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1. Resumen  

Este trabajo tiene como objetivo desarrollar y evaluar modelos predictivos capaces de 

estimar la probabilidad de que un paciente sufra ictus o no, utilizando variables clínicas 

y demográficas extraídas de una base de datos pública. Se abordan diferentes 

enfoques de clasificación supervisada, incluyendo regresión logística (con y sin 

regularización), árbol de decisión, Naïve Bayes y Random Forest. Tras un proceso de 

preparación de los datos, entrenamiento, optimización de hiperparámetros y validación, 

se analizan métricas como la exactitud, el AUC y la capacidad para identificar casos 

positivos, a partir de los cuales se comparan los modelos ajustados. Los resultados 

muestran que, debido al fuerte desequilibrio de clases, con un grupo minoritario de 

pacientes que han sufrido ictus, los modelos tienen deficiencias para clasificar 

correctamente a este grupo. Aunque los modelos desarrollados presentan limitaciones 

importantes, el modelo Naïve Bayes fue el que logró una mejor capacidad para 

detectar casos de ictus, alcanzando una sensibilidad (recuerdo) del 84% en el conjunto 

de entrenamiento, aunque con una precisión baja. Su exactitud global fue del 55%, lo 

que refleja su enfoque centrado en clasificar los casos de ictus, incluso a costa de 

generar falsos positivos. Esta capacidad lo convierte en el modelo más útil dentro del 

conjunto evaluado para aplicaciones clínicas donde se prioriza no omitir posibles 

eventos de ictus. 
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2.Palabras clave 

Las palabras clave son ictus; predicción médica; métricas de evaluación; modelos de 

clasificación.  

 

3. Contexto 

El ictus o accidente cerebrovascular es una de las principales causas de discapacidad 

y mortalidad en el mundo (Organización Mundial de la Salud, 2023), representando una 

emergencia médica con consecuencias físicas, cognitivas y sociales de gran alcance. 

Según la Organización Mundial de la Salud, se estima que uno de cada cuatro adultos 

sufrirá un ictus a lo largo de su vida, lo que pone de relieve la urgencia de desarrollar 

estrategias efectivas de prevención y detección temprana. 

La identificación de los factores de riesgo del ictus ha sido ampliamente estudiada en la 

literatura médica. Entre los más reconocidos se encuentran la hipertensión arterial, la 

diabetes, las enfermedades cardiovasculares, el tabaquismo y la edad avanzada 

(MedlinePlus, 2006). Sin embargo, la interacción entre estos factores y su contribución 

conjunta al riesgo individual continúa siendo un desafío, especialmente en escenarios 

clínicos donde los recursos diagnósticos son limitados (Hankey, 2017). 

El presente trabajo se enmarca dentro de esta línea de investigación y utiliza como 

fuente de datos el conjunto Stroke Prediction Dataset, disponible públicamente en la 

plataforma Kaggle. Esta base de datos recoge información de más de 5000 pacientes, 
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incluyendo variables demográficas, de salud y estilo de vida, con el objetivo de facilitar 

el desarrollo de modelos predictivos sobre la ocurrencia del ictus. 

Diversos estudios previos en Kaggle han abordado este conjunto de datos (Kse, s.f.; 

Ferretti, s.f.) desde diferentes perspectivas. Por ejemplo, el análisis exploratorio 

realizado por Abdullah Kse proporciona una limpieza detallada de los datos y una 

primera aproximación al modelado mediante algoritmos como Random Forest. Por otro 

lado, Jacopo Ferretti profundiza en la interpretabilidad de los modelos utilizando 

técnicas avanzadas como los diagramas SHAP, que cuantifican el impacto de cada 

variable en la predicción individual del modelo (Lundberg & Lee, 2017), y el análisis de 

dependencia parcial, que representa cómo cambia la predicción del modelo en función 

de una sola variable (Molnar, 2022), aportando una lectura más comprensible para 

entornos clínicos.  

No obstante, la mayoría de estos estudios presentan ciertas carencias: algunos se 

centran únicamente en la exactitud del modelo sin considerar el impacto del 

desequilibrio  de las clases (los pacientes con ictus son minoritarios frente a los que no 

lo han padecido); otros se concentran en la aplicación de cierta técnica en particular; 

pocos incorporan métricas críticas en el ámbito médico, como el recuerdo para ictus. 

Este trabajo propone un abordaje amplio, incorporando diversos modelos de 

clasificación, validación cruzada, evaluación exhaustiva con métricas específicas y un 

análisis de las posibles variables predictoras. De esta forma, se pretende no solo 

construir un modelo predictivo eficiente, sino también aportar conocimiento sobre los 
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factores asociados al ictus, y contribuir al diseño de estrategias preventivas apoyadas 

en la ciencia de datos. 

 

 

4. Objetivos  

El objetivo de este trabajo es desarrollar y comparar diversos modelos útiles para 

diagnosticar si un paciente es susceptible de sufrir un ictus en función de diversas 

variables demográficas, clínicas y de estilo de vida, y que en consecuencia permita 

diseñar directrices saludables que redunden en la reducción del riesgo de padecerlo. 

En concreto, se analizarán las variables hipertensión, enfermedad cardíaca, 

tabaquismo, índice de masa corporal (BMI), nivel de glucosa en sangre, tipo de 

empleo, estado civil, género y tipo de residencia. 

Los objetivos específicos son: 

-​ Realizar un análisis exploratorio de los datos para describir 

la distribución de la variable respuesta (ictus) y su relación con las 

posibles variables predictoras.​

 

-​ Aplicar técnicas de preprocesamiento de datos: limpieza de 

valores nulos, transformación de variables, traducción de etiquetas y 

creación de variables dicotómicas.​

 

 

 

 Pag 5 de 66 

 



 

Ictus bajo la lupa: analizando riesgos con Machine Learning  

 

-​ Implementar distintos modelos de clasificación supervisada: 

regresión logística (con y sin regularización), Naïve Bayes, árbol de 

decisión y Random Forest.​

 

-​ Evaluar y comparar los modelos utilizando métricas 

relevantes como exactitud, precisión, recuerdo, F1-score y AUC.​

 

-​ Analizar la importancia relativa de las variables predictoras 

en los modelos generados.​

 

-​ Aplicar validación cruzada para asegurar la robustez de los 

resultados.​

 

-​ Estudiar el comportamiento de los modelos frente al 

desequilibrio de clases, analizando su impacto en la clasificación de 

ictus.​

 

-​ Utilizar técnicas de visualización como curvas ROC, curvas 

de calibración y gráficos de importancia para interpretar el 

comportamiento de los modelos.​

 

-​ Extraer conclusiones clínicas a partir de los resultados y 

proponer recomendaciones para trabajos futuros. 
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5. Información disponible 

Este trabajo se basa en el análisis del banco de datos Stroke Prediction Dataset, 

disponible en la plataforma pública de Kaggle. Este conjunto de datos fue recopilado y 

difundido por la empresa Fedesoriano (Soriano, F. (s.f.), n.d.), con el objetivo de facilitar 

investigaciones orientadas a la predicción del riesgo de sufrir un ictus a partir de 

información demográfica y clínica de pacientes. 

El conjunto se presenta en un único archivo en formato CSV, lo cual facilita su descarga 

y manejo. 

La base de datos incluye un total de 5110 observaciones y contempla 12 variables 

recopiladas. 

5.1 Descripción de variables 

A continuación, se presenta un listado de las variables utilizadas en el proceso de 

análisis. 

