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Resumen 

En este estudio abordamos el análisis de un banco de datos proveniente de Spotify y 

YouTube, con un conjunto de temas y cantantes top10, con los que pretendemos 

desarrollar un análisis aproximado a lo que podría plantear un sistema de recomendación, 

para primero reconocer el éxito en un único indicador, luego caracterizarlo en función de 

la información disponible sobre las canciones, y terminar agrupando canciones por 

afinidad, para poder hacer recomendaciones a los usuarios en función de sus preferencias 

al consumir productos en la plataforma. Todo esto lo trabajamos mediante técnicas de 

aprendizaje automático o machine learning.  
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1. Antecedentes 

Las plataformas digitales de música, como Spotify, acumulan una vasta cantidad de datos 

de sus usuarios para así personalizar experiencias, mejorar servicios y optimizar 

publicidad. YouTube y Spotify son dos de las plataformas de streaming más utilizadas 

globalmente. Por un lado, YouTube tiene más de 2 mil millones de usuarios activos 

mensuales y es un líder en vídeos, incluyendo música, mientras que Spotify, centrado en 

la música, cuenta con más de 550 millones de usuarios activos mensuales, 220 millones 

de suscriptores de pago, y un catálogo de más de 100 millones de canciones. Ambas 

plataformas son clave en la distribución y consumo de música digital.  

El etiquetado de los productos que se distribuyen en estas plataformas resulta 

fundamental para estructurar y organizar adecuadamente la información sobre las 

canciones. Estas etiquetas incluyen el título de la canción, el nombre del artista principal 

y los colaboradores, así como el nombre del álbum al que pertenece. También se registra 

el género musical, el año de lanzamiento, los compositores y los productores responsables 

de la grabación. Otros datos clave son la duración de la canción, el idioma, el número de 

pista, la versión (original, remix o acústica) y la letra completa, si está disponible. Este 

conjunto de etiquetas facilita la correcta identificación y análisis de las canciones, 

permitiendo una base sólida sobre la cual desarrollar distintos enfoques analíticos. 

Estas plataformas además recopilan datos demográficos (edad, género, ubicación, etc) y 

preferencias musicales (géneros y artistas favoritos) para segmentar a los usuarios. 

También registran patrones de uso, como frecuencia y duración de escucha, interacciones 

con contenido (reproducción, saltos, descargas, etc) y búsquedas realizadas en la 

plataforma. Finalmente, analizan el rendimiento de las canciones y artistas para ajustar 

sus algoritmos y mejorar la experiencia del usuario a través de los sistemas de 

recomendación personalizados. 

Los sistemas de recomendación personalizados comenzaron a desarrollarse en los años 

90 con proyectos académicos como Tapestry (1992) y GroupLens (1994), basados en 

filtrado colaborativo. A partir de los 2000, empresas como Amazon y Netflix impulsaron 

su evolución, aplicándolos a gran escala en comercio electrónico y entretenimiento. En 

2006, el Netflix Prize marcó un hito al promover mejoras en algoritmos predictivos, 



 

 

sentando las bases para los sistemas actuales utilizados por plataformas como Spotify y 

YouTube. 

Estos sistemas son herramientas basadas en algoritmos que tienen como objetivo predecir 

las preferencias o intereses de los usuarios y ofrecerles sugerencias personalizadas de 

productos o contenidos. Surgieron gracias a avances en análisis de datos, inteligencia 

artificial y computación, y se han consolidado como componentes clave en plataformas 

digitales. Utilizan información tanto de los productos como de los usuarios para generar 

recomendaciones relevantes. 

Con este tipo de sistemas, YouTube analiza el historial de visualización y las interacciones 

del usuario para sugerir vídeos de interés, mientras que Spotify emplea datos de escucha 

y patrones de comportamiento para crear listas de reproducción personalizadas. 

Las plataformas de gestión de contenido multimedia utilizan diversas técnicas de 

machine learning y aprendizaje automático para analizar grandes volúmenes de datos 

y mejorar la experiencia del usuario a través de recomendaciones adaptadas a sus gustos 

y hábitos. 

A continuación, se detallan los objetivos que guían el desarrollo de este estudio. 

 

2. Objetivos 

La base de datos que hemos elegido para trabajar está disponible en Kaggle, identificada 

con el nombre “Spotify and Youtube”. Contiene información sobre las características de 

las 10 mejores canciones de varios artistas de Spotify y sus vídeos de YouTube. 

