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Resumen 

Este Trabajo de Fin de Grado tiene como objetivo principal analizar en profundidad, la 

influencia que ejercen los distintos valores o características de las variables explicativas 

discretas en modelos de clasificación supervisada. Para llevar a cabo este estudio, se 

emplearán herramientas procedentes de la teoría de juegos cooperativos, un marco 

teórico que permite evaluar la contribución individual de cada jugador (cada valor 

posible dentro de cada variable) al resultado colectivo, es decir, al rendimiento del 

modelo. 

En concreto, se utilizará el concepto de uniones a priori, un modelo que permite 

considerar agrupaciones entre los valores, donde cada agrupación está definida por una 

variable, para determinar de forma más precisa el impacto que tiene cada uno de ellos 

sobre la capacidad predictiva del modelo. Esta metodología permitirá no solo identificar 

qué variables son más relevantes, sino también cómo ciertas combinaciones de valores 

influyen en la mejora o deterioro del rendimiento del modelo de clasificación. 

 

Abstract 

The main objective of this Final Degree Project is to analyse in depth the influence 

exerted by the different values or characteristics of discrete explanatory variables in the 

context of supervised ranking models. To carry out this study, we will use tools from 

cooperative game theory, a theoretical framework that allows us to evaluate the 

individual contribution of each player, in this case, of each possible value within each 

variable, to the collective outcome, that is, to the performance of the model.  

Specifically, we will use the concept of a priori unions, a model that allows us to 

consider groupings among the values, where each grouping is defined by a variable, in 

order to determine more precisely the impact that each of them has on the predictive 

capacity of the model. This methodology will allow not only to identify which variables 

are more relevant, but also how certain combinations of values influence the 

improvement or deterioration of the performance of the classification model.  
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1 Introducción 
 

Vivimos en una época donde, mediante el análisis y estudio de grandes volúmenes de 

datos, es posible convertir toda esa información en conocimiento útil para comprender y 

predecir comportamientos, y así poder tomar decisiones estratégicas basadas en los 

resultados extraídos. Las técnicas de clasificación de datos nos ayudan a encontrar 

patrones que nos permitan agrupar individuos con características similares o incluso 

predecir el comportamiento futuro de nuevos registros. Sin embargo, al profundizar un 

poco más en este análisis, puede surgir la pregunta: ¿cuáles son las características que 

más influyen al realizar la predicción del comportamiento de un nuevo individuo? 

Resolver esta cuestión será de gran utilidad a la hora de construir un modelo más preciso, 

comprensible y eficiente.  

Dependiendo de si se conocen o no las clases o grupos en los que se debe dividir el 

conjunto de datos, podemos encontrar dos tipos principales de clasificación: clasificación 

no supervisada y clasificación supervisada. Cuando las clases no se conocen de antemano, 

utilizaríamos la clasificación no supervisada y, en el caso contrario, optaríamos por la 

clasificación supervisada [1]. A lo largo de este proyecto, nos centraremos en la 

clasificación supervisada, donde existen varias técnicas para su aplicación, poniendo más 

énfasis en Support Vector Machine (SVM) y Random Forest, siendo dos de las técnicas 

más utilizadas debido a su efectividad y facilidad de implementación en distintas 

situaciones. 

Para poder abordar la cuestión planteada en el primer párrafo sobre la importancia de las 

características, nos apoyaremos en la teoría de juegos, concretamente en los juegos 

cooperativos con uniones a priori. Esta teoría de juegos estudia la toma de decisiones en 

situaciones donde un grupo de dos o más jugadores interactúan entre sí y sus decisiones 

finales están marcadas por lo que otros jugadores deciden o por lo que esperan que otros 

jugadores hagan [2]. Su objetivo principal es encontrar patrones de comportamiento en 

contextos en los que los resultados dependen de las acciones de los jugadores [3]. En otras 

palabras, un juego es una situación en la que un grupo de jugadores debe decidir su 

estrategia para maximizar su beneficio, teniendo en cuenta que dependerá tanto de sus 

decisiones como de las de otros jugadores.  

En el caso de los juegos cooperativos, también conocidos como juegos coalicionales, los 

sujetos pueden comunicarse y negociar entre ellos, por lo que pueden formar coaliciones 

para maximizar su beneficio [2]. Por el contrario, en los juegos no cooperativos los 

jugadores toman las decisiones de forma independiente. No obstante, conocen a los demás 

jugadores y las especificaciones del juego, por lo tanto, deberán tomar estas decisiones 

intentando predecir lo que harán los otros jugadores para así actuar en consecuencia, un 

ejemplo muy famoso de este tipo de juego es el dilema del prisionero.  
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La forma en la que vamos a utilizar estos juegos cooperativos con uniones a priori es 

tratando a cada característica como un jugador distinto y a cada variable como una unión 

de jugadores. Por ejemplo, los jugadores “soltero” y “casado” formarán parte de la unión 

a priori “estado civil”. Estos jugadores y uniones nos ayudarán a crear conjuntos 

diferentes de datos, para así poder ir guardando la proporción de observaciones 

correctamente clasificadas y, en nuestro caso, poder aplicar después el valor de Owen y 

así extraer qué características influyen más a que un jugador esté bien clasificado.   

 

2 Clasificación supervisada 
 

Para resolver nuestro problema de clasificación, nos centraremos en la clasificación 

supervisada, siendo esta una de las tareas más comunes dentro de los denominados 

Sistemas Inteligentes [4]. Estos sistemas buscan identificar patrones en un conjunto de 

datos y asignar la clase correspondiente a cada elemento del conjunto.  Este proceso se 

puede lograr aplicando una serie de algoritmos, los cuales permiten generalizar a nuevos 

casos teniendo en cuenta ejemplos ya clasificados. La clasificación, se puede llevar cabo 

aplicando tanto métodos estadísticos como técnicas de inteligencia artificial [4], cada uno 

con sus propias fortalezas y debilidades. Algunos ejemplos que podemos encontrar dentro 

de cada tipo son:  

• Estadística: Regresión Logística, Análisis Discriminante, SVM, … 

• Inteligencia Artificial: Redes Neuronales, Árboles de Decisión, K-Nearest 

Neighbors, Random Forest, … 

Hemos mencionado que la clasificación supervisada es una de las tareas más utilizadas 

en los Sistemas Inteligentes porque esta clasificación se ha empleado en una alta variedad 

de casos como, por ejemplo, en el diagnóstico de enfermedades, la concesión de créditos 

bancarios, la clasificación de imágenes o la detección de fraudes, entre otros. Esta es una 

pequeña muestra de los muchos casos en los que se puede utilizar esta técnica. Siempre 

que encontremos datos históricos etiquetados, es muy recomendable usar este tipo de 

clasificación para hacer predicciones precisas sobre nuevos casos. 

A continuación, vamos a introducir los términos: conjunto de datos de entrenamiento y 

conjunto de datos test. Como ya hemos comentado anteriormente, el aprendizaje 

supervisado se centra en resolver el problema de clasificación a partir de un conjunto de 

elementos, los cuales ya se conoce de antemano su clase. Este conjunto es el que se conoce 

comúnmente como conjunto de datos de entrenamiento. En cambio, el conjunto de datos 

test se utiliza para evaluar el rendimiento del modelo, a diferencia del de entrenamiento, 

que se utiliza para estimar los parámetros de este [4].  
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Para conocer el rendimiento del modelo nos ayudamos de la matriz de confusión, que 

consiste en una matriz que está formada por las columnas “Predicho” y las filas 

“Observado”. Siguiendo con el ejemplo de la introducción, en la siguiente tabla podemos 

ver que las observaciones se pueden clasificar en soltero y casado, para poder hacerlo más 

generalizado, atribuiremos a las clases soltero y casado el valor “0” y “1” 

respectivamente:  

 

Tabla 1: Representación de una Matriz de Confusión 

 

Una vez tenemos creada la tabla podemos analizar varios indicadores: 

• Precisión: porcentaje de clasificados correctamente.  

𝑛0,0 + 𝑛1,1

𝑛
∗ 100 

• Sensibilidad (ratio de positivos): porcentaje de casados (1) correctamente 

clasificados. 

 
𝑛1,1

𝑛1
∗ 100 

 

• Especificidad (ratio de negativos): porcentaje de solteros (0) correctamente 

clasificados. 

