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Resumen

El presente trabajo de fin de grado trata sobre el médulo y la constante de
Lipschitz asi como su aplicacién al analisis de sensibilidad y estabilidad en el
campo de la optimizaciéon o programacion lineal paramétrica. Se estructura
en tres capitulos principales abarcando desde el contexto histérico hasta la
implementaciéon computacional y finalizando con un ejemplo de aplicacion
practica. En el primer capitulo, se presenta el contexto histérico necesario,
destacando la relevancia de la continuidad de Lipschitz en el campo de la
optimizaciéon matematica, presentando conceptos fundamentales como el
conjunto factible, soluciones 6ptimas y se muestra un clasico problema de la
programacion lineal a modo de ejemplo. En el segundo capitulo se profundiza
en la propiedad de Aubin y en la definicién del médulo de Lipschitz en
multifunciones, donde se evaliia como varia el conjunto factible ante pequenas
perturbaciones en los parametros del problema. Ademaés, se presenta una
formula operativa y su implementaciéon en MATLAB. Finalmente, en el tercer
capitulo se presenta un ejemplo practico real en el que se plantea y formula
el problema para finalmente obtener el médulo de Lipschitz correspondiente
e ilustrar el significado dentro del &mbito empresarial.



Capitulo 1: Introduccion

El presente trabajo de fin de grado se centra en el modulo y la constante
de Lipschitz, asi como su cédlculo y aplicacion en el &mbito del analisis de
sensibilidad y estabilidad en el campo de la optimizacion.

Para contextualizar adecuadamente el trabajo, se proporcionara unos
breves antecedentes histéricos, ademas de definiciones y notaciones sobre
conceptos clave requeridos para una correcta comprension. A lo largo del
trabajo se veran también términos referentes a la programacién lineal (PL
para abreviar), teoria de niimeros, algebra lineal y andlisis.

1.1 Antecedentes historicos

Rudolph Otto Sigismund Lipschitz (1832-1903) fue un mateméatico reconocido
en el siglo XIX y no tuvo la oportunidad de contribuir directamente a los
problemas de PL. Sin embargo, su trabajo en la condicion de continuidad de
Lipschitz es aplicable en el marco del analisis de sensibilidad y estabilidad de
sistemas de desigualidades lineales parametrizados. Sus principales campos
de trabajo fueron el analisis, geometria diferencial, fisica matemaética y otros
campos como la teoria de niimeros y el dlgebra lineal. Concretamente, el
modulo y la constante de Lipschitz surgen de su trabajo en los campos de
analisis y teoria de nimeros. Ademas, realiz6 sus estudios en Konigsberg y
Berlin, donde consiguié sorprender al matematico Dirichlet (director de su
tesis) gracias a su razonamiento y perspectiva que poseia sobre las mateméti-
cas. Finalmente, fue habilitado como profesor en la universidad de Bonn y
trabajaria alli el resto de su vida.

Por otra parte, en lo que a la programacion lineal se refiere, surgio
como uno de los avances matematicos ocasionados por la Segunda Guerra
Mundial, donde investigadores de diferentes ramas de la ciencia, incluyendo
las matematicas, la desarrollaron con el fin de planificar y optimizar los
recursos. Anos mas tarde, en 1947, el matemético estadounidense George B.
Dantzig daria con un método de resoluciéon exacta para los problemas de PL,
denominado como método SIMPLEX, el cual fue seleccionado como uno de
los algoritmos mas importantes del siglo XX.



1.2 Contexto

En la actualidad tanto las empresas como el publico en general debemos
tomar decisiones acerca de cémo gestionar nuestros propios recursos. En el
caso del publico, la mayoria de las decisiones son triviales y no requieren
de mucho esfuerzo o célculo. Sin embargo, en el caso de las empresas nos
encontramos ante otro tipo de tesitura. En las empresas gestionar los recursos
es algo fundamental para la eficiencia y correcto funcionamiento y progreso
de la entidad, es por esto que cobra importancia la investigaciéon operativa,
ya que proporciona un método cientifico sobre el que respaldar sélidamente
la toma de decisiones. En los problemas de PL se busca hallar aquellas solu-
ciones 6ptimas para un problema en cuestion, minimizando o maximizando el
objetivo principal, como puede ser maximizar beneficios o minimizar costes,
atendiendo a una serie de criterios o condiciones como pueden ser costes
variables, riesgo o volatiliad (en el caso de inversién en bolsa), tiempos de
produccion, etc. Es por esto que los problemas de PL tienen tanto valor en
la industria, puede tener en cuenta infinidades de condiciones y variables y
proporcionar las mejores opciones a tener en cuenta (aunque en el caso de
este trabajo nos centraremos en la programacién finita), lo que se traduce en
una ventaja estratégica.