●​ ID → identificador único para cada registro (no se utilizará).  

●​ GENDER → variable cualitativa que identifica el género 

(masculino, femenino u otro) 

●​ AGE → variable cuantitativa continua que representa la 

edad del paciente, y que varía entre 1 y 82 años.  

●​ HYPERTENSION → variable binaria relativa a si el paciente 

tiene (1) o no (0) hipertensión. 
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●​ HEART_DISEASE → variable binaria relativa a enfermedad 

coronaria (0= no tiene, 1= sí tiene). 

●​ EVER_MARRIED → variable categórica: “Yes” si alguna vez 

el paciente ha estado casado, “No” si no lo ha estado nunca.  

●​ WORK_TYPE → variable cualitativa relativa al tipo de 

trabajo, con las opciones: “children” (hijos), “govt_job” (trabajo del 

gobierno), “private” (privado), “self-employed” (autónomo) o 

“never_worked” (nunca trabajó). 

●​ RESIDENCE_TYPE → variable cualitativa sobre el tipo de 

residencia en la que habita: “rural” (rural) o “urban” (urbano). 

●​ AVG_GLUCOSA_LEVEL → variable cuantitativa que mide 

el nivel promedio de glucosa en sangre, con valores entre 59 y 218. 

●​ BMI → variable cuantitativa que mide el índice de masa 

corporal, con valores entre 12 y 92. 

●​ SMOKING_STATUS → variable cualitativa que indica si el 

sujeto fuma o ha fumado, con las respuestas: “formerly smoked” (antes 

fumaba), “never smoked” (nunca fumó), “smokes” (fuma) o “unknown” 

(desconocido).  

●​ STROKE → variable binaria con valor 1 si el paciente tuvo 

un accidente cerebrovascular o valor 0 si el paciente no lo tuvo.  
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5.2 Procesado de los datos 

El procesado de datos es un paso clave al iniciar el tratamiento estadístico. En esta 

etapa se analiza la existencia de valores atípicos, datos faltantes y posibles 

inconsistencias, procediendo a eliminar registros atípicos, imputar valores nulos, 

transformar variables, traducir categorías y generar variables derivadas para facilitar el 

análisis posterior. 

Se observó que en la variable gender solo hay un paciente registrado como “other” (las 

categorías de clasificación son Male/Female), así que se eliminó a este paciente.  

Por otro lado, se identificó que la única variable que tiene valores nulos es BMI. Debido 

a que son pocos los valores nulos (201 de 5109), se imputaron los datos faltantes con 

la mediana de la variable, método reconocido por su robustez frente a la media.  

Para llevar a cabo el análisis, se optó por agrupar algunas variables, como el BMI 

(índice de masa corporal) y el nivel de glucosa en sangre: 

 

●​ La variable BMI se transforma en una variable dicotómica denominada 

OBESIDAD. 

Creamos una variable dicotómica, a la que denominamos OBESIDAD, para diferenciar 

pacientes con y sin obesidad, siguiendo el criterio propuesto en MedlinePlus (Índice De 

Masa Corporal, 2025), de donde surgen como posibles valores: 

●​ 0, representando no obesidad : Si el BMI es menor de 30. 

●​ 1, representando obesidad  : Si el BMI es 30 o más. 
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●​ La variable AVG_GLUCOSA_LEVEL se transforma en una variable dicotómica 

denominada DIABETES. 

Creamos una variable dicotómica, DIABETES, para diferenciar pacientes con y sin 

diabetes, siguiendo el criterio propuesto en MedlinePlus (Nivel De Glucosa En Sangre, 

2024), de dónde surgen como posibles valores: 

●​ 0, representando no diabetes: Si el nivel de glucosa está 

por debajo 126 mg/dL. 

●​ 1, representando diabetes : Si el nivel de glucosa es igual 

o superior a 126 mg/dL. 

 

Por otro lado, con el objetivo de unificar el manejo de los datos en un solo idioma, 

hemos procedido a traducir al castellano todos los niveles de respuesta de las variables 

codificadas en inglés, abordando la consecuente recodificación:  

❖​ GENDER 

➢​ Male → Hombre 

➢​ Female → Mujer 

❖​ SMOKING_STATUS 

➢​ formerly smoked → Fumó anteriormente  

➢​ never smoked → Nunca ha fumado 

➢​ smokes → Fumador actual  

➢​ unknown → Desconocido  
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❖​ RESIDENCE_TYPE 

➢​ urban → Urbano  

➢​ rural → Rural 

❖​ WORK_TYPE 

➢​ Private → Sector privado 

➢​ Self_employed → Autónomo 

➢​ Govt_job → Empleado público 

➢​ Children → Niño/a 

➢​ Never_worked → Nunca trabajó 

❖​ EVER_WARRIED 

➢​ Yes → Sí 

➢​ No → No 

 

 

6. Metodología 

En este proyecto hemos seguido una metodología estructurada en varias fases, 

abarcando desde el análisis exploratorio inicial hasta la construcción, evaluación  y 

comparación de modelos de aprendizaje automático. A continuación, se detallan las 

técnicas y herramientas utilizadas en cada etapa. 
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6.1 Análisis exploratorio 

El análisis exploratorio se orienta a describir la variable respuesta (ictus), de tipo 

categórico, y a analizar su relación con las variables potencialmente predictoras. 

Cuando las predictoras son categóricas, se han utilizado gráficos de barras apiladas, 

en los cuales se ha utilizado una codificación por color: rojo para representar los casos 

de pacientes que han sufrido un ictus y azul para los pacientes que no han sufrido un 

ictus. 

La relación con variables numéricas se representa con histogramas y gráficos de violín 

y también con la codificación por color. 

 

6.2 Modelización 

Tras el análisis exploratorio y el preprocesamiento de los datos, se procede a la fase de 

modelización, cuyo objetivo es construir modelos capaces de predecir la clasificación 

de un paciente como en riesgo o no de padecer ictus,  en función de variables 

demográficas, clínicas y relacionadas con el estilo de vida. Se han explorado diversos 

enfoques de aprendizaje automático supervisado, con distintos niveles de complejidad 

e interpretabilidad. 

Las variables predictoras consideradas en las modelizaciones incluyen: edad, género, 

hipertensión, enfermedad cardíaca, estado civil, tipo de empleo, tipo de residencia, 
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nivel medio de glucosa, índice de masa corporal (BMI), tabaquismo, y las variables 

derivadas de obesidad y diabetes. 

Para poder incluir variables categóricas en los modelos, se procedió a la creación de 

variables dummy (también conocidas como variables indicadoras), de forma que cada 

categoría quedó representada como una columna binaria. Además, en aquellos 

modelos que lo requerían, se realizó la estandarización de las variables numéricas 

(como edad, glucosa y BMI) para asegurar una escala comparable entre predictores y 

facilitar la convergencia de algoritmos sensibles a la escala, como la regresión logística 

regularizada. 

 

Los modelos se entrenaron utilizando un enfoque estándar: división del conjunto de 

datos en muestras de entrenamiento (80%) y test (20%), utilizando la estratificación por 

la variable respuesta, dado que la muestra original está muy desequilibrada entre 

sujetos con ictus y sin ictus; así conseguimos mantener la proporción de casos 

positivos y negativos en ambas particiones.  

 

Los modelos considerados en este trabajo han sido regresión logística, Naïve Bayes, 

árbol de decisión y Random Forest, explicados posteriormente.  