El objetivo principal del trabajo es analizar esta base de datos con el fin de conseguir 

agrupaciones de canciones afines con las que diseñar la estructura de un sistema de 

recomendación basado en contenido, con el que agrupamos contenido afín, y así poder 

ofrecer sugerencias a los usuarios, similares o afines a los temas/canciones que consumen 

o les gustan.  

Los objetivos específicos que trabajamos son: 

https://www.kaggle.com/datasets/salvatorerastelli/spotify-and-youtube/data


 

 

● Calcular un único indicador de éxito para cada canción a partir de variables 

disponibles relacionadas con el éxito de los temas y correlacionadas entre sí.  

● Predecir el éxito en función del resto de variables, tanto numéricas como 

categóricas, disponibles sobre cada canción, identificando cuáles de las variables 

disponibles aportan información sobre el éxito. 

● Conseguir una agrupación de las canciones en perfiles de similaridad de éxito, 

con las que plantear la base de un sistema de recomendación al usuario, basado en 

el contenido.  

 

3. Información disponible 

Los datos, como hemos comentado anteriormente, han sido extraídos de Kaggle, una 

plataforma en línea conocida por proporcionar una extensa colección de conjuntos de 

datos públicos. Específicamente, la información para este proyecto proviene del conjunto 

de datos “Spotify and YouTube”, publicada en 

[https://www.kaggle.com/datasets/salvatorerastelli/spotify-and-youtube/data], y 

proporcionados por Salvatore Rastelli, Marco Guarisco y Marco Sallustio. Los datos han 

sido descargados en formato csv, tal y como estaban publicados en Kaggle. 

Cabe señalar que los datos utilizados fueron recopilados el 2 de julio de 2023 y 

actualizados por última vez hace un año. 

Este conjunto de datos ha sido analizado por los usuarios de Kaggle para desarrollar 

diferentes proyectos, utilizando principalmente los lenguajes de programación Python y 

R. Se han realizado trabajos como análisis exploratorios (Abhishek Pal, 2024), bosques 

aleatorios de regresión (Random Forest) para predecir valores numéricos (Decherisey, H, 

2023), y  técnicas de reducción de dimensionalidad, como el Análisis de Componentes 

Principales (PCA) (F. Zumpano, 2024). Adicionalmente, se han desarrollado proyectos 

de investigación que contrastan canciones antiguas con las más recientes (Pilgaonkar, 

2023). 

El conjunto de datos incluye información detallada sobre las 10 mejores canciones en 

Spotify y sus respectivos vídeos en YouTube de distintos artistas de todo el mundo, lo que 

https://www.kaggle.com/datasets/salvatorerastelli/spotify-and-youtube/data
https://www.kaggle.com/datasets/salvatorerastelli/spotify-and-youtube/code
https://www.kaggle.com/datasets/salvatorerastelli/spotify-and-youtube/code
https://www.kaggle.com/code/apolynomialcurve/eda-on-spotify-and-youtube-dataset
https://www.kaggle.com/code/huguesdecherisey/randomforestregressor-basic
https://www.kaggle.com/code/huguesdecherisey/randomforestregressor-basic
https://www.kaggle.com/code/chiccoqvc/clustering-and-regression-pca
https://www.kaggle.com/code/chiccoqvc/clustering-and-regression-pca
https://www.kaggle.com/code/chiccoqvc/clustering-and-regression-pca
https://www.kaggle.com/code/prasadpil/old-songs-vs-new/notebook
https://www.kaggle.com/code/prasadpil/old-songs-vs-new/notebook


 

 

nos permite realizar un análisis exhaustivo de las características que pueden estar 

relacionadas con el éxito de dichas canciones. 

Contamos con una base de datos de 2.718 entradas con 26 variables (14 numéricas y 12 

categóricas) para cada una de las canciones recogidas en las plataformas. De algunas de 

estas variables se ha decidido prescindir en el análisis, dado que no aportan información 

relevante para los objetivos propuestos en este trabajo. Las variables que hemos utilizado 

se describen a continuación: 

VARIABLES NUMÉRICAS: 

● Danceability: es una medida numérica que indica lo bueno que es un tema musical 

para bailar. Se calcula considerando factores como el tempo, la regularidad del 

ritmo y su fuerza. Su escala de variación está entre 0 y 1. Una puntuación de 0 

indica que la canción es poco bailable, mientras que 1 significa que es muy 

bailable. 