A lo largo de la historia de la programacién matematica, han existido
varios problemas de PL conocidos que sirven como ejemplo en la docencia
actual para ilustrar los distintos tipos de problemas de optimizacién, como
puede ser el problema de la dieta, el cual consiste en minimizar el coste de la
dieta teniendo en cuenta una cantidad equilibrada de nutrientes que requiere
el cuerpo humano. Otro ejemplo que se emplea bastante es el problema del
viajero (Programacion Binaria), el cual trata de minimizar la distancia a
recorrer entre distintas ciudades, pasando una sola vez por cada una de ellas
y volver a la ciudad de origen. A simple vista puede parecer un problema
no muy complejo, pero cuando el nimero de ciudades aumenta, el nimero
de combinaciones posibles hace que sea complejo en numerosas ocasiones la
obtencién de las soluciones 6ptimas.

Como se ha mencionado anteriormente, el actual trabajo se centrara en la
programacion lineal finita parametrizada, por lo que los problemas seréan de
la forma



m(c,b) minimizar dx
sujeto a: Ax < b

donde x € R"™ es el vector de variables de decisiéon del problema, ¢ € R"
es el vector de coeficientes de la funcién objetivo, A € R™*" es la matriz
de coeficientes de las restricciones, y b € R™ es el vector que limita las
restricciones. Véase la monografia de Bertismas y Tsitsiklis [1] para detalles
sobre la teoria y los métodos de programacion lineal. En caso de necesitar
representar independientemente las desigualdades lineales parametrizadas, se
empleara

o) :={ax <b;, i=1,...,m},
donde a} representa la i-ésima fila de A, y b; la i-ésima coordenada del vector

b, parai=1,...,m.

Continuando con la notacion, en lo relacionado con b € R™ se tiene el conjunto
factible

F(b) :={z e R": Az < b},

que representa el conjunto de soluciones que cumplen con las desigualdades
definidas en o(b). Ademéds cuando F(b) # () se dice que o(b) es consistente.
Para (c,b) € R™ x R™, se define el valor 6ptimo de (¢, b) como

¥(c,b) ;== inf{dz : xz € F(b)},

Ademas se dice que 7(c,b) es acotado cuando ¥(c, b) es finito. Por dltimo,
también cabe definir el conjunto de soluciones 6ptimas o conjunto éptimo de
7(¢, b), definido como

S(c,b) :={x € F(b) : dx =9(c,b)}.

Diremos que el problema 7(c, b) es resoluble cuando su conjunto es no vacio,
esto es S(c¢,b) # (0. De lo que se deduce que un problema resoluble debe estar
acotado.

A continuacién se presentard un problema de PL basico como ejemplo.



Ejemplo: Problema de produccion de PL

Una empresa que produce dos tipos de productos quiere maximizar sus
beneficios teniendo en cuenta que la unidad de cada producto requiere una
cantidad de tiempo y genera una ganancia diferente. Ademds, también se
sabe que la cantidad de horas de producciéon no pueden sobrepasar las 100

horas.
Producto | Ganancia(€) | Tiempo produccién (horas) | Maxima produccion (uds)
P 3 1 70
Py 5 2 50

Table 1: Datos de los productos y sus restricciones.

Para maximizar las ganancias de la producciéon de dos productos P, y P
bajo las condiciones dadas, se debera plantear el problema de la siguiente

forma:

Funcién Objetivo:

Maximizar ¢ = 3x1 + 5xa

sujeto a:
21+ 222 <100 (Tiempo méaximo de produccién) (1)
1 <70 (Produccién maxima de P) (2)
x9 <50 (Producciéon maxima de P;) (3)
z; >0 ,i€{l,2} (No negatividad) (4)
donde:
e x; = numero de unidades producidas de P;

° $2:

numero de unidades producidas de P,

Que representando graficamente las restricciones, se obtiene:




—x + 2.%'2 S 100

— I S 70
i) S 50
60 £ P,
[
40 |
20
T
20 40 60 80

Figure 1: Grafica de las restricciones y puntos del conjunto factible.