La evaluación y comparación de los modelos se ha realizado utilizando métricas de 

clasificación como:  
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●​ Accuracy (Exactitud): mide la proporción total de predicciones correctas sobre 

el total de observaciones. Es útil como visión global del rendimiento del modelo, 

aunque puede resultar engañosa en casos con clases desequilibradas, como el 

presente.​

 

●​ Precisión: proporción de verdaderos positivos entre todas las predicciones 

positivas realizadas. Es especialmente relevante cuando se quiere minimizar el 

número de falsos ictus.​

 

●​ Recuerdo (Sensibilidad): refleja la capacidad del modelo para detectar 

correctamente los casos de ictus. Es clave en contextos médicos, donde es 

preferible detectar todos los casos de riesgo aunque haya algunas falsas 

alarmas.​

 

●​ F1-Score: combina la precisión y el recuerdo en una única métrica armónica, 

equilibrando ambos aspectos. Resulta útil cuando existe un desequilibrio de 

clases y se busca un compromiso entre identificar correctamente los ictus y no 

generar demasiadas falsas alarmas.​

 

●​ Matriz de confusión: representa de forma detallada el número de 

observaciones correcta e incorrectamente clasificadas como ictus/no ictus. 

Permite interpretar visualmente los aciertos y errores del modelo, y comprender 

mejor cómo se distribuyen las predicciones.​
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●​ Curva ROC y AUC (Área Bajo la Curva): permiten evaluar la capacidad de 

discriminación del modelo entre clases, analizando su rendimiento a distintos 

umbrales de decisión. El AUC resume esta información en un valor único entre 0 

y 1; cuanto más alto, mayor capacidad predictiva del modelo. 

La validación de los modelos se lleva a cabo mediante validación cruzada con k = 10 

particiones. Este procedimiento consiste en dividir aleatoriamente el conjunto de datos 

en diez subconjuntos del mismo tamaño. En cada iteración, uno de estos subconjuntos 

se utiliza como conjunto de validación, mientras que los nueve restantes se emplean 

para entrenar el modelo. Este proceso se repite diez veces, asegurando que cada 

subconjunto actúe una vez como conjunto de validación. Finalmente, se calcula la 

media de las métricas obtenidas en cada iteración, lo que proporciona una estimación 

robusta del rendimiento del modelo y permite validarlo. 

A continuación, se describen los modelos implementados. 

6.2.1 Regresión logística 

En una primera aproximación se ajustó un modelo de regresión logística para predecir 

la probabilidad de que una persona sufra un ictus a partir de un conjunto de posibles 

variables predictoras.  

Con el fin de mejorar la generalización del modelo, seleccionar las variables predictoras 

más relevantes y prevenir el sobreajuste, se evaluaron tres tipos de regularización: 

●​ Regresión logística con penalización L1 (Lasso), que favorece la selección 

de variables al forzar coeficientes exactamente a cero. Esta técnica modifica la 
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función de pérdida original de la regresión logística (log-loss), que mide la 

discrepancia entre las clases reales y las probabilidades predichas. Dicha 

función se expresa como:  

 𝐿𝑜𝑔 − 𝑙𝑜𝑠𝑠 =− ∑​[𝑦
𝑖​
𝑙𝑜𝑔(𝑝

𝑖​
​) + (1 − 𝑦

𝑖​
​)𝑙𝑜𝑔(1 − 𝑝

𝑖​
)]

donde y  representa la clase real del individuo (ictus o no), p ​ es la probabilidad 𝑖​ 𝑖​

estimada por el modelo de que dicho individuo sufra ictus, y n es el número total 

de observaciones.  

Sobre esta función se añade un término de penalización que corresponde a la 

suma de los valores absolutos de los coeficientes del modelo, dando lugar a la 

función de pérdida regularizada: 

​

 𝐹𝑢𝑛𝑐𝑖ó𝑛 𝑑𝑒 𝑝é𝑟𝑑𝑖𝑑𝑎 = 𝐿𝑜𝑔𝐿𝑜𝑠𝑠 + λ∑​∣β𝑗​∣

Este término penaliza los coeficientes grandes y permite que algunos sean 

exactamente cero, favoreciendo así la eliminación automática de variables 

irrelevantes y reduciendo el sobreajuste del modelo.​

 

●​ Regresión logística con penalización L2 (Ridge), que incorpora una 

penalización basada en la suma de los cuadrados de los coeficientes: 
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​

  𝐹𝑢𝑛𝑐𝑖ó𝑛 𝑑𝑒 𝑝é𝑟𝑑𝑖𝑑𝑎 = 𝐿𝑜𝑔 − 𝐿𝑜𝑠𝑠 + λ∑​β𝑗2

A diferencia de Lasso, Ridge no fuerza coeficientes a cero, sino que reduce su 

magnitud para evitar el sobreajuste, manteniendo todas las variables en el 

modelo y mejorando su estabilidad.​

 

●​ Regresión logística con penalización Elastic Net, que combina las 

penalizaciones L1 y L2. La función de pérdida incluye una combinación 

ponderada de ambas:​

 

 𝐹𝑢𝑛𝑐𝑖ó𝑛 𝑑𝑒 𝑝é𝑟𝑑𝑖𝑑𝑎 = 𝐿𝑜𝑔 − 𝐿𝑜𝑠𝑠 + λ(∑​∣β𝑗​∣ + (1 − α)∑β𝑗2​)

Este enfoque permite ajustar el modelo con la flexibilidad de Lasso (selección de 

variables) y la robustez de Ridge (coeficientes más estables), siendo 

especialmente útil en situaciones con alta correlación entre predictores o gran 

número de variables.​

 

Para obtener los valores óptimos de los términos de penalización se realizó una 

optimización de hiperparámetros (los relativos a la función de pérdidas en la 

regularización) mediante la técnica de búsqueda en grid con validación cruzada. 
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Una vez obtenidos los modelos óptimos en cada tipo de regularización, se comparan 

los tres ajustes regularizados, junto con el ajuste sin regularización y se opta por la 

mejor de ellas en términos del menor AIC, que equilibra ajuste y complejidad y que se 

calcula a partir de la verosimilitud del modelo, según la fórmula: 

 𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿)

Siendo k el número de parámetros estimados en el modelo y L la verosimilitud del 

modelo. 

Se grafican sus coeficientes para identificar qué variables resultan más influyentes. 

Finalmente, se evaluó el rendimiento sobre el conjunto de test con las métricas de 

clasificación habituales y se representó gráficamente la curva ROC del modelo óptimo. 

Dado que este tipo de curva ya ha sido introducido previamente, se utiliza aquí como 

apoyo visual para analizar la capacidad del modelo en distintos umbrales. La 

implementación y el cálculo del AUC se realizaron utilizando las funciones disponibles 

en la biblioteca scikit-learn (Pedregosa et al., 2011). 

 

6.2.2 Naïve Bayes 

Este método se ha seleccionado por su simplicidad, rapidez y buena capacidad 

predictiva en contextos donde las variables predictoras continuas pueden aproximarse 

razonablemente bien a una distribución normal. 
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A diferencia de otras variantes como el Naïve Bayes Bernoulli o Multinomial, el Naïve 

Bayes Gaussiano resulta especialmente adecuado en este caso, ya que las variables 

predictoras utilizadas en el modelo (como la glucosa, el índice de masa corporal o la 

edad) son de naturaleza continua. 