 
𝑛0,0

𝑛0
∗ 100 

 

• Tasa de falsos positivos: porcentaje de solteros clasificados como casados. 

 
𝑛0,1

𝑛0
∗ 100 

 

• Tasa de falsos negativos: porcentaje de casados clasificados como solteros. 
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𝑛1,0

𝑛1
∗ 100 

 

Para garantizar que el modelo no se sobreajuste a los datos de entrenamiento y pueda 

generalizar correctamente a nuevas observaciones, es fundamental que cada registro de 

la base de datos esté presente en alguno de estos dos conjuntos. No obstante, lo ideal sería 

que el conjunto de test sea independiente del conjunto de entrenamiento [4]. Así nos 

aseguramos de que el rendimiento del modelo no esté sesgado por las observaciones que 

han sido utilizadas para entrenar, ya que, si utilizáramos las mismas observaciones en 

ambos conjuntos, el modelo podría no generalizar bien a nuevos casos.  

Para obtener cada uno de los conjuntos, se pueden emplear técnicas de muestreo [4]. Por 

ejemplo, el muestreo aleatorio simple, donde las observaciones se eligen de forma 

aleatoria, o el muestreo estratificado, donde se asegura que las clases estén repartidas 

proporcionalmente en ambos subconjuntos. Este último es más recomendable en los casos 

donde hay una clase que es mucho más frecuente que las demás, ya que con este muestreo 

conseguimos que cada clase tenga una buena representación en los subconjuntos de 

entrenamiento y de test.  

En resumen, la clasificación supervisada es de las mejores herramientas que podemos 

utilizar en el ámbito de los Sistemas Inteligentes, especialmente cuando existen grandes 

cantidades de datos etiquetados. Sin embargo, su rendimiento depende en gran medida de 

la calidad de los datos, la correcta división de los subconjuntos y la elección adecuada del 

algoritmo de clasificación, lo cual son aspectos que deben considerarse seriamente al 

desarrollar cualquier modelo predictivo. 

 

2.1 Support Vector Machine 
 

El primer algoritmo que vamos a tratar es Support Vector Machine (SVM), uno de los 

más reconocidos dentro del aprendizaje supervisado, ya que se aplica en una gran 

variedad de problemas de regresión y clasificación, tales como el procesamiento de 

señales médicas, el análisis del lenguaje natural y el reconocimiento tanto de imágenes 

como de voz, entre otros [5]. 

Para llevar a cabo SVM, necesitaremos un conjunto de individuos, al que denominaremos 

como Ω. Además, será necesario identificar la variable objetivo categórica (𝑦), que estará 

compuesta por dos categorías: {−1, +1}  y el conjunto de variables explicativas 

𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘. Por lo tanto, para cada individuo 𝑖 ∈  Ω tendremos:  

• 𝑥𝑖 = (𝑥𝑖1,𝑥𝑖2,… , 𝑥𝑖𝑘): un vector de variables explicativas. 

•  𝑦𝑖 ∈ {−1, +1}: las clases en las que se puede dividir el conjunto de datos. 
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Este algoritmo sirve para predecir la clase de nuevas observaciones futuras, siempre y 

cuando se conozcan las variables explicativas: 

𝑥𝑛𝑒𝑤 → 𝑦̂𝑛𝑒𝑤 ∈ {−1, +1} 

 

Para lograr esta predicción, SVM tiene como objetivo separar dos clases distintas de 

observaciones de la mejor manera posible, identificando un hiperplano que maximice el 

margen entre los puntos más cercanos de cada clase a dicho hiperplano [5]. La expresión 

que lo define es la siguiente: [6] 

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝐾𝑋𝐾 = 0 

Las betas 𝛽1 , … , 𝛽𝐾 son los coeficientes que determinan la influencia de cada variable 

𝑋𝑖  en la separación de las clases. Y la beta 𝛽0 determina el desplazamiento del hiperplano 

respecto al origen.  

En el caso de que tengamos una observación 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘) que haga que la 

expresión anterior sea igual a 0, significa que esa observación forma parte del hiperplano, 

pero si hace que sea distinta de 0, significa que la observación se encuentra en uno de los 

dos lados del hiperplano.  

La posición del hiperplano se define mediante una serie de puntos u observaciones, 

conocidos como vectores de soporte [5] como podemos ver en la Figura 1.   

 

Figura 1: Elementos destacables en SVM [5] 

 

Al hablar de margen, nos referimos a la distancia máxima entre el hiperplano y los puntos 

de datos más cercanos de cada clase. Por lo tanto, cuanto mayor sea el margen, mejor será 

la capacidad de generalización del modelo.  

Inicialmente, SVM solo puede identificar este hiperplano en problemas donde las clases 

son linealmente separables; sin embargo, en la mayoría de los casos el algoritmo admite 

un número reducido de clasificaciones erróneas [5]. Lo que conocemos como margen 

rígido (figura 3) y margen blando (figura 4), respectivamente.  
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Figura 2: Margen Rígido (izquierda) y Margen Blando (derecha) [7]  

 

Como podemos observar en las imágenes anteriores, la diferencia que encontramos en el 

margen rígido y blando (figuras 2), es que el rígido requiere que los datos del conjunto 

de entrenamiento sean linealmente separables, mientras que el blando construye un 

hiperplano que no separa perfectamente las dos clases, lo que permite que algunas 

observaciones estén dentro del margen o en el lado incorrecto del hiperplano . 

Para el margen rígido, consideraríamos el siguiente problema de optimización para 

calcular el hiperplano:  

 

Los coeficientes 𝛽̂𝑗 corresponden a los pesos de cada variable explicativa, es decir, cada 

𝛽̂𝑗 determina la importancia de cada variable 𝑥𝑗 en la clasificación. Una vez explicado 

esto, podemos decir que la función objetivo se centra en minimizar el tamaño de los 

coeficientes, lo que es equivale a decir que minimiza la suma de los cuadrados de los 𝛽̂𝑗.  

La primera restricción asegura que cada observación esté bien clasificada. Lo que 

significa que:  

• Si 𝑦𝑖 =  +1 (pertenece a la clase +1), la expresión 𝛽̂0 + 𝛽̂1𝑋1 + ⋯ + 𝛽̂𝐾𝑋𝐾  debe 

ser mayor o igual a 1. Esto significa que todos los puntos que representan la clase 

+1 deben estar a una distancia de al menos 1 del hiperplano.  
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• Si 𝑦𝑖 =  −1 (pertenece a la clase -1), en este caso la expresión 𝛽̂0 + 𝛽̂1𝑋1 + ⋯ +

𝛽̂𝐾𝑋𝐾  debería ser negativa y, además, también significa que los puntos de la clase 

-1 deben estar a una separación de al menos 1 del hiperplano.  

 

Por otro lado, para calcular el hiperplano en el margen blando, el modelo de optimización 

sería diferente:  

 

En la función objetivo encontramos la misma expresión que en el modelo del margen 

rígido, con la diferencia de que se le añade la segunda expresión 
𝐶

𝑛
∑ 𝜉𝑖

𝑛
𝑖=1 , la cual 

corresponde al nivel de error permitido. 

Las variables de holgura 𝜉𝑖 permiten que ciertas observaciones no respeten el margen, por 

lo que habrá individuos que se encuentren en el interior de este o incluso llegando a estar 

en el lado incorrecto del hiperplano. Es decir, representan el error de clasificación. 

Cuando 𝜉𝑖 = 0, significa que el individuo i está bien clasificado. Si estuviera entre 0 y 1 

significaría que la observación 𝑖 se encuentra en el lado correcto del hiperplano, pero 

dentro del margen. En cambio, si fuera > 1, el individuo 𝑖 estaría mal clasificado. En 

resumen, cuanto mayor es el valor de 𝜉𝑖 más violación del margen o de la clasificación 

hay, sin embargo, solo encontraríamos un error de clasificación cuando 𝜉𝑖  supere 1. [6] 

El valor C es una constante positiva que determina el grado de tolerancia del proceso 

respecto a las observaciones que se encuentran dentro del margen o mal clasificadas, por 

lo que podríamos decir que controla el equilibrio entre la maximización del margen y la 

minimización de errores. [6] 

• Al disminuir C el margen aumenta, por lo tanto, encontraremos más vectores de 

soporte, esto hace que mejore generalización, aunque cometiendo más errores.  