Observando la grafica, el area sombreada corresponde al conjunto de
soluciones que cumplen con las restricciones, es decir, el conjunto factible.

Mientras que las intersecciones de las rectas muestran las soluciones poten-
ciales.

Para la obtencion de la solucion se procedera al calculo del valor 6ptimo
en dichos puntos.

Cilculo del Valor Optimo:

Los puntos extremos del conjunto factible (candidatos a éptimos) son:
(0,0), (0,50), (70,0) y (70,15).

Evaluamos la funcion objetivo ¢ = 3z1 + 5x5 en cada uno de estos puntos:
« En (0,0): 3(0) +5(0) =0

e En (0,50): 3(0) + 5(50) = 250

« En (70,0): 3(70) + 5(0) = 210



« En (70,15): 3(70) + 5(15) = 210 + 75 = 285

Valor Optimo: Al tratarse de un problema de maximizacién, el valor
optimo serd el méaximo valor que se obtenga con los puntos considerados. Por
tanto, la maxima ganancia se obtiene en el punto (70, 15) con un valor éptimo
de:

Vsptimo = 285 €.

Por tanto, el conjunto 6ptimo estaria formado tinicamente por el punto
(70,15).

Finalmente se obtiene que la combinacion éptima de productos a producir
seria: 70 productos tipo 1 y 15 productos tipo 2. Obteniendo asi una ganancia

de 285€.

Una vez visualizado un problema de PL e introducidas las premisas nece-
sarias para el contenido que acontece, podemos empezar a plantearnos cues-
tiones de interés. Como por ejemplo, ;Como varia nuestro problema cuando
realizamos una perturbacién parcial en el vector b del miembro derecho de
las restricciones (RHS, del inglés right-hand side)?;Y en A? Para responder
a estas cuestiones nos deberemos preguntar primero si existe algin modo
de cuantificar dicha perturbacion es decir, jcuanto varia nuestro problema
cuando provocamos un cambio en el RHS o en A? Y lo que es mas importante
. Qué utilidad puede llegar a tener en un caso real?

1.3 Constante de Lipschitz

Con la finalidad de poder contestar dichas cuestiones surge la constante de
Lipschitz, la cual encuentra su utilidad cuantificando la tasa de variacién de
una funcién en respuesta a cambios en su entrada (perturbaciones en b, en el
caso de este trabajo). En términos generales, una funcién Lipschitz continua
no varia abruptamente, esto es que existe limite superior para la tasa de
variacion de la funciéon. Para mayor formalidad, se tiene que la definicién de
constante de Lipschitz es la siguiente:

Sea f : R” — R una funcién continua definida en un conjunto convexo
S C R™. Decimos que f es Lipschitz continua en S si existe una constante



L > 0 tal que para todos los puntos z,y € S se cumple:

|f(z) = f(y)] < Lllz —yll,

donde L es la constante de Lipschitz de la funcién f, y || — y|| es una norma
(en este caso se empleard la norma ecuclidea) que mide la distancia entre los
puntos x y y en el espacio R™.

Para ilustrar el concepto de constante de Lipschitz, consideremos una
funcién lineal f(z) = 1.5x + 2 y varios puntos de ejemplo en el dominio.
Usaremos esta funcién para calcular la constante de Lipschitz y mostrar como
se verifica la condicion de continuidad Lipschitz.

Ejemplo de Continuidad Lipschitz

()

— f(z) = 1.5z +2
e Segmento entre f(z1) y f(x2)

Calculo de la Constante de Lipschitz:
Para verificar la condicion de Lipschitz, calculamos la constante L de la
siguiente forma:

|$2—I1| ‘331—132| r1 — X2

= 1.5. V:r;l 7£ T2

9



Esto indica que la funcién f(x) es Lipschitz continua y por tanto se puede
calcular la constante o cota superior de variacion, que en este caso es L = 1.5.
Por tanto, la variacién de la funcién estd acotada por 1.5 - |zy — x1| para
cualquier par de puntos en el intervalo observado. O en otras palabras, por
cada unidad que aumente el parametro x, el valor de la funcién aumentara
en 1,5.