El algoritmo de Naïve Bayes se basa en el teorema de Bayes, una fórmula 

probabilística que permite calcular la probabilidad de que ocurra un evento, dado que 

ya ha ocurrido otro. Este enfoque parte de la siguiente expresión: 

/  𝑃(𝐶∣𝑋) = 𝑃(𝑋∣𝐶)⋅𝑃(𝐶) ​𝑃(𝑋)

donde: 

●​ P(C∣X) es la probabilidad posterior de que un paciente haya sufrido ictus dado 

un conjunto de características X. 

●​ P(X∣C) es la verosimilitud: la probabilidad de observar las características X 

dado que se pertenece a la clase C (haber sufrido ictus). 

●​ P(C) es la probabilidad previa de la clase C. 

●​ P(X) es la probabilidad de observar el conjunto de características X 

(independiente de la clase).​

 

Durante la predicción, el modelo evalúa la probabilidad de que un nuevo paciente 

pertenezca a cada clase y asigna aquella con mayor probabilidad posterior. El resultado 

es un clasificador rápido, eficiente y sorprendentemente competitivo en muchos 
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contextos, especialmente cuando se prioriza el recuerdo (detección de positivos) por 

encima de la precisión. 

Tras el entrenamiento del modelo sobre el conjunto de entrenamiento, se evaluó su 

rendimiento sobre el conjunto de prueba. Se calculó la matriz de confusión y las 

métricas de clasificación (precisión, recuerdo, F1-score) por clase. Además, se 

generaron la curva ROC y la curva de aprendizaje.  

La curva de aprendizaje permite visualizar cómo varía el rendimiento del modelo al 

aumentar el tamaño de la muestra de entrenamiento, ayudando a detectar posibles 

problemas de sobreajuste o infraajuste (Raschka, 2020).  

6.2.3 Árbol de decisión 

En este apartado se emplea un modelo de árbol de decisión para la clasificación. 

Este tipo de modelo tiene la ventaja de ser altamente interpretable, porque proporciona 

un árbol en el que sólo aparecen las variables que ayudan a la predicción de la 

respuesta. Por contra, no proporciona información sobre el grado en el que afectan a la 

predicción, como sí hace el modelo de regresión a través de los coeficientes estimados. 

El algoritmo de árbol de decisión para la clasificación divide el espacio de datos en 

regiones homogéneas a través de una estructura jerárquica de decisiones. El objetivo 

es crear un árbol en el que cada nodo interno representa una condición sobre una 

variable predictora, cada rama representa el resultado de esa condición, y cada hoja 

representa una predicción final (en este caso, ictus o no ictus). 
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El proceso de construcción del árbol se realiza de forma recursiva, mediante el 

algoritmo conocido como ID3 (Quinlan, 1986) o una de sus variantes como CART 

(Breiman et al., 1984), siguiendo estos pasos: 

1.​ Selección de la mejor variable para dividir: en cada nodo se selecciona la 

variable que mejor separa las clases y los valores/clases frontera para realizar la 

división. Para ello, se evalúa la “impureza” del nodo, es decir, el grado de mezcla 

entre clases. Las métricas más utilizadas para medir la impureza son:​

 

○​ Índice Gini: 

​

   𝐺𝑖𝑛𝑖 = 1 − ∑​𝑃𝑖2​

○​ Entropía: 

​

   𝐸𝑛𝑡𝑟𝑜𝑝í𝑎 =− ∑​𝑃𝑖​ * 𝑙𝑜𝑔2​(𝑃𝑖​)

donde P ​ es la proporción de elementos de la clase  en el nodo.​𝑖​ 𝑖​

 

2.​ División del nodo: se selecciona la división que maximiza la reducción de 

impureza, creando dos nuevos nodos hijos. Este proceso continúa de forma 

recursiva.​
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3.​ Criterio de parada: la división se puede detener cuando se alcanza cierta 

profundidad máxima, el número mínimo de muestras por nodo, o cuando los 

nodos son puros (solo contienen observaciones de una clase). Estas 

restricciones puede ajustarlas el usuario.​

 

El árbol resultante es fácil de interpretar: cada camino desde la raíz hasta una hoja 

constituye una regla de decisión que combina condiciones lógicas sobre las variables 

predictoras. 

Inicialmente, se entrenó un Árbol de Decisión utilizando los parámetros por defecto del 

algoritmo, lo cual dio lugar a un modelo sobreajustado, con rendimiento perfecto sobre 

el conjunto de entrenamiento, pero pobre sobre el conjunto de prueba. 

La técnica de poda por complejidad (Cost-Complexity Pruning) se basa en introducir un 

criterio de penalización que favorece árboles más simples, con el objetivo de mejorar 

su capacidad de generalización y evitar el sobreajuste. Para ello, se define una función 

de pérdida regularizada de la siguiente forma: 

  𝑅α​(𝑇) = 𝑅(𝑇) + α⋅∣𝑇∣

donde: 

●​ R(T) es el error de clasificación del árbol T, 

●​ ∣T∣ es el número de nodos terminales (hojas), 
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●​ α es el parámetro de complejidad que penaliza la complejidad estructural del 

árbol.​

 

El parámetro α actúa como un regulador del equilibrio entre ajuste y simplicidad: a 

mayor valor de α, más penalizados estarán los árboles complejos, favoreciendo 

estructuras más pequeñas que conserven un rendimiento adecuado. 

Con el objetivo de corregir el sobreajuste observado en el modelo inicial, se aplicó esta 

técnica explorando distintos valores de α, y seleccionando aquel que minimizó el error 

de validación, es decir, el que ofreció el mejor compromiso entre capacidad predictiva y 

complejidad estructural del árbol. 

 

A continuación, se reportaron las métricas de clasificación en entrenamiento y test, así 

como el número de nodos terminales del árbol final y su profundidad. 

Por último, se ha generado una matriz de importancia de variables a partir del 

modelo podado. Esta matriz permite identificar qué predictores han tenido mayor 

relevancia en la construcción del árbol. La importancia de una variable en un árbol de 

decisión se define como la cantidad total de reducción de impureza (como el índice Gini 

o la entropía) que esa variable aporta al dividir los nodos del árbol. Cuanto más utilice 

el modelo una variable para realizar divisiones que separen las clases, mayor será su 

importancia.  
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6.2.4 Random Forest 

En esta sección se desarrolló un modelo basado en el algoritmo de Random Forest, 

una técnica de ensamblado que construye múltiples árboles de decisión y combina sus 

predicciones para mejorar la capacidad predictiva y la estabilidad del modelo. A 

diferencia de un único árbol, Random Forest reduce el sobreajuste mediante el 

entrenamiento de varios árboles sobre subconjuntos aleatorios del conjunto de datos, 

añadiendo también en el algoritmo la aleatorización de las variables que intervienen en 

la partición de cada nodo. 

Con el fin de optimizar el modelo, en términos de la profundidad del árbol, el número de 

predictores por división, el número de árboles en el bosque, e incluso el criterio de 

impureza a utilizar (Gini o entropía), se llevó a cabo una búsqueda exhaustiva de 

hiperparámetros utilizando la técnica de búsqueda en grid.​

 

El rendimiento de cada combinación se evaluó mediante el Out-of-Bag Score (OOB), y 

se seleccionó la que mejor rendimiento ofrecía. El OOB es una métrica de validación 

interna propia de los modelos de Random Forest, que permite estimar el rendimiento 

del modelo sin necesidad de recurrir a un conjunto de validación externa  (Breiman, 

2001). 