• Al aumentar C el margen disminuye, lo que hace que sea menos tolerante a las 

violaciones del margen. No obstante, un valor alto de C puede llevar al sobreajuste 

ya que se intenta clasificar correctamente todos los puntos.  
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Figura 3: Diferencia al aplicar diferentes valores de C [8] 

 

En cuanto a la primera restricción, es similar a la que encontramos en el margen rígido, 

con la diferencia de que, en lugar de exigir que cada punto esté en el lado correcto del 

margen, se permite que haya algunas observaciones que estén dentro de él o incluso en el 

lado incorrecto del hiperplano. 

SVM pertenece a una clase de algoritmos de Machine Learning conocidos como métodos 

kernel. Estos métodos utilizan funciones que transportan los datos a un espacio 

dimensional superior, lo que permite separar las clases de una forma más simple. Al 

transformar los datos, los límites de decisión o hiperplanos no lineales pueden convertirse 

en límites lineales en este espacio ampliado [5]. 

Entre los kernels más utilizados destacan: 

• Kernel lineal: adecuado cuando los datos ya son separables de por sí sin 

transformaciones adicionales. (Figura 4) 

• Kernel polinomial: útil cuando existen relaciones más complejas entre los datos, 

por tanto, necesita polinomios de distintos grados para modelarlos. (Figura 5) 

• Kernel RBF (Radial Basis Function): ideal para problemas donde los límites entre 

las clases no son lineales. (Figura 6) 
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Figura 4: Aplicación Kernel Lineal [6] 

 

Figura 5: Aplicación Kernel Polinómica [6] 

 

Figura 6: Aplicación Kernel Radial [6] 
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Algunas de las ventajas y desventajas que podríamos encontrar al utilizar este algoritmo 

podrían ser [9]:  

• Es efectivo en espacios de alta dimensionalidad.  

• Es eficiente en la gestión de memoria.  

• La eficacia del modelo está relacionada con la elección del kernel.  

• Es poco eficiente con grandes datasets. 

• En el caso de que el número de características sea mucho mayor que el de las 

muestras es muy importante escoger el kernel apropiado.  

• No proporciona estimaciones de probabilidad de manera directa (requiere 

métodos adicionales). 

• El hiperplano de separación depende de las observaciones más próximas, aunque 

estas sean erróneas.  

• Es necesario escalar los datos adecuadamente.  

 

En conclusión, SVM es un modelo bastante fiable dentro del aprendizaje supervisado. 

Como en la mayoría de los algoritmos de clasificación supervisada su rendimiento 

depende de la correcta aplicación del algoritmo, lo que en este caso conlleva una correcta 

elección del kernel y la preparación adecuada de los datos.  

 

2.2 Árboles de Clasificación y Random Forest 
 

Árboles de clasificación  

Los árboles de clasificación son un algoritmo de aprendizaje automático que organiza los 

datos de una forma similar a un árbol genealógico, es decir, en una estructura jerárquica 

compuesta por nodos y ramas. Su objetivo principal es dividir el conjunto de datos en 

diferentes clases de la manera más homogénea posible. 

Este algoritmo facilita la predicción de la clase o grupo al que pertenece un nuevo 

elemento, basándose en un conjunto de variables predictoras [10]. Cuando se tiene una 

variable objetivo categórica, los árboles de clasificación generan una serie de reglas de 

división, extraídas de las variables explicativas, que permiten ir separando el conjunto de 

datos original hasta llegar a tener pequeños subconjuntos clasificados según la variable 

categórica. Sin profundizar demasiado, estas reglas de división se basan en una cota o una 

clase, dependiendo de la naturaleza de la variable explicativa. Más adelante veremos esta 

idea con más detalle. 

Al igual que en SVM, necesitamos un conjunto de individuos Ω y una variable categórica 

(𝑦) con categorías: {1,2, . . . , 𝑙}.  Una vez tenemos estos elementos, el conjunto de posibles 

valores para las variables explicativas 𝑋1 , 𝑋2, … , 𝑋𝐾, se divide en 𝐽 regiones 𝑅1, 𝑅2, … ,  𝑅𝐽 
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llamadas nodos hoja, los cuales explicaremos a continuación. A cada una de estas 

regiones 𝑗 ∈  {1, . . . , 𝐽}  se le asigna una clase ℓ ∈  {1,2, . . . , 𝑙} . Es decir, a 𝑅𝑗  se le 

asignara una clase ℓ . Por lo tanto, una nueva observación 𝑥𝑛𝑒𝑤 será clasificada del 

siguiente modo:  

𝑠𝑖 𝑥𝑛𝑒𝑤  ∈  𝑅𝑗,𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑦̂𝑛𝑒𝑤  =  ℓ 

 

Los árboles de clasificación están compuestos por:   

• Los nodos, que pueden ser de tres tipos: 

o Nodo raíz: representa todo el conjunto de datos, es decir, el conjunto de 

datos inicial. 

o Nodos hoja: representan las regiones finales del árbol, en las que se asigna 

una clase a las observaciones. 

o Nodos intermedios: son las regiones previas a los nodos hoja que se van 

formando. 

• Las ramas, que conectan los nodos, es donde implementamos las reglas de 

división, que como ya hemos comentado, dependen de la naturaleza de las 

variables: 

o Para variables cuantitativas, la separación suele realizarse con 

condiciones de la forma: 

 

𝑋 ≤ 𝑐𝑜𝑡𝑎 &  𝑋 > 𝑐𝑜𝑡𝑎 

 

donde 𝑐𝑜𝑡𝑎 representa un umbral específico. 

 

o Para variables categóricas, se utilizan condiciones como: 

 

𝑋 = 𝑙  &  𝑋 ≠ 𝑙 

 

donde 𝑙 es una de las categorías o clases. 

 

Este algoritmo busca reducir constantemente la impureza de cada nodo, con el objetivo 

final de conseguir que todas las regiones generadas sean lo más homogéneas posible.  

Consideramos un nodo completamente puro si todas sus observaciones pertenecen a la 

misma clase. Para cuantificar la pureza de un nodo, se utilizan métricas como [6]: 

• Índice de Gini: 
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𝐺 =  ∑ 𝑝𝑙(1 − 𝑝𝑙)

𝐿

𝑙=1

 

 

• Entropía cruzada: 

𝐸𝑛𝑡𝑟𝑖𝑜𝑝í𝑎 =  −  ∑ 𝑝𝑙log (𝑝𝑙)

𝐿

𝑙=1

 

 

En las dos expresiones, un valor bajo indicaría que un nodo es más homogéneo. Siendo 

𝑝𝑙 la proporción de observaciones que pertenecen a la clase  𝑙 en las dos fórmulas. [6] 

Si se generara un árbol demasiado profundo, podríamos tener nodos hoja con un número 

muy reducido de observaciones, por lo que correríamos el riesgo de sobreajustar la 

muestra de entrenamiento, lo que haría que se perdiera capacidad de generalización. Una 

solución a este problema sería establecer ciertos criterios de parada. Uno de los más 

comunes es establecer un parámetro que ayude a tener un número mínimo de individuos 

por nodo [11]. 

En el momento que tenemos formado el árbol de decisión, podemos comenzar a predecir 

la clase de nuevas observaciones. Como hemos indicado anteriormente, si 𝑥𝑛𝑒𝑤 ∈  𝑅𝑗,

𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑦̂𝑛𝑒𝑤 = 𝑙 . Cada una de estas regiones 𝑅𝑗 contiene un pequeño subconjunto del 

conjunto de entrenamiento original (𝑥𝑖 ,𝑦𝑖), 𝑖 = 1, … , 𝑛 , por ejemplo, 𝑛𝑗  puntos, los 

cuales serán clasificados según el tipo que sea más común entre todos estos individuos.  

Entonces, para cada clase 𝑚 ∈ {1, … , 𝑙}, podríamos estimar la probabilidad de que se dé 

la clase 𝑚 dado que el vector está en la región 𝑅𝑗, esto es, 𝑃(𝑌)  =  (𝑚|𝑋 ∈  𝑅𝑗), como: 

𝑝̂𝑚(𝑅𝑗) =  
1

𝑛𝑗

∑ 𝑙(𝑦𝑖 = 𝑚)𝑥𝑖 ∈ 𝑅𝑗
, 

siendo 𝑝̂𝑚  la proporción de puntos en la región 𝑅𝑗 que pertenecen a la clase m. 

