo de rutas que queremos (si es 
factible) 

  n <- length(demand) + 1   # número de nodos total (1 
depósito + n-1 clientes) 

  # 1) Calcular matriz de “ahorros” (savings) 

  savings <- matrix(-Inf, n, n) 

  for (i in 2:n) { 

    for (j in 2:n) { 

      if (i != j) { 

        savings[i, j] <- distance_matrix[i, 1] + 
distance_matrix[1, j] - distance_matrix[i, j] 

      } 

    } 

  } 

  # 2) Inicializar rutas individuales (depo -> i -> depo) para 
cada cliente i = 2..n 

  routes <- list() 

  for (i in 2:n) { 



 
 
 

    routes[[i - 1]] <- list( 

      route = c(1, i, 1), 

      load  = demand[i - 1], 

      cost  = 2 * distance_matrix[1, i] 

    ) 

  } 

  # 3) Fase 1: combinar rutas mientras haya ahorro > 0 y rutas 
> max_routes 

  repeat { 

    if (length(routes) <= max_routes) break  # ya tenemos como 
máximo max_routes rutas   

    max_saving <- max(savings) 

    if (max_saving <= 0) break  # no quedan pares con ahorro 
positivo 

    idx_pair <- which(savings == max_saving, arr.ind = 
TRUE)[1, ] 

    i <- idx_pair[1] 

    j <- idx_pair[2] 

    # Marcar este par como “usado” 

    savings[i, j] <- -Inf 

    savings[j, i] <- -Inf 

    # 3.a) Encontrar en qué rutas salen j (en segundo lugar) y 
terminan i (penúltimo) 

    ri <- NULL; rj <- NULL 

    for (k in seq_along(routes)) { 

      r <- routes[[k]]$route 

      # si termina en i (antes de regresar a 1) 



 
 
 

      if (length(r) >= 3 && r[length(r) - 1] == i) ri <- k 

      # si arranca en j (después de 1) 

      if (length(r) >= 3 && r[2] == j) rj <- k 

    } 

    # 3.b) Si ambos existen y no son la misma ruta, intento 
fusionar 

    if (!is.null(ri) && !is.null(rj) && ri != rj) { 

      total_load <- routes[[ri]]$load + routes[[rj]]$load 

      if (total_load <= vehicle_capacity) { 

        # Construir la ruta fusionada: 

        new_route <- c(routes[[ri]]$route[-
length(routes[[ri]]$route)],  

                       
routes[[rj]]$route[2:length(routes[[rj]]$route)]) 

        # Calcular nuevo costo 

        new_cost <- 0 

        for (k2 in seq_len(length(new_route) - 1)) { 

          new_cost <- new_cost + 
distance_matrix[new_route[k2], new_route[k2 + 1]] 

        } 

        # Reemplazar ri con la ruta fusionada; eliminar rj 

        routes[[ri]] <- list(route = new_route, load = 
total_load, cost = new_cost) 

        routes[[rj]] <- NULL 

        routes <- routes[!sapply(routes, is.null)] 

      } 

    } 



 
 
 

  } 

  # 4) Fase 2: si todavía hay más rutas que max_routes, forzar 
fusiones “con penalización mínima” 

  while (length(routes) > max_routes) { 

    best_penalty <- Inf 

    best_pair   <- NULL     # (ri, rj) 

    best_insert <- NULL     # posición donde insertamos (para 
reconstruir luego) 

    # Recorro cada par de rutas distintas (ri, rj) y trato de 
encajar un extremo con otro: 

    for (ri in seq_along(routes)) { 

      for (rj in seq_along(routes)) { 

        if (ri == rj) next     

        seq_i <- routes[[ri]]$route 

        seq_j <- routes[[rj]]$route   

        load_i <- routes[[ri]]$load 

        load_j <- routes[[rj]]$load 

        # Vehículo es el mismo para todas, pero verificamos 
carga total: 

        if (load_i + load_j > vehicle_capacity) next 

        # Sólo consideramos unir el “penúltimo de ri” con 
“segundo de rj” 

        # Esto equivale a i = seq_i[length(seq_i)-1], j = 
seq_j[2] 

        a <- seq_i[length(seq_i) - 1] 

        b <- seq_j[2] 

        d_ab <- distance_matrix[a, b] 



 
 
 

        d_a1 <- distance_matrix[a, 1]    # a → depo (cierre 
actual) 

        d_1b <- distance_matrix[1, b]    # depo → b (apertura 
actual) 