Durante el entrenamiento, cada árbol del bosque se construye a partir de una muestra 

aleatoria con reemplazo del conjunto de entrenamiento (técnica conocida como 

bootstrap). El modelo utiliza estas muestras OOB para evaluar el rendimiento 

predictivo: cada observación se predice con aquellos árboles en los que no fue 
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utilizada para el entrenamiento. Posteriormente, se calcula la precisión promedio de 

todas estas predicciones, proporcionando así una estimación del rendimiento general 

del modelo.  

Por último, se calculan las métricas de clasificación y la matriz de confusión del modelo 

final.  

 

6.3 Software y hardware 

El análisis y modelización han sido realizados utilizando el lenguaje de programación 

Python, en su versión 3.11.​

 

Hardware utilizado 

●​ Procesador: Intel Core i7-10750H CPU @ 2.60GHz 

●​ Sistema operativo: Windows 11 Pro 

No se han presentado necesidades específicas de procesamiento, dado que el 

volumen de datos y la complejidad de los modelos permiten su ejecución en un 

ordenador de gama media-alta sin problemas de rendimiento. 

Librerías utilizadas 

Se han empleado las siguientes librerías y módulos de Python: 
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●​ pandas​

 Utilizada para la carga, manipulación y gestión de los datos tabulares.​

 

●​ numpy​

 Aplicada para la realización de operaciones numéricas y manejo de arrays.​

 

●​ matplotlib​

Utilizada para la generación de gráficos básicos, como los gráficos de barras y el 

gráfico de violín.​

 

●​ seaborn​

Empleada para crear gráficos estadísticos más elaborados y estéticos, 

complementando a matplotlib.​

 

●​ scikit-learn​

Principalmente utilizada para modelos de aprendizaje automático, proporciona 

funcionalidades específicas para: 

○​ División de los datos en conjuntos de entrenamiento y test. 

○​ Construcción de modelos de regresión logística con diferentes técnicas de 

regularización (L1, Elastic Net). 

○​ Búsqueda de hiperparámetros mediante validación cruzada 

(GridSearchCV). 

○​ Cálculo y visualización de la matriz de confusión. 
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7. Resultados  

En esta sección se presentan los resultados obtenidos tras aplicar las diferentes 

metodologías descritas previamente. Se analizan, en primer lugar, las relaciones 

observadas entre las variables explicativas y la variable respuesta mediante técnicas 

de análisis exploratorio. A continuación, se detallan los resultados de los modelos de 

clasificación implementados, evaluando su rendimiento a través de métricas relevantes 

como la exactitud, la sensibilidad, la precisión, el F1-score y el área bajo la curva ROC 

(AUC). 

7.1 Análisis exploratorio 

Para comprender la distribución de la variable objetivo del estudio,en la Figura 1 se ha 

representado gráficamente el número de observaciones con y sin ictus.  
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Figura 1. Número de pacientes con ictus y sin ictus. 

 

Como se observa en la Figura 1, existe un fuerte desequilibrio en la muestra, siendo la 

mayoría de los casos personas que no han sufrido un ictus (95.13%). 

Procedemos a mostrar gráficamente las relaciones que hay entre cada variable y el 

hecho de que se sufra un ictus: 

En la Figura 2 se muestra la distribución de edades para los pacientes que han sufrido 

ictus (a la derecha) y los que no (a la izquierda).  
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​

Figura 2. Distribución de la edad de los pacientes que han sufrido ictus (a la derecha) y 

los que no (a la izquierda). 

Gracias a estos gráficos (Figura 2) podemos apreciar que hay una cierta relación entre 

edad y padecer ictus: si bien los pacientes que no padecen ictus están distribuidos 

prácticamente sobre todo el rango de edad entre 0 y 80 años, el 75% de los pacientes 

que han sufrido ictus tienen una edad superior a 30 años"  

 

En la Figura 3 se muestra la proporción de pacientes que han sufrido un ictus y los que 

no, diferenciados por género. 
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Figura 

3. Distribución porcentual del ictus según el género del paciente. 

Podemos observar en la Figura 3 que el porcentaje de personas que han sufrido un 

ictus es muy similar entre hombres (5.1%) y mujeres (4.7%). Esto sugiere que el 

género no parece tener mucha influencia en la probabilidad de padecer un ictus, ya que 

las diferencias entre ambos grupos son mínimas. 
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En la Figura 4 se muestra la proporción de pacientes que han sufrido un ictus y los que 

no, teniendo en cuenta si presentan antecedentes de hipertensión o no. 

 

Figura 4. Distribución porcentual del ictus según la hipertensión del paciente. 

Apreciamos pues, en la Figura 4, que el porcentaje de pacientes que han sufrido ictus 

se triplica en el grupo de hipertensos (Hipertensión =1) respecto del de no hipertensos, 

lo que parece indicar cierta relación entre hipertensión e ictus.  
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En la Figura 5 se muestra la proporción de pacientes que han sufrido un ictus y los que 

no, teniendo en cuenta si presentan antecedentes de enfermedades cardiacas o no. 

​

Figura 5: Porcentaje de ictus /no ictus para el grupo de pacientes sin antecedentes de 

enfermedad cardiaca (0) y con enfermedad cardiaca (1).  

 

Podemos llegar a una conclusión similar a la que obtuvimos sobre la relación del ictus 

con la variable hipertensión, es decir,  el porcentaje de pacientes que han sufrido ictus 

se cuadruplica en el grupo de pacientes con antecedente de enfermedades 
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cardiovasculares respecto del que no los tiene, lo que parece indicar cierta relación 

entre enfermedades cardiacas e ictus. 

 

En la Figura 6 se muestra la proporción de pacientes que han sufrido un ictus y los que 

no, según su hábito de tabaquismo 

.  

​

Figura 6: Porcentaje de ictus /no ictus dependiendo del hábito de tabaquismo del 

paciente. 
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Apreciamos en la Figura 6, que parece haber cierta relación entre ictus y el estatus de 

fumador, siendo los exfumadores y fumadores los que presentan una mayor incidencia 

de ictus (5.3% y 7.9%, respectivamente) en comparación con quienes nunca han 

fumado (4.8%). 

En la Figura 7 se muestra  la relación entre el índice de masa corporal e ictus.  

 

Figura 7: Distribución porcentual del ictus según si el paciente presenta obesidad o no.  
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Apreciamos en la Figura 7, que el hecho de padecer obesidad no parece afectar a una 

mayor incidencia de ictus; encontramos un porcentaje de ictus similar entre los obesos 

(5.2%) y los no obesos (4.7%). 

  

A continuación, indagamos la relación entre la diabetes y el ictus, diferenciando entre 

diabéticos y no diabéticos según el nivel de glucosa en sangre. 

 

Figura 8: Distribución porcentual del ictus según si el paciente presenta diabetes o no.  
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En la Figura 8 podemos apreciar que ser diabético va asociado a una mayor 

probabilidad de padecer ictus: los pacientes diabéticos presentan un 10.2% de 

incidencia de ictus en la muestra, y los no diabéticos un 3.6%.  

 

Investigamos ahora la relación entre el ictus y la variable que indica si los sujetos se 

han casado alguna vez o no en la Figura 9.  

 

Figura 9: Distribución porcentual del ictus según el estado civil del paciente.  

Al parecer, las personas que sí que han estado casadas tienen más probabilidad de 

padecer un ictus (en torno al 6.6%) que las que no (un 1.7%). Sin embargo, hay que 

tener cuidado con esta relación, pues puede ser un efecto de la edad, ya que las 

personas que sí han estado casadas suelen ser personas mayores.   
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Si bien el índice de masa corporal lo vamos a utilizar a través de la variable obesidad 

que hemos definido. En la Figura 10, observamos la relación del índice de masa 

corporal con el ictus. 