 

La clase asignada se puede expresar como:  ℓ = 𝑎𝑟𝑔 max
𝑚=1,…,𝑙

𝑝̂𝑚(𝑅𝑗) 
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En la siguiente figura podremos observar un ejemplo de árbol de decisión:  

 

Figura 7: Ejemplo de Árbol de decisión 

 

En este árbol podemos observar que en la cima se encuentra el nodo raíz . A medida que 

se aplican condiciones, las observaciones se van distribuyendo en los nodos intermedios 

hasta llegar a los nodos hoja. En el caso de las variables cuantitativas (numéricas) y 

cualitativas (categóricas), la partición se realizará de acuerdo lo indicado anteriormente.  

Para las variables numéricas, las divisiones se realizan utilizando cotas; en este caso, el 

valor 25. Mientras que, para las variables categóricas, los datos se separan según si 

pertenecen o no a una categoría específica, en este caso “alto”, “medio” o “bajo”, o 

dependiendo del género, sean “mujer” o “hombre” . 

Una vez construido el árbol final a partir del conjunto de entrenamiento, a cada nodo hoja 

se le asignará la clase que predomina entre las observaciones que componen ese nodo, 

como sucede en el ejemplo de la figura 7 en el nodo T11. 

Algunas de las ventajas y desventajas que encontramos con los árboles de clasificación 

son: [6] 

• Son fáciles de interpretar, incluso por personas sin conocimientos técnicos.  

• Puede manejar tanto datos categóricos como numéricos.  

• Permite abordar problemas donde existen más de dos clases en el conjunto de 

datos 

• Permiten trabajar con datos desequilibrados, es decir, encontramos una clase 

mucho más frecuente que otras. 
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• También se pude llegar a utilizar para problemas de regresión y predecir valores 

numéricos en vez de categóricos. 

• No es necesarios que los datos sigan una distribución especifica .  

• Los árboles de decisión no son tan precisos en comparación a otros modelos . 

• La estructura del árbol final puede cambiar si ocurren pequeñas variaciones en los 

datos. 

• Son propensos al sobreajuste si no se establecen criterios adecuados. 

 

Random Forest 

Debido a las desventajas que hemos comentado, se desarrolló el algoritmo Random Forest 

(Bosques Aleatorios), el cual consiste en combinar múltiples árboles de decisión para así, 

obtener un modelo que pueda solucionar la mayoría de los problemas que acarreaba 

utilizar un solo árbol. Este modelo pertenece a la familia de algoritmos (ensemble 

learning), los cuales se basan en la aplicación de varios métodos de predicción 

individuales para obtener una mayor precisión en el proceso [12]. Por esta razón Random 

Forest es de los métodos más utilizados en big data, ya que es uno de los algoritmos más 

eficientes dentro de la clasificación supervisada.  

Random Forest se encarga de generar múltiples árboles de decisión a partir de diferentes 

subconjuntos extraídos del conjunto de entrenamiento original, los cuales se obtienen 

mediante una técnica llamada bootstrap (muestreo con reemplazo). Este mecanismo hace 

que aumente la diversidad a la vez que se reduce la varianza del modelo. 

Cuando construimos los árboles, lo común es que cada uno solo utilice un conjunto de 

variables, que normalmente es la raíz cuadrada del conjunto total de variables (√𝑘) [6]. 

En el caso de que se llegaran a utilizar todas las variables disponibles, el Bosque Aleatorio 

se conocería como Bagging (Bootstrap Aggregating).  

Una vez obtenida la colección de árboles, la predicción final para un nuevo individuo se 

podrá obtener mediante: 

• Clasificación: asignándose la clase más frecuente entre las predicciones de los 

árboles individuales, lo que se conoce como votación por mayoría. 

• Regresión: calculando el promedio de las predicciones de los árboles finales. 

Al utilizar este algoritmo podemos encontrar estas ventajas y desventajas: [12] [13] 

• Al combinar árboles de clasificación, obtenemos una mayor precisión, reducimos 

el riesgo de sobreajuste y además mejoramos la capacidad predictiva. 

• A diferencia de los árboles individuales es menos sensible a pequeñas variaciones 

en los datos. 

• Puede manejar grandes volúmenes de datos de manera eficiente.  
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• No existen problemas con los valores ausentes, ya que se pueden estimar a partir 

de la media del conjunto de árboles.  

• Nos proporciona información sobre la importancia de cada variable a la hora de 

predecir. 

• Debido a la combinación de múltiples árboles, es menos interpretable que un solo 

árbol de decisión.  

• Tiene mayor coste computacional que un árbol individual porque entrenar y 

almacenar todos los árboles requiere muchos más recursos.   

• Al generar múltiples árboles hace que la predicción sea más lenta en comparación 

a otros modelos.  

 

En resumen, Random Forest representa una mejora importante respecto a los árboles de 

decisión únicos, ya que reduce el sobreajuste y aumenta la precisión. Además, es un 

modelo más robusto y confiable, con mucha más capacidad de generalización .  

 

3 Juegos Cooperativos 
 

Los juegos cooperativos consisten en un conjunto de jugadores que pueden comunicarse 

entre ellos, negociar y llegar a acuerdos. Dentro de este tipo de juegos podemos encontrar 

dos tipos diferentes, los TU y los NTU. En los TU, que son en los que nos vamos a centrar, 

la utilidad se puede repartir de cualquier forma entre los jugadores, en cambio, si 

tuviéramos restricciones que hicieran que no se pudiera repartir, en cualquier caso, se 

conocerían como NTU. Cuando hablamos de utilidad, nos referimos al valor que un 

jugador obtiene o pierde tras la negociación dentro del juego.  

Por lo tanto, tenemos que un juego TU es un 𝑝𝑎𝑟 (𝑁, 𝜐) siendo 𝑁 = {1, … , 𝑛} el conjunto 

finito de jugadores y 𝜐 una función característica tal que 

𝜐 =  2𝑁  ⟶ ℝ 

Siendo 𝜐(∅) = 0 [14]. Nótese que 𝜐 corresponde al pago o beneficio que consigue cada 

coalición de jugadores.  

Todos los juegos con utilidad transferible se denotan como 𝐺, por lo que llamaremos 𝐺𝑛 

a la clase de todos los juegos con 𝑛 jugadores y conoceremos como S a la coalición en sí, 

siendo 𝑆 ⊂ 𝑁 y el tamaño de coaliciones S se define como |𝑆|.  [14] 

Por ejemplo, sea (𝑁, 𝜐) donde N = {1,2,3}, entonces 𝜐 se puede expresar como un vector 

fila: [15] 

𝜐 = [𝜐(1), 𝜐(2), 𝜐(3), 𝜐(12), 𝜐(13), 𝜐(23), 𝜐(123)] 
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Cuando un juego (𝑁, 𝜐) ∈ 𝐺𝑛, (𝑁, 𝜐) puede ser:  

• Superaditivo [16]: la utilidad de la unión de dos conjuntos es mayor o igual que 

la suma de las utilidades individuales de cada conjunto.  

 

𝜐(𝑆 ∪ 𝑇) ≥ 𝜐(𝑆) + 𝜐(𝑇)   ∀ 𝑆, 𝑇 ∈ 2𝑁, 𝑆 ∩ 𝑇 ≠ ∅ 

 

• Subaditivo [17]: la utilidad de la unión de dos conjuntos es menor o igual que la 

suma de las utilidades individuales de cada conjunto.  

 

𝜐(𝑆 ∪ 𝑇) ≤ 𝜐(𝑆) + 𝜐(𝑇)   ∀ 𝑆, 𝑇 ∈ 2𝑁, 𝑆 ∩ 𝑇 ≠ ∅ 

 

• Aditivo [15]: la utilidad de la unión de dos conjuntos es exactamente igual que la 

suma de las utilidades individuales de cada conjunto. 