        # Si fusionamos rutas (a -> b) en lugar de (a->1->b), 
la penalización es: 

        penalty <- (d_a1 + d_1b) - d_ab 

        # Guardar la fusión que minimice penalty (aunque 
penalty sea negativo). 

        if (penalty < best_penalty) { 

          best_penalty <- penalty 

          best_pair   <- c(ri, rj) 

          best_insert <- list(a = a, b = b) 

        } 

      } 

    }  

    # Si no encontramos ningún par factible (best_pair sigue 
NULL), salgo del bucle 

    if (is.null(best_pair)) break 

    # 4.b) Realizo la fusión del par (ri, rj) 

    ri <- best_pair[1] 

    rj <- best_pair[2] 

    seq_i <- routes[[ri]]$route 

    seq_j <- routes[[rj]]$route 

    # Construir la nueva ruta: quitamos el último “1” de seq_i 
y el primer “1” de seq_j 

    new_route <- c(seq_i[-length(seq_i)], seq_j[-1]) 



 
 
 

    # Recomputar carga y costo 

    new_load <- routes[[ri]]$load + routes[[rj]]$load 

    new_cost <- 0 

    for (k2 in seq_len(length(new_route) - 1)) { 

      new_cost <- new_cost + distance_matrix[new_route[k2], 
new_route[k2 + 1]] 

    } 

    # Reemplazo ri y elimino rj 

    routes[[ri]] <- list(route = new_route, load = new_load, 
cost = new_cost) 

    routes[[rj]] <- NULL 

    routes <- routes[!sapply(routes, is.null)] 

  } 

  # 5) Mostrar rutas finales (restamos 1 para que depósito sea 
“0” en pantalla.) 

  total_cost <- 0 

  for (k in seq_along(routes)) { 

    cat(sprintf( 

      "Ruta %d: %s | Carga: %d | Costo: %.1f\n", 

      k, 

      paste(routes[[k]]$route - 1, collapse = " → "), 

      routes[[k]]$load, 

      routes[[k]]$cost 

    )) 

    total_cost <- total_cost + routes[[k]]$cost 

  } 



 
 
 

  cat(sprintf("Costo total: %.1f\n", total_cost)) 

} 

# Demandas de 19 clientes 

demand <- c( 

  4000,  # Barcelona   

  1500,  # Nápoles   

  5000,  # Lisboa   

  4500,  # Londres   

  11000, # Róterdam   

  8000,  # Hamburgo   

  2000,  # Oslo   

  2500,  # Copenhague   

  3000,  # Estocolmo   

  2500,  # Helsinki   

  2000,  # San Petersburgo   

  3000,  # Marsella   

  6000,  # Atenas   

  1000, # Estambul   

  5000,  # Algeciras   

  1500,  # Bilbao   

  1000,  # Cádiz   

  7000,  # Casablanca   

  3500   # Gdansk   

)  



 
 
 