● Energy: Mide la intensidad y actividad percibida en una canción. Las canciones 

enérgicas son rápidas, ruidosas y tienen un sonido con un valor más enérgico. Su 

escala de variación está entre 0 y 1. El death metal es un ejemplo de un género 

con alta energía (valores próximos a 1), mientras que la música clásica suele tener 

una energía más baja (valores próximos a 0).  

● Speechiness: Mide el grado en que una pista de audio está compuesta 

principalmente por voz humana. Un valor de 1 indica una grabación 

exclusivamente vocal, mientras que un valor cercano a 0 sugiere una pista 

predominantemente musical. Los rangos intermedios (0.33-0.66) indican una 

combinación de voz y música, como en el rap. Los valores inferiores a 0,33 

representan música y otras pistas que no son de voz. 

● Loudness: la sonoridad global de una pista en decibelios (dB). Los valores oscilan 

entre -60 y 0 db. 

● Acousticness: Mide el grado en que una canción es acústica. Un valor cercano a 

1 indica una alta probabilidad de que la pista haya sido grabada principalmente 

con instrumentos acústicos y con mínima intervención de producción electrónica. 

La variable toma valores continuos en una escala de 0 a 1. 



 

 

● Instrumentalness: Mide la probabilidad de que una pista esté compuesta 

exclusivamente de instrumentos musicales. Un valor cercano a 1 indica una alta 

probabilidad de que la pista no contenga voces. Su escala de variación está entre 

0 y 1. 

● Liveness: Mide la probabilidad de que una canción haya sido grabada en vivo 

frente a una audiencia. Valores cercanos a 1 indican una alta probabilidad de que 

la grabación haya sido en vivo. Su escala de variación está entre 0 y 1. 

● Valence: Mide la positividad emocional percibida en una canción. Los valores 

cercanos a 1 indican que la pista transmite sensaciones alegres, felices o eufóricas, 

mientras que los valores próximos a 0 reflejan emociones negativas, como tristeza 

o enfado. Su escala de variación está entre 0 y 1. 

● Tempo: el tempo general estimado de una pista en pulsaciones por minuto (BPM). 

En terminología musical, el tempo es la velocidad o el ritmo de una pieza 

determinada y se deriva directamente de la duración promedio del tiempo. 

● Duration: la duración de la pista en minutos. 

● Stream: número total de veces que la canción ha sido reproducida en Spotify. 

● Views: cantidad de visualizaciones registradas para la canción en Spotify. 

● Likes: número de "me gusta" que ha recibido la canción por parte de los usuarios 

en la plataforma. 

● Comments: cantidad de comentarios que los usuarios han dejado sobre la canción 

en Spotify. 

VARIABLE CATEGÓRICA: 

● Key: Indica la tonalidad principal o nota tónica de una pista musical, codificada 

numéricamente según la notación estándar de clase de tono. A continuación las 

12 clases de tono musicales en la Tabla 1: 

Tabla 1. Relación entre las clases de tonos musicales y sus correspondientes notas. 



 

 

Clase Tono musical 

-1 no se pudo identificar 

0 C 

1 C♯/D♭ 

2 D 

3 D♯/E♭ 

4 E 

5 F 

6 F♯/G♭ 

7 G 

8 G♯/A♭ 

9 A 

10 A♯/B♭ 

11 B 

 

Tras la definición de los objetivos, el siguiente paso es seleccionar y aplicar las técnicas 

adecuadas para abordarlos de forma rigurosa. 

En el siguiente apartado se describe el enfoque metodológico seguido, incluyendo las 

fases de preprocesado, análisis exploratorio y construcción de modelos supervisados y no 

supervisados. Se detallan las herramientas estadísticas utilizadas, así como los criterios 

para evaluar y comparar el rendimiento de los modelos desarrollados 

 



 

 

4. Metodología 

El análisis del éxito musical se ha abordado mediante distintas técnicas estadísticas y de 

aprendizaje automático, seleccionadas en función del objetivo de cada etapa del estudio.  