 

𝜐(𝑆 ∪ 𝑇) = 𝜐(𝑆) + 𝜐(𝑇)   ∀ 𝑆, 𝑇 ∈ 2𝑁, 𝑆 ∩ 𝑇 ≠ ∅ 

 

Dependiendo del valor de las utilidades un juego también podrá ser 0 – normalizado, si 

𝜐(𝑖) = 0 ∀ 𝑖 ∈ 𝑁, es decir, que todas las utilidades individuales tengan valor 0. Pero, en 

el caso de que todas las utilidades individuales sean 0 y la utilidad total sea 1, es decir, 

que la coalición de todos los jugadores sea igual a 1 (𝜐(𝑁) = 1), lo llamaremos 0 – 1 

normalizado. [18] 

Por otro lado, un juego podrá ser considerado monótono cuando al añadir un jugador 

cualquiera a la coalición 𝑆, su valor siempre aumenta, es decir 𝜐(𝑆) ≤ 𝜐(𝑇) cuando 𝑆 ⊂

𝑇 [16]. Y 0 – monótono cuando 𝜐(𝐴𝐵) + 𝜐(𝐶) ≤ 𝜐(𝐴𝐵𝐶), es decir, que la coalición sea 

mayor que la suma de las coaliciones individuales [17]. 

Por último, un juego puede ser:  

• Convexo [16]: si la suma de la utilidad de dos coaliciones no supera la suma de 

su unión y su intersección.  

 

𝜐(𝑆) + 𝜐(𝑇) ≤ 𝜐(𝑆 ∪ 𝑇) + 𝜐(𝑆 ∩ 𝑇)    ∀ 𝑆, 𝑇 ∈ 2𝑁 

 

• Estrictamente Convexo: si la suma de la utilidad de dos coaliciones es menor o 

igual a la suma de su unión y su intersección. 

 

𝜐(𝑆) + 𝜐(𝑇) < 𝜐(𝑆 ∪ 𝑇) + 𝜐(𝑆 ∩ 𝑇)    ∀ 𝑆, 𝑇 ∈ 2𝑁 
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• Cóncavo [17]: si la suma de la utilidad de dos coaliciones supera o iguala la suma 

de su unión y su intersección. 

 

𝜐(𝑆) + 𝜐(𝑇) ≥ 𝜐(𝑆 ∪ 𝑇) + 𝜐(𝑆 ∩ 𝑇)    ∀ 𝑆, 𝑇 ∈ 2𝑁 

 

• Estrictamente Cóncavo: si la suma de la utilidad de dos coaliciones supera la suma 

de su unión y su intersección.  

 

𝜐(𝑆) + 𝜐(𝑇) > 𝜐(𝑆 ∪ 𝑇) + 𝜐(𝑆 ∩ 𝑇)    ∀ 𝑆, 𝑇 ∈ 2𝑁 

 

A continuación, vamos a introducir un ejemplo que iremos utilizando a medida que 

desarrollemos los siguientes apartados:  

Ejemplo 1: Sea un juego (𝑁, 𝜐) con N = {A, B, C} y función característica: 

𝜐(𝐴) =  𝜐(𝐵) =  𝜐(𝐶) = 0  

𝜐(𝐴𝐵) =  4     𝜐(𝐴𝐶) =  3    𝜐(𝐵𝐶) =  6 

𝜐(𝐴𝐵𝐶) = 8 

 

Reparto y valor de Shapley 

El objetivo de los juegos TU consiste en que se forme la coalición entre todos los 

jugadores del conjunto N, para así poder repartir la ganancia entre todos ellos. Este reparto 

no es más que un vector 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 , donde cada 𝑥𝑖  representa la cantidad 

asignada a cada jugador 𝑖.  

En esta sección nos vamos a centrar en el Valor de Shapley el cual, se calcula 

promediando los vectores de contribuciones marginales asociados a todos los posibles 

ordenes de los jugadores [19].  

Este valor extrae la solución del reparto imponiendo ciertas condiciones: [2] 

• Principio de eficiencia: este principio consiste en que toda la ganancia debe ser 

repartida entre los jugadores de la coalición.  

 

∑ 𝜑𝑖(𝑁, 𝜐)

𝑖∈𝑁

= 𝜐(𝑁)      ∀ (𝑁, 𝜐) ∈ 𝐺𝑛 

 

• Principio de jugador nulo: indica que si un jugador no aporta nada a ninguna 

coalición no debe recibir ninguna ganancia. 
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𝜑𝑖(𝑁, 𝜐) = 0      ∀ (𝑁, 𝜐) ∈ 𝐺𝑛 

• Principio de simetría: significa que, si un jugador aporta lo mismo que otro a toda 

coalición de jugadores, es decir, son intercambiables, deben recibir el mismo 

valor. 

 

𝜑𝑖(𝑁, 𝜐) = 𝜑𝑗(𝑁, 𝜐)      ∀ (𝑁, 𝜐) ∈ 𝐺𝑛 

 

• Principio de aditividad: este principio hace que, si se dividiera el juego original 

en dos juegos más pequeños, la suma de la ganancia repartida debería ser la misma 

que en el juego original. 

 

𝜑(𝑁, 𝜐 + 𝑤) = 𝜑(𝑁, 𝜐) + 𝜑(𝑁, 𝑤)     ∀ (𝑁, 𝜐), (𝑁, 𝑤) ∈ 𝐺𝑛 

 

Teóricamente el único valor que existe en 𝐺𝑛 que satisfaga los anteriores principios es el 

valor de Shapley [15] el cual, se puede obtener con la siguiente formula:  

𝑆ℎ𝑖(𝜐) = ∑
|𝑆|! (𝑛 − |𝑆| − 1)!

𝑛!
(𝜐(𝑆 ∪ {𝑖}) − 𝜐(𝑆))

𝑆⊆𝑁\{𝑖}

          [20] 

 

La expresión se puede interpretar como el valor esperado del jugador 𝑖 en el juego (𝑁, 𝜐). 

En la formula, |𝑆| es el tamaño de la coalición 𝑆 y 𝑛 es el tamaño del conjunto total de 

jugadores 𝑁. Esta expresión calcula el promedio de todas las contribuciones marginales 

del jugador 𝑖 a cualquier coalición de 𝑆 jugadores. Estas contribuciones son el cambio de 

valor al incluir al jugador 𝑖 en las diferentes coaliciones.  

Volviendo a nuestro ejemplo de nuevo, tenemos que el valor de Shapley es:  

𝑆ℎ𝐴 =  
1! (3 − 1 − 1)!

3!
(4 − 0) +

1!(3 − 1 − 1)!

3!
(3 − 0) +

2! (3 − 2 − 1)!

3!
(8 − 6) =

11

6
= 1.83 

 

𝑆ℎ𝐵 = 
1! (3 − 1 − 1)!

3!
(4 − 0) +

1! (3 − 1 − 1)!

3!
(6 − 0) +

2! (3 − 2 − 1)!

3!
(8 − 3) =

20

6
= 3.33 

 

𝑆ℎ𝐶 =  
1! (3 − 1 − 1)!

3!
(3 − 0) +

1! (3 − 1 − 1)!

3!
(6 − 0) +

2! (3 − 2 − 1)!

3!
(8 − 4) =

17

6
= 2.83 
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Uniones a priori: el valor coalicional 

Hay ocasiones donde podemos encontrar que ciertos jugadores tienen afinidades lo que 

hace que haya más probabilidad de que ocurran coaliciones entre ellos. Esto hace que 

varie el juego y que desde el principio se tenga en cuenta que existen jugadores que 

tienen ciertas relaciones, por lo tanto, estos jugadores aparecerán agrupados en un 

sistema de uniones “a priori”.   

Debido a esta circunstancia, Owen introdujo en 1977 el conocido valor coalicional. 

Este valor proporciona una forma justa de repartir el valor entre los jugadores, 

considerando que pueden existir acuerdos “a priori” que pueden influir en la 

negociación y en el reparto del valor. [21] 

Para calcular este valor vamos a considerar el juego cociente, el juego donde las uniones 

son los jugadores. En esta situación, utilizaremos el valor de Shapley para decidir la 

cantidad que recibe cada unión. Ahora repartiremos utilizando de nuevo Shapley dentro 

de cada unión para conocer la cantidad asignada a cada jugador.  

En resumen, Owen crea un método que modifica el valor de Shapley para que se adapte 

a juegos donde hay uniones ya predefinidas.  