 

Figura 10: Distribución del índice de masa corporal (BMI) en pacientes con y sin ictus. 

En la Figura 10 se representa la distribución del BMI en dos grupos: pacientes sin ictus 

(gráfico izquierdo, azul) y pacientes con ictus (gráfico derecho, rojo). Se observa que, 

en ambos grupos, los valores de BMI se concentran entre 20 y 35, con una forma 

asimétrica hacia la derecha. En el grupo sin ictus, el pico se sitúa en torno a un BMI de 

28, mientras que en el grupo con ictus el pico está desplazado hacia valores algo 

mayores, en torno a 30. 

Esto sugiere que, aunque la distribución general es parecida, los pacientes que han 

sufrido un ictus tienden a presentar valores de BMI ligeramente más altos.  
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Por último, investigamos la relación entre el ictus y la glucosa en sangre. 

 

Figura 11: Distribución del nivel de glucosa en sangre en pacientes con y sin ictus. 

La Figura 11 muestra histogramas con suavizado de densidad para comparar los 

niveles de glucosa entre personas que han sufrido ictus (gráfico derecho, en rojo) y las 

que no (gráfico izquierdo, en azul). Se aprecia que los pacientes sin ictus presentan 

una distribución claramente sesgada a la derecha, con un pico de frecuencia en niveles 

entre 90 y 110 mg/dL. Por otro lado, aunque los casos de ictus son mucho menos 

frecuentes, parecen agruparse hacia niveles de glucosa más elevados, lo que 

sugiere que una glucosa elevada podría ser un factor de riesgo relevante para ictus, 

coherente con la asociación clínica entre diabetes y eventos cerebrovasculares. 

7.2 Modelización 

7.2.1  Regresión logística  

Se ajustaron cuatro modelos de regresión logística: uno sin regularización, y tres con 

penalización L1 (Lasso), L2 (Ridge) y Elastic Net. La selección de hiperparámetros se 
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realizó mediante validación cruzada con 10 particiones, utilizando búsqueda en malla 

(Grid Search). Los valores óptimos encontrados fueron: 

●​ Lasso: C = 0.1 

●​ Ridge: C = 10 

●​ Elastic Net: C = 1 

 

Por otro lado, respecto a la capacidad predictiva de estos modelos al clasificar a los 

sujetos como propensos o no a sufrir un ictus, los resultados según las métricas de 

clasificación y sus AICs son los siguientes: 

Tabla 1A. Métricas de clasificación  y AICs de los modelos en la muestra de entrenamiento. 

Modelo Exactitud Precisión Recuerdo F1-Score AUC AIC 

Regresión 

Logística 

0.9513 0.0000 0.0000 0.0000 0.8448 1302.98 

Ridge 

(L2) 

0.9513 0.0000 0.0000 0.0000 0.8448 1299.40 

Lasso 

(L1) 

0.9513 0.0000 0.0000 0.0000 0.8446 1299.45 
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Elastic 

Net 

0.9513 0.0000 0.0000 0.0000 0.8447 1299.21 

 

Tabla 1B. Métricas de clasificación de los modelos en la muestra de prueba 

Modelo Exactitud Precisión recuerdo F1-Score AUC 

Regresión 

Logística 

0.9511 0.0000 0.0000 0.0000 0.8397 

Ridge (L2) 0.9511 0.0000 0.0000 0.0000 0.8397 

Lasso (L1) 0.9511 0.0000 0.0000 0.0000 0.8394 

Elastic Net 0.9511 0.0000 0.0000 0.0000 0.8396 

 

Tal como se observa en las tablas (Tabla 1A y Tabla 1B), todos los modelos de 

regresión logística evaluados obtuvieron una alta exactitud tanto en la muestra train 

(95.13%) como en la muestra test (95.11%) y un AUC elevado (aproximadamente 

0.84), lo que indica una buena capacidad de clasificación genérica, debida 

fundamentalmente a los pacientes sin ictus, que son mayoritarios en la muestra. Sin 

embargo, los valores de precisión, recuerdo y F1-score para la clase positiva (ictus) 
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fueron nulos, lo que refleja la incapacidad de los modelos para identificar casos de 

ictus. 

Este resultado se debe al desequilibrio severo en la distribución de clases, que provoca 

que los modelos tiendan a clasificar todas las observaciones como pertenecientes a la 

clase mayoritaria (no ictus), es decir, no hay información suficiente para identificar 

correctamente a los ictus. Aunque el modelo logra una predicción global precisa, su 

utilidad clínica es limitada, ya que no logra detectar los eventos que precisamente se 

desean anticipar. 

Además, en la Tabla 1A también se han incluido los valores del criterio de información 

de Akaike (AIC) para cada modelo, con el objetivo de valorar el equilibrio entre ajuste y 

complejidad. El modelo con penalización Elastic Net presentó el AIC más bajo 

(1299.21), esto indica que este modelo ofrece el mejor compromiso entre capacidad 

predictiva y parsimonia, por lo que se seleccionó como modelo final para su evaluación 

sobre el conjunto de prueba. 

A continuación, en la Figura 12, se representaron gráficamente los coeficientes del 

modelo Elastic Net. 

 

 

 Pag 41 de 66 

 



 

Ictus bajo la lupa: analizando riesgos con Machine Learning  

 

 

Figura 12: Coeficientes del modelo Elastic Net.  

 

La variable edad destaca con un coeficiente claramente mayor al resto, lo que indica 

que es el factor más influyente en la predicción del ictus. También se observan 

contribuciones positivas relevantes de los niveles de glucosa en sangre, el trabajo 

en el sector privado y ser fumador actual, lo que sugiere que estos factores 

incrementan la probabilidad de ictus. En cambio, variables como estar casado o no 

haber fumado nunca tienen efectos negativos, es decir, parecen estar asociadas a 

una menor probabilidad de ictus. 

Por otro lado, en la Figura 13, se presenta la curva ROC del modelo sobre el conjunto 

de test. El área bajo la curva (AUC) refleja la capacidad discriminativa global del 

modelo 
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Figura 13: Curva ROC y área AUC para el modelo de regresión logística regularizado 

con elasticnet.  

 

La curva ROC del modelo óptimo muestra un buen desempeño en la capacidad de 

discriminación entre individuos con y sin ictus. El área bajo la curva (AUC) es de 0.84, 

lo que indica que el modelo tiene una alta capacidad para distinguir correctamente 

entre ambas clases. En este caso, el valor obtenido sugiere que el modelo tiene un 

comportamiento robusto, incluso teniendo en cuenta el desequilibrio de clases en los 

datos. 
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7.2.2 Naive Bayes  

En esta sección se implementa y evalúa un modelo de clasificación basado en el 

algoritmo de Naïve Bayes Gaussiano. A continuación, en la Tabla 2A y en la Tabla 2B, 

se presentan las métricas de clasificación obtenidas: 

Tabla 2A: Resultados de clasificación del modelo Naive Bayes sobre la muestra de 

entrenamiento. 

Clase Precisión recuerdo F1-score Soporte 

0 0.99 0.51 0.67 3888 

1 0.09 0.93 0.16 199 

Global 

Accuracy 0.53 

F1-score 

ponderado 

0.65 
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Tabla 2B: Resultados de clasificación del modelo Naive Bayes sobre la muestra de prueba. 