En resumen, la constante de Lipschitz nos permite evaluar como varia una
funcion al realizar cambios en su entrada. Sin embargo, para el contexto en
el que estamos trabajando, es necesario poder aplicarla también a conjuntos
de soluciones. Es por esto que mas adelante extenderemos el concepto
de continuidad controlada a las multifunciones o mappings multivaluados
mediante la propiedad de Aubin-Lipschitz, la cual garantiza que ante pequenas
perturbaciones en el parametro, el conjunto de soluciones no se disperse
abruptamente. Esta propiedad es de vital importancia para el analisis de
estabilidad ya que asegura la robustez de las soluciones factibles u éptimas.

10



Capitulo 2: Propiedad de Aubin y Modédulo de
Lipschitz del Conjunto Factible

2.1 Introduccion

Consideramos la multifuncion conjunto factible F': R™ = R™ dada por:

F(b) ={z e R" | Az < b},

donde A es una matriz fija de tamafio m x n y b € R™ es considerado como
parametro.

Obsérvese que, en este contexto, estamos trabajando con perturbaciones
del miembro derecho de la restriccion.

En cuanto a la topologia de R™, lo suponemos dotado de la norma del
supremo, || - ||, dada por:

18l]o = max{[b| | i =1,...,m},

y el espacio de la variable R", de la norma euclidiana, que denotamos simple-
mente por || - ||.

2.2 Médulo de Lipschitz

El objetivo de esta seccién es, en términos informales, analizar la variacion
de soluciones factibles respecto de perturbaciones de los parametros. Esta
idea se formaliza a través de la propiedad de Aubin (también llamada
pseudo-Lipschitz), que definimos a continuacién:

Definicién. Sea b € R™ y sea T € F(b). Se dice que F(b) tiene la
propiedad de Aubin en (b, Z) si existen una constante K > 0y entornos U y
V de x y b, respectivamente, tal que:

d(z®, F(0")) < K||b* = b oo, VO, 0* €V, 2> € F(L*)NW. (1)

Nota: d(x, F(b)) denota la distancia de x al conjunto F(b), definida como:

d(z, F(b)) = inf |z —yl.

yeF(b)

11



El mddulo de Lipschitz que denotamos por lip F(b, z), es el infimo de las
constantes K > 0 que verifican la desigualdad (1) para determinados entornos.
Alternativamente, este modulo se puede escribir como sigue:

- 2 1
lip F(b,z) = limsup d(z”, F (b))

bl.b2—b ||b2 - bl”oo .

(2)

22—z
x2cF(b?)

2.3 Férmula Operativa para el Médulo de Lipschitz

Para culminar el capitulo, tan solo habria que implementar en MATLAB
la formula del médulo de Lipschitz. Sin embargo, nos encontramos ante la
tesitura de que aplicarla supone un coste computacional alto. La férmula (2)
es dificilmente implementable en la practica, dado que involucra a elementos
(pardmetros y puntos) en un entorno del pardmetro b y el punto z. Es por
ello que la obtencion de férmulas mas operativas, basadas exclusivamente en
los elementos nominales (b y ) tiene un notable interés. En relacién con
este comentario, el siguiente teorema proporciona una formula exacta para el
calculo del moédulo de Lipschitz basada tinicamente en los datos nominales.

Por tanto buscamos una féormula operativa que permita calcular el médulo
de Lipschitz y el siguiente teorema proporciona dicha féormula que puede
encontrarse en M.J.Cénovas, A.L.Dontchev, M.A.Lépez y J.Parra [2]:

Teorema. Sea b € R™, z € F(b), se tiene que:

| _ 1
lip F(b, ) = d(0,Cy(z))’

donde d(0, Cy(Z)) representa la distancia del origen al conjunto convexo

Cy(Z)

En lo que sigue, empleamos la siguiente notacion:
[b(£> = {Z S {17 e 7m} | a;T = 61}7

!/

K3
es el llamado conjunto de indices activos y Cy(Z) denota la envoltura convexa
de {a; | i € I,(Z)}, esto es:

Cy(Z) = conv{a; | i € Iy(x)}.

12



Recuérdese que para un conjunto C' C R™, conv C es el conjunto de todas
las combinaciones convexas de elementos de C, esto es:

Dirigimos al lector al libro clasico de Rockafellar [3] para un tratamiento
exhaustivo de la teoria y diferentes aplicaciones del analisis convexo.