Si tenemos un juego (𝑁, 𝜐) ∈  𝐺𝑛, con particiones de 𝑁 a las que llamaremos 𝑃 =

{𝑃1, … , 𝑃𝑚}, pasa a denotarse como (𝑁, 𝜐, 𝑃) que se refiere a un juego con uniones “a 

priori” [21]. Este conjunto de juegos con sistema de coaliciones “a priori” de jugadores 

𝑛 los conoceremos como 𝐺𝑃
𝑛. [15] 

El valor coalicional o valor de Owen en un juego (𝑁, 𝜐, 𝑃) ∈ 𝐺𝑃
𝑛 se define como 

𝜓𝑖
(𝑁, 𝜐, 𝑃) = ∑ ∑

𝑘! (𝑝𝑗 − 𝑘 − 1)! 𝑠! (𝑚 − 𝑠 − 1)!

𝑝𝑗 ! 𝑚!
𝐾⊂𝑃𝑗 :𝑖∉𝐾𝑆⊂𝑀 :𝑗∉𝑆

(𝜐(𝑄 ∪ 𝐾 ∪ {𝑖}) − 𝜐(𝑄 ∪ 𝐾)) 

siendo 𝑖 ∈ 𝑁, 𝑗 el unico índice para el que 𝑖 ∈ 𝑃𝑗 y 𝑄 =  ⋃ 𝑃𝑘𝐾∈𝑆 . [15] 

Al igual que para juegos TU, podemos definir las correspondientes propiedades de 

eficiencia, simetría, jugador nulo y aditividad de la siguiente forma [21]: 

• Eficiencia: 

 

∑ 𝜑𝑖(𝑁, 𝜐, 𝑃)

𝑖∈𝑁

= 𝜐(𝑁) 

  

• Simetría en cada unión: esta propiedad consiste en que si dos jugadores son 

intercambiables dentro de una unión entonces: 

 

𝜑𝑖(𝑁, 𝜐, 𝑃) = 𝜑𝑗(𝑁, 𝜐, 𝑃) 
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• Simetría en el cociente: en este caso, esta propiedad consiste en que si dos 

uniones son intercambiables dentro de una coalición entonces:  

 

∑ 𝜑𝑖(𝑁, 𝜐, 𝑃)

𝑖∈𝑃𝑘

= ∑ 𝜑𝑗(𝑁, 𝜐, 𝑃)

𝑗∈𝑃𝑙

 

 

• Jugador nulo: Si un jugador no aporta ningún valor al juego entonces: 

 

𝜑𝑖(𝑁, 𝜐, 𝑃) = 0       

 

• Aditividad:    ∀ (𝑁, 𝜐, 𝑃), (𝑁, 𝑤, 𝑃) ∈ 𝐺𝑝
𝑛 

 

𝜑(𝑁, 𝜐 + 𝑤, 𝑃) = 𝜑(𝑁, 𝜐, 𝑃) + 𝜑(𝑁, 𝑤, 𝑃)   

 

También en estos casos, el único valor 𝜑 en 𝐺𝑃
𝑛 que satisfaga estas condiciones es el 

valor de Owen. [15] 

A continuación, vamos a adaptar el ejemplo 1 desarrollado en apartados anteriores para 

calcular el valor de Owen: 

 En este caso tenemos el juego (𝑁, 𝜐, 𝑃) siendo 𝑃 = {{𝐴𝐵}, {𝐶}}. 

  

𝜓𝐴 =
1! 0! 0! 1!

2! 2!
(4 − 0) +

0! 1! 1! 0!

2! 2!
(3 − 0) +

1! 0! 1! 0!

2! 2!
(8 − 6) =

9

4
= 2.25 

 

𝜓𝐵 =
1! 0! 0! 1!

2! 2!
(4 − 0) +

0! 1! 1! 0!

2! 2!
(6 − 0) +

1! 0! 1! 0!

2! 2!
(8 − 3) =

15

4
= 3.75 

 

𝜓𝑐 =
0! 0! 1! 1!

1! 2!
(8 − 4) =

4

2
= 2 
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4 Medida de influencia de características 
 

A continuación, vamos a explicar cómo mediante la aplicación de la teoría de juegos, 

podemos extraer un ranking de la influencia de cada característica en un problema de 

clasificación.  

Para empezar, supongamos que tenemos un problema de clasificación supervisada con 

una variable objetivo 𝑌 y con variables 𝑋𝑖 = (𝑋1, 𝑋2, … , 𝑋𝑀) de las cuales, nos vamos a 

centrar en las variables discretas. Dentro de cada variable extraeremos cada categoría o 

característica, a la cuál denotaremos como 𝑍𝑖𝑗  donde 𝑗 = {1,2 … , 𝑁𝑖} , siendo 𝑁𝑖  el 

número de características de la variable 𝑋𝑖 . En este caso, 𝑍𝑖𝑗 representa la 𝑗 − é𝑠𝑖𝑚𝑎 

categoría de la variable 𝑋𝑖 . 

Una vez tenemos localizadas cada 𝑍𝑖𝑗, cada una de estas corresponderán a un jugador 

diferente. Por lo tanto, definimos el conjunto de jugadores como: 

𝑁 = {𝑍𝑖𝑗 | 𝑖 = 1, … , 𝑀; 𝑗 = 1, … , 𝑁𝑖} 

 

A partir de aquí, definimos nuestro juego con uniones a priori (𝑁, 𝜐, 𝑃) donde: 

• 𝑁 es el conjunto de jugadores indicado en el párrafo anterior.  

• 𝜐 es la función característica (definida más adelante). 

• 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑀}, es la distribución de los jugadores 𝑁 en uniones a priori, 

donde cada subconjunto 𝑃𝑖  agrupa todas las 𝑍𝑖𝑗  pertenecientes a una misma 

variable 𝑋𝑖 . Es decir: 

𝑃𝑖 = {𝑍𝑖𝑗 | 𝑗 = 1, … , 𝑁𝑖},     ∀ 𝑖 = 1, … , 𝑀 

 

Para poder resolver este estudio mediante Rstudio, tendremos que modificar el conjunto 

de datos original adaptándolo a cada coalición posible, es decir, crear un problema de 

clasificación diferente para cada coalición. Cada conjunto se obtendrá aplicando un 

“filtro”, así se seleccionarán todos los individuos que cumplan con el jugador individual 

o con la coalición 𝑆 ⊆ 𝑁. 

Una vez tenemos el conjunto modificado, el siguiente paso será realizar SVM o Random 

Forest, para obtener así la matriz de confusión. Esta matriz nos ayudará a obtener el valor 

𝜐(𝑆) para cada coalición 𝑆, como la suma de los elementos de la diagonal de dicha matriz, 

que corresponden a los sujetos bien clasificados:  

𝜐(𝑆) = ∑ 𝐶𝑀𝑘𝑘

𝐶

𝑘=1
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donde 𝐶 es el número de clases y 𝐶𝑀 es la matriz de confusión para la coalición 𝑆. 

Estos valores 𝜐(𝑆) son los que utilizaremos para calcular el valor de Owen 𝜓𝑖 de cada 

jugador 𝑍𝑖𝑗 que finalmente nos permitirá obtener el ranking de influencias.   

 

5 Ejemplos con datasets 
 

Antes de mostrar los ejemplos vamos a destacar el ranking de influencia será obtenido 

utilizando dos versiones diferentes de código en Rstudio. En estas dos versiones, 

tendremos que indicar las variables, los jugadores, las uniones entre ellos y, por último, 

un parámetro 𝑇 que indique el número de veces que se va a simular el proceso. La 

diferencia entre estas dos versiones radica en  la parte del proceso en la que se encuentra 

el bucle de las simulaciones. 

Para poder entender cómo funcionan los dos códigos con facilidad, debemos tener en la 

cabeza el proceso que se lleva a cabo para obtener el valor de Owen, explicado 

anteriormente. Una vez tenemos claro cómo se extrae el valor en un proceso en el que no 

tenemos en cuenta las simulaciones podemos empezar a diferenciar estas dos versiones.  

En la versión 1, el bucle de las simulaciones se llevará a cabo dentro de cada coalición, 

entonces tendremos 𝑇 veces cada 𝜐(𝑆) , los cuales estarán creados con conjuntos de 

entrenamiento distintos. Para poder ejecutar el valor de Owen, previamente se calculará 

mediante la media de todos los  𝜐(𝑆), el 𝜐(𝑆) final para cada coalición.  