Para sintetizar la información disponible sobre el grado de éxito alcanzado para un tema 

(en función de las reacciones de los usuarios), se aplicó el Análisis de Componentes 

Principales (PCA), que permite transformar un conjunto de variables correlacionadas en 

un número reducido de componentes no correlacionadas, conservando la mayor parte de 

la variabilidad de los datos originales. Esta técnica fue clave para construir un indicador 

continuo de éxito musical. 

Posteriormente, con el objetivo de predecir este indicador en función de las 

caracterizaciones disponibles sobre los temas en la base de datos, se emplearon métodos 

supervisados como árboles de decisión y Random Forest, tanto en su versión de 

regresión como de clasificación. Estos modelos permiten estimar el nivel de éxito de una 

canción a partir de sus características musicales, evaluar su precisión mediante métricas 

específicas y detectar qué variables influyen más en el resultado. Además facilitan como 

resultado perfiles de agrupación de temas, que se pueden convertir en la base de un 

sistema de recomendación a usuarios, basado en el contenido, pero también a productores 

para conseguir temas de éxito. 

4.1 Análisis exploratorio y preprocesado 

Para entender la estructura, la calidad y la naturaleza de los datos antes de aplicar modelos 

predictivos, debemos hacer un análisis exploratorio de los datos, que permita 

comprender la estructura de los datos, identificar posibles problemas de calidad y tomar 

decisiones informadas sobre el preprocesado, y con este último garantizamos la idoneidad 

de los datos para los objetivos del estudio. 

Para ello distinguimos entre técnicas univariantes, con las que describir de modo 

diferenciado cada una de las variables en la base de datos y realizar el procesado 

necesario, y técnicas inferenciales, con las que indagar sobre las posibles relaciones entre 

ellas, y en especial con las variables de éxito. Las presentamos a continuación. 



 

 

4.1.1 Análisis Univariado 

El análisis exploratorio univariado se conjuga con el preprocesado para revisar la 

información contenida en las diversas variables y prepararlas para su incorporación 

efectiva en los modelos inferenciales. De hecho, el análisis exploratorio permite obtener 

una primera aproximación a la estructura interna de los datos y facilita la toma de 

decisiones en cuanto al preprocesamiento posterior. 

En el procesado de los datos consideramos las siguientes tareas:  

- Identificación de valores faltantes: Se detectan y contabilizan los valores faltantes 

en cada variable. 

- Imputación de valores faltantes, a través del método basado en medias para 

variables numéricas, y en las respuestas más frecuentes para la variable categórica, 

relativamente robusto cuando el número de valores faltantes no es excesivo en 

comparación con el total de datos. 

- Estandarización de variables numéricas: Se examinan las escalas de variación para 

identificar en qué variables será necesaria una estandarización de los datos, para 

evitar un efecto de escala en los modelos de aprendizaje. La estandarización que 

se utiliza consiste en restar la media y dividir por la desviación típica. 

- Viabilidad del uso de variables categóricas en función de que tengan un número 

de respuestas o niveles razonable para el análisis, o contemplar una posible 

recodificación. 

Para diferenciar el tratamiento en el análisis que vamos a llevar a cabo, se clasificaron las 

variables del conjunto de datos en función de su rol: 

● Variables de respuesta, asimilables como indicadores de éxito: Likes, Comments, 

Views y Stream. Estas variables cuantifican el nivel de popularidad o rendimiento 

de cada elemento del conjunto de datos, y con ellas intentamos construir un único 

indicador de éxito. Están dimensionadas en escalas numéricas distintas. 

● Variables predictoras: que describen características musicales y técnicas que 

podrían influir en el éxito de una canción. Están dimensionadas en diferentes 

escalas (Loudness, Tempo y Duration), y dimensionadas con valores entre 0 y 1 



 

 

(Danceability, Energy, Speechiness, Acousticness, Instrumentalness, Liveness, 

Valence). También tenemos una variable categórica, que es Key. 

Para describir las variables numéricas, hemos empleado estadísticas numéricas como 

percentiles, e histogramas y diagramas de cajas para entender mejor su comportamiento 

y distribución de forma gráfica.  

Para representar la información en la variable categórica Key, hemos utilizado diagramas 

de barras con los porcentajes.  