# Matriz de distancias entre nodos (nodo 1 es el depósito) 

distances <- c( 

0.00,2665.27,881.14,1069.41,1499.99,2620.44,87,3063.77,3142.71
,2766.35,2327.62,3477.14,476,1917.33,1219.20,1828.29,2983.77,2
013.42,3692.80,581.20,2665.27,0.00,1874.70,2356.06,3002.86,363
5.16,2698.57,561,2409,1860,2000,2500,2844.62,3015.93,2212.76,2
890.08,2900,3061.68,2300,2084.07,881.14,1874.70,0.00,481.36,12
18.73,1760.46,914.44,2234.40,2280.24,1891.85,1615.38,2603.27,1
004.41,1141.23,338.06,1015.38,2143.53,1186.98,2816.50,299.94,1
069.41,2356.06,481.36,0.00,1407.00,2241.82,1053.19,2715.76,276
1.60,2204.86,1627.19,3084.63,718.18,931.56,819.42,1496.74,2624
.89,1198.58,3297.86,488.21,1499.99,3002.86,1218.73,1407.00,0.0
0,2958.03,1265.34,3401.36,3480.30,3103.94,2665.21,3814.73,1600
.35,2254.92,1556.79,2165.88,3321.36,2351.01,4030.39,918.79,262
0.44,3635.16,1760.46,2241.82,2958.03,0.00,2653.74,3994.86,520,
423,330,1100,2764.87,1000,2098.52,2775.84,480,700,800,2039.24,
87,2698.57,914.44,1053.19,1265.34,2653.74,0.00,3097.07,3176.01
,2799.65,2360.92,3510.44,335.01,1950.63,1252.50,1861.59,3017.0
7,2046.72,3726.10,614.50,3063.77,561,2234.40,2715.76,3401.36,3
994.86,3097.07,0.00,4514.64,1700,3849.78,2300,3238.81,2800,257
2.46,3249.78,4377.93,2200,5050.90,2482.57,3142.71,2409,2280.24
,2761.60,3480.30,520,3176.01,4514.64,0.00,554,950,400,3284.65,
1600,2618.30,2500,500,1300,400,2561.51,2766.35,1860,1891.85,22
04.86,3103.94,423,2799.65,1700,554,0.00,577.67,900,2896.26,127
3.30,2229.91,2907.23,1200,1006.28,900,2185.15,2327.62,2000,161
5.38,1627.19,2665.21,330,2360.92,2000,950,577.67,0.00,1000,234
5.37,695.63,1953.44,2000,1000,428.61,1300,1746.42,3477.14,2500
,2603.27,3084.63,3814.73,1100,3510.44,2300,400,900,1000,0.00,3
607.68,1500,2941.33,2700,400,3790.25,300,2895.94,476,2844.62,1
004.41,718.18,1600.35,2764.87,335.01,3238.81,3284.65,2896.26,2
345.37,3607.68,0.00,1649.74,1342.47,2007.64,3147.94,1916.76,38
20.91,760.55,1917.33,3015.93,1141.23,931.56,2254.92,1000,1950.
63,2800,1600,1273.30,695.63,1500,1649.74,0.00,1479.29,2156.61,
1200,267.02,2500,1336.13,1219.20,2212.76,338.06,819.42,1556.79
,2098.52,1252.50,2572.46,2618.30,2229.91,1953.44,2941.33,1342.
47,1479.29,0.00,1353.44,2481.59,1525.04,3154.56,638.00,1828.29
,2890.08,1015.38,1496.74,2165.88,2775.84,1861.59,3249.78,2500,
2907.23,2000,2700,2007.64,2156.61,1353.44,0.00,2300,1600,3000,
1247.09,2983.77,2900,2143.53,2624.89,3321.36,480,3017.07,2700,
500,1200,1000,400,3147.94,1200,2481.59,2300,0.00,1000,1200,240
2.57,2013.42,3061.68,1186.98,1198.58,2351.01,700,2046.72,2200,
1300,1006.28,428.61,1600,1916.76,267.02,1525.04,1600,1000,0.00
,1500,1432.22,3692.80,2300,2816.50,3297.86,4030.39,800,3726.10
,5050.90,400,900,1300,300,3820.91,2500,3154.56,3000,1200,1500,
0.00,3111.60,581.20,2084.07,299.94,488.21,918.79,2039.24,614.5



 
 
 

0,2482.57,2561.51,2185.15,1746.42,2895.94,760.55,1336.13,638.0
0,1247.09,2402.57,1432.22,3111.60,0.00) 

# Crear matriz 20x20 a partir del vector plano 

distance_matrix <- matrix(distances, nrow = 20, ncol = 20, 
byrow = TRUE) 

clarke_wright_max_routes(demand, distance_matrix, 28000,3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

Código 4.3 Técnicas de de Revisión y Evaluación de Programas (PERT). 

# Cargar la librería 

library("ProjectManagement") 

# Definición de la matriz de precedencias entre actividades 
portuarias: 

prec1and2<-matrix(0,nrow=12,ncol=12) 

# Establecemos las precedencias entre actividades. 

# Cada fila i y columna j con valor 1 indica que la actividad 
i debe terminar 

# antes de que comience la actividad j. 

prec1and2[1, 2]<-1  # A → B 

prec1and2[2, 3]<-1  # B → C 

prec1and2[1, 4]<-1  # A → D 

prec1and2[3, 5]<-1  # C → E 

prec1and2[4, 5]<-1  # D → E 

prec1and2[4, 6]<-1  # D → F 

prec1and2[6, 7]<-1  # F → G 

prec1and2[5, 8]<-1  # E → H 

prec1and2[6, 8]<-1  # F → H 

prec1and2[7, 9]<-1  # G → I 

prec1and2[8, 9]<-1  # H → I 

prec1and2[9,10]<-1  # I → J 

prec1and2[6,10]<-1  # F → J 

prec1and2[10,11]<-1  # J → K 

prec1and2[11,12]<-1  # K → L 

 



 
 
 

# Visualización del grafo de precedencias entre actividades. 

dag.plot(prec1and2) 

# Definición de las duraciones de cada actividad portuaria (en 
días). 

duration<-c(1,5,2,1,2,4,1,2,1,2,3,1) 

schedule.pert(duration,prec1and2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tabla 3.2 Matriz de Distancias 