Al representar graficamente se observaria que los indices activos son aque-
llos indices de las restricciones que cumplen la igualdad en dicho punto.
Asimismo, el conjunto factible es un conjunto convexo (en el siguiente ejem-
plo), dado que esté acotado. Graficamente:

k
N>0,> N=12€Ci=1...kkeN

=1

k .
Z )\Z‘Z'z

=1

conv C = {

20 % P

(16.88,15.6)

151 (7.87,14.35)

X2

10 | 2

X2

30—z
< ( - 1)
(5—z1)

S oo

Ty < (2040.2%x1)

( 1.5 )
20—xq
< 0.2

(6.19,5.95)

(19.47,2.63)

X1

10 12 14 16 18 20 22 24

2 4 6 8

Una vez explicados todos los conceptos y premisas anteriores, se puede
dar pie a la explicacion del codigo de la féormula operativa del médulo de
Lipschitz. Cédigo en el cudl se utilizara como ejemplo el mismo sistema de

inecuaciones que en el ejemplo previo de la envoltura convexa.
Para su mejor comprension, se reescribira el sistema de ecuaciones de la

siguiente forma, asimismo se incluird la funciéon objetivo a minimizar ademas
de las cotas de no negatividad:

13




Minimizar x; + x9
sujeto a —xp — 4wy < —30
—21+02z29 < =5
—0.221 + 1.529 < 20
z1 + 0.2x9 < 20

De esta forma queda representada la matriz de coeficientes y el vector de
términos independientes.

A continuacién se presenta el cédigo MATLAB que proporciona el calculo
del médulo de Lipschitz. Nuestro cédigo calcula el médulo de Lispchitz
del conjunto factible en un punto fijo que seleccionamos previamente. Para
seleccionar dicho, incorporamos al modelo una funcién objetivo y obtenemos
una soluciéon 6ptima del problema correspondiente. Asi pues, el modulo de
Lipschitz obtenido nos medira la variacion local del conjunto factible alrededor
del punto 6ptimo elegido. Asi pues, el cogigo consta de tres partes:

1. Parte 1: Calculo de una solucién optima, donde se determina una
solucién del problema de PL y se obtienen los indices activos correspon-
dientes.

2. Parte 2: calculo de la distancia del origen al conjunto Cy(z)

3. Parte 3: obtencién del médulo de Lipschitz como inverso de la medida
obtenida en el paso 2

Para la resolucién del problema primal hay que definir el vector ¢ a min-
mizar, la matriz de coeficientes A y el vector de términos independientes b,
ademas de indicar las cotas de no negatividad que en este caso no hay. Por lo
que atendiendo al sistema descrito anteriormente se tiene

14



-1
C = _1 s
T 1 —4
—1 02
A= 0.2 15|’
102
30
-5
b=199 |
20
Ib=1[], ub={]

Por lo que se emplearia la funcién linprog() de MATLAB donde los pardmet-
ros son los definidos anteriormente. La funcién linprog permite resolver proble-
mas de optimizacién empleando el método SIMPLEX, sirve tanto para sistema
de desigualdades (A y b) como de igualdades (Aeq y beq). Los parametros
de la funcién son los siguientes linprog(c, A, b, Aeq, beq, 1b, ub) donde 1b y
ub son las cotas de no negatividad. Por lo que, una vez obtenida la salida
de la primera parte, habremos obtenido los indices activos necesarios para la
resolucion del sistema dual, dado que si se sutituyen los valores 6ptimos en el
sistema, aquellas inecuaciones que mas se aproximen al término independiente
seran los indices activos, para ello se calculara la diferencia entre el valor
de la restriccién y el término independiente. Esta diferencia deberd ser muy
préoxima a cero por lo que para el calculo se empleard un epsilon de e = 1076,
Por tanto se tiene:

15



Cédigo MATLAB

c [-1 -11’;
A= [-1 -4; -1 0.2; -0.2 1.5; 1 0.2];

b = [-30;-5;20;20];
1b = [];
ub = [];

[x,v,e,0,1] = linprog(c,A,b,[]1,[]1,1b,ub);

disp(’------ 1. Primal ------ )