Clase Precisión recuerdo F1-score Soporte 

0 0.98 0.54 0.70 972 

1 0.09 0.84 0.16 50 

Global 

Accuracy 0.55 

F1-score 

ponderado 

0.67 

 

El modelo muestra un desempeño desigual entre las dos clases, tanto en el conjunto 

de entrenamiento como en el de prueba. Para la clase 0 (no ictus), se observa una alta 

precisión (0.99 en entrenamiento y 0.98 en test), pero con un recuerdo moderado (0.51 

y 0.54 respectivamente), lo que indica que clasifica correctamente la mayoría de los no 

ictus, aunque también omite una proporción relevante de ellos (casi la mitad). 

Por su parte, la clase 1 (ictus) presenta una precisión muy baja (0.09 en ambos 

conjuntos), lo que refleja un elevado número de falsos ictus. Sin embargo, el recuerdo 
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es notablemente alto (0.93 en entrenamiento y 0.84 en test), lo cual sugiere que el 

modelo es capaz de identificar la mayoría de los casos reales de ictus. 

En conjunto, aunque la exactitud global es limitada (52.9% en entrenamiento y 55.4% 

en test), el alto recuerdo para la clase minoritaria (ictus) es un aspecto positivo desde la 

perspectiva clínica, donde suele priorizarse la sensibilidad por encima de la precisión 

para evitar omitir posibles eventos graves. No obstante, la baja precisión del modelo 

implica que se generarían muchas falsas alarmas, lo que puede limitar su aplicación 

directa sin una etapa posterior de validación médica. 

La matriz de confusión obtenida sobre el conjunto de prueba se presenta en la Figura 

14: 

 

Figura 14: Matriz de confusión para el ajuste con el método Naive.   
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El modelo clasificó correctamente 524 casos negativos (verdaderos no ictus) y 42 

casos positivos (verdaderos ictus). Sin embargo, clasificó incorrectamente 448 

negativos como positivos (falsos positivos) y 8 positivos como negativos (falsos 

negativos). 

Esto concuerda con las métricas vistas anteriormente: un recuerdo alto para la clase 

1 (84%) debido a que solo 8 de los 42 casos positivos fueron omitidos, pero con una 

precisión baja porque la mayoría de las predicciones positivas fueron falsas (448 

falsos positivos frente a 42 verdaderos positivos). 

La matriz de confusión refuerza la idea de que el modelo, pese a su baja precisión, 

detecta casi todos los casos de ictus. Este comportamiento es deseable en sistemas 

de alerta temprana en medicina, donde es preferible “pasarse de precavido” (muchos 

falsos positivos) a omitir casos de riesgo real (falsos negativos). 

Asimismo, para evaluar la capacidad del modelo de clasificación en las dos clases, se 

generó la curva ROC (Receiver Operating Characteristic). Esta curva representa la 

relación entre la tasa de verdaderos positivos (recuerdo) y la tasa de falsos 

positivos, para diferentes umbrales de clasificación. 

La siguiente figura muestra la curva ROC generada: 

 

 

 Pag 47 de 66 

 



 

Ictus bajo la lupa: analizando riesgos con Machine Learning  

 

 

Figura 15: Curva ROC y área AUC del método Naive.  

El valor del área bajo la curva (AUC) obtenido es de 0.798, que  indica que el modelo 

tiene una buena capacidad de clasificación de las clases, es decir, existe un 79.8% de 

probabilidad de que el modelo clasifique correctamente a un individuo elegido al azar. 

Este valor refuerza lo observado previamente: aunque el modelo produce muchas 

falsas alarmas, tiene un buen rendimiento general clasificando correctamente los casos 

positivos (ictus) y muchos negativos (no ictus). 

A continuación, en la Figura 16 se construye la curva de aprendizaje para valorar la 

oportunidad del tamaño de la muestra de entrenamiento en el ajuste.  
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Figura 16: Curva de aprendizaje del método Naive.  

Se observa que tanto la precisión en entrenamiento como la precisión en 

validación se estabilizan en valores por encima del 50% a partir de que la muestra de 

entrenamiento representa al menos el 60% de los datos. Es válida pues, nuestra 

muestra de entrenamiento, que representa un 70% de los datos.  

 

7.2.3. Árbol de decisión 

Se ha entrenado un Árbol de Decisión sobre el conjunto de entrenamiento con los 

parámetros por defecto.  
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El modelo mostró un ajuste perfecto en la muestra de entrenamiento, obteniendo una 

exactitud del 100%, lo que sugiere un posible sobreajuste al conjunto de datos de 

entrenamiento. 

En la muestra de test, sin embargo, el rendimiento ha sido inferior, haciendo patente el 

problema de sobreajuste (ver Tabla 3). 

Tabla 3: Resultados de clasificación del modelo Árbol sobre la muestra de prueba.  

Clase / Promedio Precisión recuerd

o 

F1-score Soporte 

No ictus (0) 0.95 0.94 0.95 972 

Ictus (1) 0.05 0.06 0.06 50 

Exactitud 0.90 1022 

Promedio 

ponderado 

0.91 0.90 0.90 1022 

 

Los resultados reflejan que el modelo tiende a clasificar casi todos los ejemplos como 

pertenecientes a la clase mayoritaria (no ictus), lo que compromete gravemente su 

capacidad de detección de la clase minoritaria (ictus). Esto es especialmente evidente 
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en el valor de recuerdo para ictus (0.06), indicando que el modelo solo fue capaz de 

identificar correctamente 3 de los 50 casos reales de esta clase. 

Ante el problema de sobreajuste, se considera necesario aplicar una poda del árbol 

para reducir su complejidad y mejorar su capacidad de generalización. 

Para aplicar la poda del árbol de decisión, se evaluaron 93 valores distintos del 

parámetro de complejidad α. Estos valores oscilaron entre 0.00000 y 0.00138. Cada 

modelo resultante fue evaluado sobre el conjunto de prueba, y se seleccionó como 

óptimo el correspondiente a α=0.00070, por ser el que ofreció la mayor exactitud. 

El árbol óptimo se ajusta con los siguientes hiperparámetros: 

●​ Alpha óptimo: 0.000699 

●​ Exactitud en entrenamiento: 0.9513 

●​ Exactitud en test: 0.9511 

●​ Profundidad del árbol podado: 2 

●​ Número de nodos terminales: 3​

 

A continuación se detallan los resultados del árbol podado en los conjuntos de 

entrenamiento y prueba: 
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Tabla 4A: Resultados de clasificación del modelo Árbol de decisión podado sobre la muestra 

de entrenamiento.  

Clase / Promedio Precisión recuerd

o 

F1-score Soporte 

No ictus (0) 0.95 1.00 0.98 3888 

Ictus (1) 0.00 0.00 0.00 199 

Exactitud 0.95 4087 

Promedio 

ponderado 

0.90 0.95 0.93  

 

 

Tabla 4B: Resultados de clasificación del modelo Árbol de decisión podado sobre la muestra 

de prueba. 

Clase  Precisión recuer

do 

F1-score Soporte 

No ictus (0) 0.95 1.00 0.97 972 
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Ictus (1) 0.00 0.00 0.00 50 

Exactitud   0.95 1022 

Promedio 

ponderado 

0.90       0.95 0.93  1022 

 

 

A pesar de que la poda ha permitido obtener un modelo mucho más simple y con 

menor riesgo de sobreajuste (reduciendo la profundidad del árbol y el número de 

nodos), el comportamiento predictivo sobre los casos de ictus es completamente 

deficiente. El modelo no clasifica ningún caso de ictus correctamente, clasificando 

todos los registros como no ictus. 