Por el contrario, en la segunda versión, el bucle de las simulaciones se tomará como el 

bucle general, donde dentro de cada simulación se llevará a cabo el proceso para la 

extracción del valor de Owen sin realizar simulaciones entremedias. Por lo tanto, 

tendremos el valor de Owen de cada jugador repetido 𝑇  veces, e igual que antes, 

realizaremos una media para extraer el valor final.  

La mayoría de los datasets se podrán encontrar en paquetes disponibles de Rstudio, en 

caso contrario, se encontrará indicado en la bibliografía.  

Una vez resueltas las dos versiones se realizará una pequeña conclusión para ver si existe 

diferencia en el ranking de influencia entre ellas.  
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Dataset 1: HousePrices 

Disponible en el paquete: AER 

Número total de observaciones: 546 

Variable objetivo: “prefer”→ indica si la casa se encuentra en el barrio preferido de la 

ciudad, siendo posible “yes” (128) y “no” (418). 

Variables explicativas:  

• “driveway”: indica si la casa tiene entrada para vehículos, siendo posible “yes” 

(469) y “no” (77). 

• “recreation”: indica si la casa tiene sala de recreativa, siendo posible “yes” (97) 

y “no” (449). 

• “fullbase”:  indica si la casa tiene un sótano acabado , siendo posible “yes” (191) 

y “no” (355). 

• “gasheat”:  indica si la casa utiliza gas para calentar el agua, siendo posible “yes” 

(25) y “no” (521). 

• “aircon”:  indica si la casa dispone de aire acondicionado , siendo posible “yes” 

(173) y “no” (373). 

 

Versión 1:  

 

Tabla 2: Resultados de la versión 1 en HousePrices 
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Versión 2: 

 

Tabla 3: Resultados de la versión 2 en HousePrices 

 

Conclusión: No influye ni el método ni la versión de código en este dataset ya que el 

ranking de influencia de los jugadores es el mismo, indicando que la característica con 

menos influencia es “yes driveway” y la que más, “no driveway”. En cambio, la variable 

de esa característica (driveway) no es la variable que más influye ya que es aircon y 

recreation en la versión 1 y 2 respectivamente.  

 

Gráfico 1: Comparación de los resultados en HousePrices 
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Dataset 2: Arrests 

Disponible en el paquete: carData 

Número total de observaciones: 5226 

Variable objetivo: “released”→ indica si el detenido fue puesto en libertad con una orden 

de comparecencia, siendo posible “No” (892) y “Yes” (4334). 

Variables explicativas:  

• “colour”: indica la raza del detenido, siendo posible “Black” (1288) y “White” 

(3938). 

• “sex”: indica el género del detenido, siendo posible “Female” (443) y “Male” 

(4783).  

• “employed”:  indica si el detenido está empleado o no, siendo posible “No” (1115) 

y “Yes” (4111).  

• “citizen”:  indica si el detenido es ciudadano o no, siendo posible “No” (771) y 

“Yes” (4455). 

 

Versión 1: 

 

Tabla 4: Resultados de la versión 1 en Arrests 
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Versión 2: 

 

Tabla 5: Resultados de la versión 2 en Arrests 

 

Conclusión: El ranking de influencia de los jugadores es el mismo tanto en las dos 

versiones como en los dos métodos. Por lo tanto, la característica con más influencia es 

“yes employed” y la que menos, “no employed”. En el caso de su variable (employed) 

solo es la más influyente en Random Forest tanto en la versión 1 como la 2. Por otro lado, 

en SVM la variable más influyente sería colour.  

 

Gráfico 2: Comparación de los resultados en Arrests 
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Dataset 3: WVS 

Disponible en el paquete: carData 

Número total de observaciones: 5381 

Variable objetivo: “poverty”→ indica si el individuo cree que lo que el gobierno está 

haciendo por las personas en situación de pobreza en el país es más o menos lo correcto 

“About Right” (1862), demasiado “Too Much” (811) o demasiado poco “Too Little” 

(2708).  

Variables explicativas:  

• “degree”: indica si el individuo tiene algún título universitario, siendo posible 

“yes” (1143) y “no” (4238). 

• “religion”: indica si el individuo es miembro de alguna religión, siendo posible 

“yes” (4595) y “no” (786). 

• “country”: indica país del individuo, siendo posible “Autralia” (1874), “Norway” 

(1127), “Sweden” (1003) y “USA” (1377). 

• “gender”:  indica el género del individuo, siendo posible “female” (2725) y 

“male” (2656). 

 

Versión 1:  

 

Tabla 6: Resultados de la versión 1 en WVS 
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Versión 2: 

 

Tabla 7: Resultados de la versión 2 en WVS 

 

Conclusión: En esta ocasión sí que encontramos una pequeña variación en la versión 2 

de Random Forest, donde intercambia el “no religion” por el “yes religion”. En este 

dataset vemos como la característica más influyente a “female gender” y como la que 

menos a “USA country”. Su variable también coincide como la más influyente en todos 

los casos excepto en Random Forest de la versión 1 que es religion.  

 

 

Gráfico 3: Comparación de los resultados en WVS 
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Dataset 4: titanic 

Disponible en el paquete: COUNT 

Número total de observaciones: 1316 

Variable objetivo: “survived”→ indica si el individuo sobrevivió tras el hundimiento, 

siendo posible “yes” (499) y “no” (817).  

Variables explicativas:  

• “class”: indica la clase del individuo, siendo posible “1st class” (325), “2nd class” 

(285), “3rd class” (706) y “crew” (0). 

• “age”: indica el grupo de edad del individuo, siendo posible “child” (109) y 

“adult” (1207).  

• “sex”:  indica el género del individuo, siendo posible “women” (447) y “man” 

(869). 

 

Versión 1:  

 

Tabla 8: Resultados de la versión 1 en titanic 
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Versión 2:  

 

Tabla 9: Resultados de la versión 2 en titanic 

 

Conclusión: En este caso no encontramos discrepancias en la versión 1 de los dos 

métodos, pero en la versión dos sí que hay bastantes diferencias. Según los resultados, 

las cuatro opciones coinciden en que la característica más influyente es “man gender” 

pero en el caso de la que menos influye, según la versión 1 es “child age” y según la 

versión 2, “1st class”. En cuanto a la variable, sí que coincide la característica 

más influyente con la variable más influyente (gender).  

 

Gráfico 4: Comparación de los resultados en titanic 
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Dataset 5: autism 

Disponible en el paquete: HLMdiag 

Número total de observaciones: 604 

Variable objetivo: “bestest2”→ indica el diagnóstico del niño a los dos años, siendo 

posible “autism” (389) y “pdd” (215).  

Variables explicativas:  

• “sicdegp”: indica la evaluación del desarrollo del lenguaje expresivo, siendo 

posible “low” (188), “med” (251) y “high” (165). 

• “gender”: indica el género del individuo, siendo posible “male” (526) y “female” 

(78). 

• “race”:  indica la raza del individuo, siendo posible “white” (400) y “nonwhite” 

(204). 

 

 

Versión 1:  

 

Tabla 10: Resultados de la versión 1 en autism 
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Versión 2:  

 

Tabla 11: Resultados de la versión 2 en autism 

 

Conclusión: Encontramos el mismo ranking menos en la versión dos de SVM. Pero si 

que coinciden en la característica más influyente y en la que menos que son “low sicdegp” 

y “high sicdegp” respectivamente. En cambio, no coincide la variable con mas influencia 

con la característica mas influyente ya que es gender.  

 

 

Gráfico 5: Comparación de los resultados en autism 
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Dataset 6: SmokeBan 

Disponible en el paquete: AER 

Número total de observaciones: 10000 

Variable objetivo: “smoker”→ indica si el individuo es fumador, siendo posible “yes” 

(2423) y “no” (7577).  

Variables explicativas:  

• “ban”: indica si está prohibido fumar en el trabajo del individuo, siendo posible 

“yes” (6098) y “no” (3902). 

• “afam”: indica si el individuo es afroamericano, siendo posible “yes” (769) y 

“no” (9231). 

• “hispanic”:  indica si el individuo es hispano, siendo posible “yes” (1134) y “no” 

(8866). 