4.1.2 Análisis Bivariado 

El análisis exploratorio bivariado es una herramienta fundamental en la ciencia de datos 

que nos permite investigar las relaciones entre dos o más variables en un conjunto de 

datos. Dado que la mayoría de las variables a relacionar son de tipo numérico, utilizamos 

correlogramas y mapas de calor para investigar las relaciones (de tipo lineal) entre las 

variables numéricas disponibles. También se plantean diagramas de dispersión para 

identificar el tipo de relación entre dichas variables. 

Además, proporcionan la fundamentación para un análisis de reducción de la dimensión, 

identificando correlaciones altas entre las variables que están relacionadas directamente 

con la popularidad o el éxito de las canciones. 

 

4.2 Aprendizaje no supervisado para la reducción de la dimensión 

Para resolver el objetivo específico 1 se aborda el análisis de reducción de la dimensión, 

una técnica crucial para simplificar conjuntos de datos complejos. Este enfoque permite 

identificar y conservar las características más relevantes de los datos, eliminando 

redundancias y reduciendo el ruido. Al reducir la cantidad de variables, se facilita el 

análisis, se mejora la eficiencia de los modelos y se potencia la capacidad de 

interpretación, sin sacrificar la calidad de la información esencial para la toma de 

decisiones. 

El análisis de la reducción de la dimensión se trata de una técnica de aprendizaje no 

supervisado, pues se lleva a cabo sin la necesidad de etiquetas o variables de salida. Este 

tipo de aprendizaje permite explorar la estructura subyacente de los datos de forma 



 

 

automática, encontrando patrones o representaciones más compactas, sin necesidad de 

supervisión externa. Entre las técnicas más empleadas en este contexto destaca el Análisis 

de Componentes Principales (PCA), una herramienta estadística que transforma los 

datos originales en un nuevo conjunto de variables no correlacionadas, que capturan la 

mayor cantidad de variabilidad presente en el conjunto de datos. 

A continuación se presenta esta técnica con mayor profundidad, explicando su 

metodología, su proceso de construcción y su utilidad en el análisis de datos. 

4.2.1 Análisis de Componentes Principales (PCA) para Definir una Variable de Éxito 

El Análisis de Componentes Principales (PCA) es una técnica de aprendizaje no 

supervisado ampliamente utilizada en el análisis exploratorio de datos. Su objetivo 

principal es reducir la dimensionalidad de un conjunto de variables cuantitativas, 

manteniendo la mayor cantidad posible de información. Esta técnica es especialmente 

útil cuando se trabaja con muchas variables que pueden estar correlacionadas entre sí, lo 

cual sugiere la existencia de información redundante. En estos casos, el PCA permite 

transformar el conjunto original en un número reducido de nuevas variables, llamadas 

componentes principales, que son combinaciones lineales de las variables originales y 

que entre sí no están correlacionadas. 

Desde un punto de vista geométrico, el PCA puede interpretarse como una rotación del 

sistema de coordenadas original hacia una nueva base ortogonal, de forma que los nuevos 

ejes coincidan con las direcciones de mayor varianza en los datos. Cada componente 

principal representa una dimensión del nuevo espacio reducido, ordenadas según la 

cantidad de variabilidad que explican. De este modo, es posible simplificar la estructura 

del conjunto de datos, facilitando su interpretación, visualización y análisis posterior, sin 

perder información relevante. 

En el contexto de este trabajo, se aplica PCA sobre cuatro variables que están 

directamente relacionadas con el éxito de una canción: Streams, Views, Likes y 

Comments. Estas variables reflejan diferentes aspectos del rendimiento o impacto de un 

contenido, y es razonable suponer que contienen información redundante o altamente 

correlacionada entre sí. El propósito del análisis es construir una nueva variable —la 

primera componente principal— que actúe como un indicador sintético de “éxito”, 



 

 

condensando en una sola dimensión la información más relevante de las cuatro variables 

originales. 

El procedimiento seguido es el siguiente: 

Estandarización de las variables: 

Antes de aplicar PCA, es necesario que las cuatro variables se encuentren estandarizadas, 

es decir, con media cero y varianza unitaria, ya que están en distintas escalas y PCA es 

sensible a las magnitudes de las variables. 

Cálculo de la matriz de covarianza (o correlación): 

A partir de los datos estandarizados, se construye la matriz de correlación, ya que en este 

caso se utiliza para evaluar las relaciones lineales entre las variables. 