Este comportamiento indica que el árbol de decisión no es adecuado para esta base de 

datos, ya que prioriza la exactitud global clasificando correctamente la mayoría de no 

ictus, pero no consigue clasificar bien ningún caso de  ictus, que en este contexto 

son probablemente los casos más importantes de detectar. Esto lo convierte en un 

modelo inapropiado para tareas donde el objetivo es precisamente detectar de forma 

temprana y precisa los eventos de ictus. 

Por último, en la Figura 17 se muestra la importancia de las variables en el árbol de 

decisión podado.  
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Figura 17. Importancia de las variables en el árbol de decisión podado. 

El resultado muestra que únicamente la variable age (edad) presenta una importancia 

distinta de cero, siendo la única utilizada por el modelo para realizar particiones. Esto 

se debe a que el árbol podado tiene una profundidad máxima de 2, lo que limita 

considerablemente su capacidad para incorporar múltiples variables. Como 

consecuencia, el modelo elige únicamente aquella variable que proporciona la mayor 

ganancia de información en el primer nivel, en este caso la edad. Este resultado refleja 

un modelo extremadamente simple, insuficiente para capturar relaciones complejas en 

los datos. 
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7.2.4 Random forest  

Se realizó una búsqueda en malla (Grid Search) para ajustar el modelo de Random 

Forest, explorando combinaciones de los siguientes hiperparámetros: 

●​ n_estimators: número de árboles en el bosque (se fijó en 150). 

●​ max_features: número de predictores considerados en cada división del árbol 

(valores evaluados: 1 y 2) 

●​ max_depth: profundidad máxima de los árboles (valores evaluados: 2, 3, 5, 10 y 

20) 

●​ criterion: criterio de impureza (valores evaluados: 'gini' y 'entropy')​

 

En total, se evaluaron 10 combinaciones distintas, utilizando como métrica de selección 

la exactitud out-of-bag (OOB), que permite estimar el rendimiento del modelo sin 

necesidad de un conjunto de validación externa. La combinación óptima hallada fue:  

●​ Criterio: Gini 

●​ Profundidad máxima: 20 

●​ Variables por división: 1 

●​ Número de árboles: 150 

A continuación se presentan sus métricas de evaluación: 
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Tabla 5: Resultados de clasificación del modelo Random Forest sobre la muestra de prueba. 

Clase Precisión recuerdo F1-score Soporte 

No ictus 0.95 1.00 0.97 972 

Ictus 0.00 0.00 0.00 50 

Promedios globales 

Accuracy 0.95 

F1-score ponderado 0.93 

 

 

 

 

Matriz de confusión: 
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Figura 18: Matriz de confusión del método Random Forest. 

El modelo clasificó correctamente 971 de los 972 pacientes que no sufrieron ictus, pero 

no fue capaz de detectar ninguno de los 50 casos positivos (ictus).  

Aunque el modelo Random Forest presenta una alta precisión global debido a su 

correcto desempeño en la clase mayoritaria (no ictus), su incapacidad total para 

identificar casos de ictus lo convierte en un modelo clínicamente inadecuado para esta 

tarea. Esta deficiencia se explica por el fuerte desequilibrio de clases presente en los 

datos, en los que los pacientes con ictus representan menos del 5% del total. 

Por último, en la Figura 19 se muestra la importancia de las variables en el módelo 

óptimo del Random Forest. .  
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Figura 19. Importancia de las variables en el modelo óptimo del modelo Random 

Forest. 

En la Figura 19, se observa la importancia de las 10 variables más relevantes según el 

modelo de Random Forest, evaluada mediante la técnica de permutación. Destacan 

como predictores más influyentes la edad, el nivel medio de glucosa y el índice de 

masa corporal (BMI), lo cual resulta coherente con la literatura clínica sobre factores de 

riesgo del ictus. A diferencia del árbol de decisión podado (Figura 19), aquí se observa 

que múltiples variables contribuyen al modelo, reflejando la mayor capacidad del 

Random Forest para captar relaciones complejas y utilizar información conjunta de 

distintas características. 
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8. Conclusiones 

El objetivo principal de este trabajo fue desarrollar modelos predictivos capaces de 

estimar la probabilidad de que un paciente sufra un ictus, a partir de variables clínicas y 

demográficas. Para ello, se utilizó el conjunto de datos Stroke Prediction Dataset y se 

aplicaron técnicas de aprendizaje automático supervisado, incluyendo regresión 

logística (con y sin regularización), Naïve Bayes, árbol de decisión y Random Forest. 

Los resultados obtenidos permiten extraer varias conclusiones relevantes: 

●​ Desequilibrio de clases: La base de datos presentaba un fuerte desequilibrio 

en los tamaños muestrales de pacientes con ictus (clase minoritaria) y sin ictus 

(clase mayoritaria). Este desequilibrio afecta la capacidad de los modelos para 

clasificar correctamente los casos de ictus, generando modelos con alta 

exactitud global pero muy baja sensibilidad.​

 

●​ Modelos tradicionales como la regresión logística obtuvieron un rendimiento 

global adecuado (AUC ≈ 0.84), pero fueron incapaces de detectar casos de ictus 

(recuerdo = 0). Esto limita su utilidad en contextos clínicos donde la detección de 

eventos positivos es prioritaria.​

 

●​ El modelo Naïve Bayes, aunque mostró menor exactitud general, fue el único 

capaz de alcanzar una alta sensibilidad (84%) en la clasificación de ictus, a 

costa de una precisión muy baja. Esto sugiere que, en entornos médicos donde 

se prioriza la detección temprana, podría utilizarse como modelo de prueba 
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inicial, complementado por una segunda fase de validación clínica.​

 

●​ Árbol de decisión y Random Forest mostraron una fuerte tendencia a predecir 

exclusivamente la clase mayoritaria (no ictus), clasificando erróneamente todos 

los casos de ictus. A pesar de su capacidad para manejar relaciones no lineales, 

estos modelos resultaron ineficaces con estos datos.​

 

●​ A nivel de importancia de variables, la edad, los niveles de glucosa en sangre 

y el índice de masa corporal (BMI) surgieron consistentemente como los 

predictores más relevantes en el modelo de bosques, y en el modelo de 

regresión logística regularizado (Elastic Net) destacaron también la edad como 

el factor más influyente, seguido por el nivel de glucosa, el hecho de ser fumador 

actual y trabajar en el sector privado, todos ellos con coeficientes positivos. En 

sentido contrario, variables como no haber fumado nunca o haber estado casado 

mostraron coeficientes negativos, lo que sugiere una posible asociación con 

menor riesgo de ictus. También se observaron asociaciones destacables con el 

tabaquismo, la hipertensión y antecedentes de enfermedad cardíaca, lo que 

concuerda con la literatura médica existente.​

 

En conclusión, aunque los modelos desarrollados presentan limitaciones importantes, 

especialmente debido al desequilibrio de clases, este estudio demuestra que las 

técnicas de aprendizaje automático pueden ser útiles como herramienta 

complementaria en la identificación de factores de riesgo del ictus. Para mejorar su 

rendimiento y aplicabilidad en entornos clínicos reales, se recomienda ampliar el 
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tamaño de los pacientes que han padecido ictus.​

 

Este trabajo sienta las bases para estudios futuros en los que se profundice en la 

personalización del riesgo y la toma de decisiones clínicas apoyadas por modelos de 

inteligencia artificial. 
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