• “gender”:  indica el género del individuo, siendo posible “male” (4363) y 

“female” (5637). 

 

Versión 1:  

 

Tabla 12: Resultados de la versión 1 en SmokeBan 

 

 

 

 

 

 



37 
 

Versión 2:  

 

Tabla 13: Resultados de la versión 2 en SmokeBan 

 

Conclusión: En este dataset podemos ver el mismo ranking tanto en la versión 1 como la 

2 en Random Forest. En cambio, en SVM sí que existen diferencias entre las dos 

versiones. La característica más influyente sería “yes ban” y la que menos “no ban”. Por 

otro lado, en la versión 2 todas las características son igual de influyentes tanto en 

Random Forest y SVM, pero en la versión 1 si que coindice la característica más 

influyente con la variable que es ban, pero en SVM sería hispanic.  

 

 

Gráfico 6: Comparación de los resultados en SmokeBan 
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Dataset 7: Quinidine 

Disponible en el paquete: nlme 

Número total de observaciones: 1471 

Variable objetivo: “Heart”→ indica la insuficiencia cardíaca congestiva del individuo, 

siendo posible “No/Mild” (598), “Moderate” (375) y “Severe” (498).  

Variables explicativas:  

• “Race”: indica la raza del individuo, siendo posible “Caucasian” (968), “Latin” 

(384) y “Black” (119). 

• “Smoke”: indica el hábito de fumar en el momento de la medición del individuo, 

siendo posible “no” (1024) y “yes” (447). 

• “Ethanol”: indica el estado de abuso de etanol (alcohol) en el momento de la 

medición del individuo, siendo posible “none” (991), “current” (191) y “former” 

(289). 

• “Creatinine”:  indica el aclaramiento de creatinina (mg/min) del individuo, 

siendo posible “< 50” (418) y “>= 50” (1053). 

 

Versión 1:  

 

Tabla 14: Resultados de la versión 1 en Quinidine 
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Versión 2:  

 

Tabla 15: Resultados de la versión 2 en Quinidine 

 

Conclusión: Podemos encontrar diferencias tanto en las dos versiones como en los dos 

métodos. Sí que las cuatro opciones coinciden en la característica más influyente “Black 

race”, pero Random Forest y SVM discrepan en la menos influyente ya que el primero 

indica que es “Latin Race” y el segundo, “former ethanol”. En este caso, la 

característica más influyente coincide con la variable que es race. 

 

Gráfico 7: Comparación de los resultados en Quinidine 
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Dataset 8: Car Evaluation 

Disponible en: [22] 

Número total de observaciones: 1728 

Variable objetivo: “class”→ indica la valoración del cliente al vehículo, siendo posible 

“unacc” (1210), “acc” (384), “good” (69) y “vgood” (65).   

Variables explicativas:  

• “lug_boot”: indica el nivel de capacidad del maletero del vehiculo, siendo posible 

“big” (576) y “med” (576) y “small” (576). 

• “safety”: indica el nivel de seguridad del vehiculo, siendo posible “high” (576) y 

“med” (576) y “low” (576).  

 

Versión 1:  

 

Tabla 16: Resultados de la versión 1 en Car Evaluation 

 

Versión 2:  

 

Tabla 17: Resultados de la versión 2 en Car Evaluation 
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Conclusión: En este caso todos los rankings son iguales. Indicando como característica 

más influyente a “low safety” y la que menos, “high safety” pero no coincide la variable 

con la característica más influyente. Ahora bien, en la versión 2 las dos variables tienen 

la misma influencia.  

 

 

Gráfico 8: Comparación de los resultados en Car Evaluation 
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Dataset 9: Adult 

Disponible en: [23] 

Número total de observaciones: 32561 

Variable objetivo: “Income”→ indica el ingreso anual del individuo, siendo posible 

“>50K” (7841) y “<=50K” (24720).  

Variables explicativas:  

• “Education”: indica el nivel de estudio del individuo, siendo posible “Advanced” 

(989), “Bachelors” (5355), “Dropout” (4253), “HighSchool” (10501), “Masters” 

(1723) y “SomeCollege” (9740).  

• “Sex”: indica el sexo del individuo, siendo posible “Female” (10771) y “Male” 

(21790). 

Cabe destacar que la variable “education” ha sido modificada del dataset original para 

agilizar el proceso y además mejorar la comprensión de la variable. Por lo tanto, se han 

agrupado las siguientes características:  

• Dropout → "Preschool", "1st-4th", "5th-6th", "7th-8th", "9th", "10th", "11th", 

"12th" 

• HighSchool → "HS-grad" 

• SomeCollege → "Some-college", "Assoc-acdm", "Assoc-voc" 

• Bachelors → “Bachelors” 

• Masters → “Masters” 

• Advanced → "Doctorate", "Prof-school" 

 

Versión 1:  

 

Tabla 18: Resultados de la versión 1 en Adult 
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Versión 2:  

 

Tabla 19: Resultados de la versión 1 en Adult 

 

Conclusión: En Random Forest podemos ver el mismo ranking. Por el otro lado, en SVM 

encontramos bastantes diferencias. Podemos ver que la característica “Female” es la más 

influyente en las dos versiones de Random Forest pero en SVM varía dependiendo de la 

versión. La menos influyente en Random Forest es “Bachelors” pero en SVM vuelve a 

variar. Aunque la característica más influyente varía dependiendo del método y versión, 

la variable education sigue coincidiendo con la característica más influyente.  

 

Gráfico 9: Comparación de los resultados en Adult 
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Dataset 10: Mushroom 

Disponible en: [24] 

Número total de observaciones: 8124 

Variable objetivo: “poisonous”→ indica el hongo el comestible o venenoso, siendo 

posible “edible=e” (4208) y “poisonous=p” (3916).  

Variables explicativas:  

• “odor”: indica el olor de los hongos, siendo posible “almond=a” (400), “anise=l” 

(400), “creosote=c” (192), “fishy=y” (576), “foul=f” (2160), “musty=m” (36), 

“none=n” (3528), “pungent=p” (256) y “spicy=s” (576).  

• “population”: indica el nivel de abundancia de los hongos, siendo posible 

“abundant=a” (384), “clustered=c” (340), “numerous=n” (400), “scattered=s” 

(1248), “several=v” (4040) y “solitary=y” (1712). 

 

Debido al alto costo computacional, este dataset solo se ha resuelto con la versión 1.  

 

Versión 1: 

 

Tabla 20: Resultados de la versión 1 en Mushroom 
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Conclusión: Podemos ver algunas diferencias dependiendo del método que 

seleccionemos. La característica más influyente es “numerous” y la que menos, 

“solitary”. Por lo tanto, no coincide la variable más influyente con la característica más 

influyente ya que es odor.  

 

Gráfico 10: Comparación de los resultados en Mushroom 
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6 Conclusión  
 

Este estudio, además de identificar las variables más influyentes, permite analizar cómo 

ciertas combinaciones de valores pueden afectar al rendimiento del modelo tanto positiva 

como negativamente. Por lo que, gracias a este proyecto, podemos concluir que la medida 

de influencia de Owen es una herramienta útil para predecir qué valores, dentro de las 

variables explicativas discretas, son más significativos para la optimalidad del modelo de 

clasificación. 

Ahora bien, debemos destacar que nos hemos encontrado con algunas dificultades en el 

camino. Por ejemplo, el alto coste computacional hace que, en modelos donde tenemos 

un número elevado de variables discretas o de valores posibles dentro de las variables, se 

requiera bastante tiempo para poder ejecutar el código. Por otro lado, especialmente con 

Random Forest, al intentar predecir en ciertas coaliciones de valores, nos podemos 

encontrar con que solo existe una clase de la variable objetivo. Por ello, en algunos 

datasets concretos, hemos tenido que realizar alguna pequeña modificación en el código 

como, por ejemplo, añadir la función droplevels en el conjunto de entrenamiento y en el 

de test. Así podremos eliminar las clases no utilizadas y quedarnos solo con la única clase 

que existe. 

Al extraer esta información, se puede mejorar la selección de variables y la reducción de 

dimensiones. Esto nos abre la puerta a que investigaciones futuras desarrollen infinidad 

de proyectos que se basen en criterios de influencia.  
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