Construcción de las componentes principales: 

Se calculan los autovalores y autovectores de la matriz de correlación. Los autovalores 

indican la cantidad de varianza explicada por cada componente principal, y los 

autovectores determinan la combinación lineal de variables originales que define cada 

componente. 

El primer componente principal se obtiene como una combinación lineal de las 

variables originales estandarizadas que captura la mayor parte de la variabilidad 

conjunta de las cuatro variables. A continuación, se construyen ortogonalmente otras 

componentes, también como combinaciones lineales de las variables originales, que van 

acumulando la variabilidad restante. 

Interpretación y validación: 

Se considerará válida la utilización del primer componente principal como un indicador 

del éxito siempre que este explique al menos el 70% de la varianza total de los datos. 

En caso de que no cumpla con este criterio, se optará por utilizar los dos primeros 

componentes principales, de forma que se capte una proporción razonable de la 

variabilidad original, y por lo tanto no se pierda información sustancial. 

El uso de PCA en este caso no solo permite reducir la dimensión del problema, sino 

también construir una nueva variable latente que resume eficazmente la información 



 

 

contenida en múltiples indicadores del éxito de un tema. Esta técnica facilita tanto la 

interpretación como el uso posterior de los datos en modelos más complejos o en análisis 

descriptivos. 

 

4.3 Aprendizaje supervisado para la predicción del éxito 

Una vez disponible un único indicador de éxito, se aplican distintos métodos de 

aprendizaje supervisado con el objetivo de predecir el éxito de una canción a partir de 

sus características musicales. Se presentan tres enfoques: un modelo lineal, árboles de 

decisión y el método Random Forest. Cada uno de ellos permite explorar la relación 

entre las variables predictoras y la variable de éxito desde distintas perspectivas, 

comparando su rendimiento y capacidad interpretativa. 

4.3.1 Modelo lineal 

El modelo lineal es una técnica básica y fundamental en el aprendizaje supervisado, que 

permite establecer un modelo relacional simple y lineal entre una variable respuesta 

continua y un conjunto de variables predictoras. En este caso, el objetivo es modelar el 

éxito de una canción —representado por la variable continua— a partir de diferentes 

características musicales, todas ellas numéricas y previamente estandarizadas. Este 

enfoque se basa en la suposición de una relación lineal entre las variables, y su 

interpretación y aplicación han sido ampliamente desarrolladas en la literatura estadística 

(James, Witten, Hastie & Tibshirani, 2021). 

Este modelo asume que existe una relación lineal entre la variable dependiente y cada 

predictor, es decir, que el efecto de cada variable sobre el éxito puede estimarse como una 

suma ponderada de los predictores. Cada coeficiente estimado en el modelo indica cuánto 

se espera que cambie el éxito ante una variación unitaria en el predictor correspondiente, 

manteniendo constantes los demás. 

La construcción del modelo comienza ajustando una versión completa (modelo basal) que 

incluye todas las variables predictoras. A continuación, se aplica un proceso de 

selección automática, que permite identificar un subconjunto óptimo de variables 

basándose en el criterio de información de Akaike (AIC). Este criterio penaliza la 

complejidad del modelo, buscando un equilibrio entre la calidad del ajuste y el número 



 

 

de parámetros incluidos. Específicamente, el AIC estima la pérdida de información al 

utilizar un modelo determinado para representar la realidad, favoreciendo aquellos 

modelos que explican adecuadamente los datos con la menor cantidad posible de 

variables (Akaike, 1974). 

Para evaluar la calidad del modelo se utilizan indicadores estadísticos como: 

- El coeficiente de determinación (R²), que refleja la proporción de la variabilidad 

total de la variable dependiente que es explicada por el modelo. Su valor oscila 

entre 0 y 1, donde valores cercanos a 1 indican un mayor poder explicativo. Su 

versión ajustada (R² ajustado) corrige este valor teniendo en cuenta el número de 

predictores incluidos en el modelo, penalizando aquellos que no aportan mejora 

sustancial. 

La fórmula del R² ajustado es: 

𝑅𝑎𝑗𝑢𝑠𝑡𝑎𝑑𝑜
2 = 1 − (

(1 −  𝑅2)(𝑛 −  1)

𝑛 −  𝑝 −  1
) 

Donde: 

● 𝑅2: coeficiente de determinación, 

● n: número total de observaciones, 

● p: número de predictores del modelo. 