X

disp(’valor’)

v

epsilon = le-6;

residuo = b - A*x; / residuos de las restricciones
indices_activos = find(residuo < epsilon); /% encontrar

restricctones activas

disp(’Las restricciones activas son: ’);
disp(indices_activos);

Y como salida o resultado se obtendria

16



Salida del cédigo

—————— 1. Primal ------

x =
16.8831
15.5844

valor

v =

-32.4675

Las restricciones activas son:
&
4

Como se muestra en la salida, el punto éptimo que minimiza la funciéon
objetivo es el punto (16.8831; 15.5844), el cual corresponde con un valor
optimo de -32.4875. Punto en el cudl se encuentra la interseccion de la tercera
y cuarta restriccién (restricciones activas).

Una vez obtenidas las restricciones activas necesarias para definir los puntos
de la envoltura convexa, se procede a calcular la distancia minima del origen
de ordenadas al conjunto convexo. Para calcular dicha distancia se empleara
la norma euclidea, por lo que el problema de minimizacion sera cuadratico.

Calculo de la distancia minima al conjunto convexo
En este caso se requiere resolver

min d(0,z) = |z[z sa. € conv{ay, ..., a}.

Como




es equivalente a
k k
min 2’z sa. =Y Na, Y N=1 X\ >0.
i=1 i=1

Se define el problema cuadratico

Aeq = beqa

: 1 / T
—ZHz+ s.a.
min ;2 Hz fiz {z )

Que atendiendo a f = 0,,,, se tiene
f'z2=0,

por lo que la funcién objetivo quedaria como

L
in -2 H
min o z H z

Se divide la variable z = (i

Matrices y vectores del sistema

L, 0 -
LS (0 0kxk>’ f = Ont

_]n A ua.
Aeq = el 5 beq = <On> ;
01><n 11><k 1

En el ejemplo se tiene n =2y k = 2,

—-0.2 1.5
Adual = ( 1 02> )

)CoanR"y)\ERk.

luego

o O O
o O = O
o O OO
o O O O
o O O O
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-1 0 —02 1 0 e
Aq={0 -1 15 02|, bq=|0], £=]| |
0 0 1 1 1 0

Finalmente, en MATLAB se llama a la funcién

z = quadprog(H, f, [], [], Aeq, beq, 1b, [1);
x_opt = z(1:n);

y la solucién buscada es zqp. Por lo que si transcribimos todo a MATLAB,
se tendria lo siguiente:

Cédigo MATLAB (Minimizacon de la distancia a la envoltura convexa)

% Calculo de la distancia del origen a la envoltura
convexa de los a_1 asoctados a los indices activos

_dual = A(indices_activos, :);

_dual = b(indices_activos);

= size(A, 2);

size(indices_activos, 1);

= k(1);

[eye(n), zeros(n, k);zeros(k, n), zeros(k, k)]; 7

matriz <dentidad para el dual

f = zeros(n+k, 1); /4 wector cero

A_eq = [-eye(n), A_dual’; zeros(l, n), omnes(l, k)I;

b_eq = [zeros(mn, 1); 1];

1b_dual = [-inf*ones(1l, n), zeros(l, k)I;

z = quadprog(H, £, [, [1, A_eq, b_eq, lb_dual, [1); 7%
solucion dual

Solucion = z(1:n);

disp(’Solucion optima:’)

disp(Solucion)

disp(’Distancia:’)

% nmorm(Solucion) es la distancia desde el eje de
ordenadas hasta el punto

% que esta mas cerca del eje.

norm(Solucion)

m N N B oo
I

Codigo del cual daria como resultado la siguiente salida

19



Salida MATLAB

A_dual =
-0.2000 1.5000
1.0000 0.2000
b_dual =
20
20
n = 2
k =2
H =
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
f =
0
0
0
0
A _eq =
-1.0000 0 -0.2000 1.0000
0 -1.0000 1.5000 0.2000
0 0 1.0000 1.0000
b_eq =
0
0
1
1b_dual =
-Inf -Inf 0 0
Minimum found that satisfies the constraints.
Optimization completed because the objective function is
non-decreasing in
feasible directions, to within the value of the
optimality tolerance,
and constraints are satisfied to within the value of the
constraint tolerance.
<stopping criteria details>
solucion optima
0.6396
0.5904
Distancia
ans = 0.8705
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De lo que finalmente, al obtener la distancia se puede proceder al célculo
del modulo de Lipschitz dado que atendiendo a la féormula

. 1
lip F(b,2) =

(0, Cy(7))

daria como resultado el siguiente codigo

Calculo del médulo de Lipschitz

disp(’------ 4. Calculo del Modulo de Lipschitz ------ )

disp (1/norm(Solucion)) ;

c6digo al que corresponde la siguiente salida

Salida MATLAB (Médulo de Lipschitz)

Por lo que finalmente se obtiene que el médulo de Lipschitz para el problema
del ejemplo seria de 1.1488, indicando que tras una perturbacién de magnitud
0 el valor objetivo variaria como méaximo en 1.1488 - 4.
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Capitulo 3: Ejemplo académico

Una vez dado el contexto, esquematizado y explicado el célculo y resolucién
del moédulo de Lipschitz, es posible que surjan cuestiones como cual es la
finalidad de uso, en qué campos aplicar, etc. En este tultimo capitulo se
procederd a mostrar un ejemplo practico de aplicacion real. Para dicho caso
emplearemos el contexto de produccién empresarial con el fin de mostrar una
perspectiva empresarial, distinta de lo matematico como se venia viendo. El
ejemplo dice asi:

Una empresa fabrica dos productos, P1 y P2, cuyos costos unitarios de
produccion son 5€ y 4€ respectivamente. Segun esta definido el proceso de
produccion, es de vital importancia cumplir los siguientes requisitos:

o Materiales: Cada unidad de P1 consume 2 kg de materia prima, y
cada unidad de P2 consume 1 kg. Ademas, se dispone de maximos 100
kg por dia.

o Capacidad de produccion: Por limitaciones técnicas, no se pueden
fabricar mas de 40 unidades de P1, ni mas de 60 unidades de P2 diarias.

« Demanda minima: La produccion total diaria (P1 + P2) debe ser al
menos de 30 unidades para cumplir con contratos establecidos.

Se pide determinar cuantas unidades de P1 y P2 deben producirse diari-
amente para minimizar el costo total de produccién, garantizando que se
satisfagan todos los requisitos.

Solucion:

Para la resolucion del problema planteado primero habra que definir el

sistema de inecuaciones junto con el objetivo a minimizar. Por lo que la
formulacion del problema seria la siguiente:
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min 5z + 4x9
sujeto a 2z + x5 < 100
r1 <40
T < 60
-1 — 29 < =30

1,22 >0

Formulacién en Matlab

/% Definicion de parametros para linprog
@ =[5 4§ % Vector de costos
A = [2, 1; -1, -1]1; J Restricciones:
A [2z1 + z2 <= 100]
A [-z1 -z2 <= -30] (equivale a =1

+22>=30)
b = [100; -30]; /4 Limites de las restricciones
1b = [0; 0]; /% Cotas inferiores (no megatividad)
ub = [40; 60]; /% Cotas superiores (maxzimos por

producto)

J

Una vez formulado e introducido los parametros en MATLAB, la solucién
obtenida seria la siguiente:
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Solucién obtenida

Optimal solution found.
—————— 1. Solucion Primal ------
X:
0
30.0000
valor
v = 120.0000
Las restricciones activas son: 2
Y sus valores lambda correspondientes: 4
A _duvual = -1 =il
b_dual = -30
n = 2
k=1
H =
1 0 0
1 0
0 0 0
f =
0
0
0
A_eq =
- 0 -1
0 =il -1
0 0 1
b_eq =
0
0
1
1b_dual =
-Inf -Inf 0 24




Solucién obtenida

Solution found during presolve.

Some combination of the bounds, linear constraints, and
linear terms

in the objective function immediately lead to the
solution.

solucion optima
-1
-1
Distancia
ans =1.4142

—————— 4. Calculo del modulo de Lipschitz ------

\ J

De lo que se concluye que el nimero de unidades fabricadas de los productos
P1 y P2 que minimizan los costes de produccién son 0 unidades fabricadas
de P1 y 30 unidades de P2, de lo que resulta un valor 6ptimo de 120 euros.
Correspondiendo con un médulo de Lipschitz de 0.7071, lo que indica que
la tasa maxima de variacién de las soluciones factibles alrededor de (0,30),

con respecto a perturbaciones del miembro derecho de las restricciones es de
0.7071.
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