 

- El estadístico F de bondad de ajuste, que contrasta la significación global del 

modelo a partir de las sumas de cuadrados de la regresión y las sumas de 

cuadrados total, corregidas por sus respectivos grados de libertad; un pvalor < 

0.05 nos indica que se rechaza un modelo nulo a favor del modelo ajustado 

- Otra métrica para evaluar la calidad del ajuste del modelo lineal es el error 

cuadrático medio de la raíz (RMSE), que mide el error promedio entre los 

valores predichos por el modelo y los valores observados. Su fórmula es: 



 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂

𝑛

𝑖=1

) 

donde 𝑦𝑖 representa los valores observados, 𝑦̂𝑖 los valores predichos, y 𝑛 el 

número total de observaciones. 

Cuanto mayor sea el RMSE, mayor será la discrepancia entre las predicciones del 

modelo y los datos reales, lo que indica un peor ajuste. Por el contrario, un RMSE 

más bajo refleja un mejor rendimiento predictivo del modelo, indicando que este 

es capaz de aproximarse con mayor precisión a los valores reales de la variable 

dependiente. 

 

4.3.2 Árboles de decisión  

Los árboles de decisión son una técnica de aprendizaje supervisado ampliamente 

utilizada tanto para problemas de regresión como de clasificación que nos permite 

representar visualmente el proceso de toma de decisiones y facilita la interpretación de 

los resultados. 

El algoritmo funciona mediante un proceso de partición recursiva del espacio de datos, 

seleccionando en cada paso la variable predictora más relevante y el punto de corte que 

mejor separa los datos según la variable objetivo. El objetivo es maximizar la 

homogeneidad dentro de cada nodo resultante, creando divisiones que minimicen la 

impureza (en clasificación) o la varianza (en regresión). A medida que el árbol crece, se 

forman nodos hijos que contienen subconjuntos cada vez más específicos del conjunto 

original. 

Para evitar que el árbol crezca de forma excesiva y se sobreajuste a los datos de 

entrenamiento, es necesario establecer ciertos criterios de parada u hiperparámetros 

que regulen su complejidad. Entre los más relevantes se encuentran: 

● La profundidad máxima del árbol (maxdepth), que limita el número de niveles 

jerárquicos. 



 

 

● El número mínimo de observaciones en un nodo para permitir su división 

(minsplit). 

● El número mínimo de observaciones que debe haber en un nodo terminal 

(minbucket). 

Estos parámetros permiten construir modelos más generalizables, reduciendo el riesgo de 

ajustar ruido en los datos y facilitando interpretaciones más sencillas. Ajustar 

correctamente estos valores es esencial para alcanzar un equilibrio entre precisión y 

simplicidad del modelo. 

Para construir estos modelos, y dado el gran volumen de datos en la base de datos 

disponible, se divide el conjunto de datos en dos partes: una de entrenamiento, utilizada 

para ajustar el árbol, y otra de prueba, destinada a evaluar su capacidad predictiva. Esta 

partición garantiza una valoración objetiva del rendimiento del modelo y permite 

controlar  el sobreajuste. El sobreajuste (overfitting) ocurre cuando un modelo se ajusta 

demasiado a los datos de entrenamiento, capturando tanto los patrones reales como el 

ruido o las fluctuaciones aleatorias, lo que reduce su capacidad de generalización a nuevos 

datos. 

En este trabajo, se han aplicado dos enfoques: el árbol de regresión al considerar el 

indicador de éxito como variable respuesta de tipo numérico, y el árbol de clasificación, 

al categorizar este indicador y generar un indicador politómico con tres niveles de éxito 

(leve, moderado y alto). 

Árbol de regresión 

Los árboles de regresión constituyen una técnica de modelado supervisado utilizada para 

predecir una variable dependiente de tipo continua a partir de un conjunto de variables 

explicativas. 

Cuando se desea construir un árbol de regresión, se debe especificar el argumento method 

= "anova", lo que indica que el objetivo del modelo es predecir una variable continua. En 

este caso, el criterio que guía la construcción del árbol es la minimización de la varianza 

intra-nodo, es decir, se seleccionan aquellos predictores y sus divisiones que maximizan 

la reducción del error cuadrático medio (MSE) en los nodos hijos. Cada división busca 



 

 

generar subconjuntos que sean lo más homogéneos posible con respecto a la variable 

respuesta. 

Una vez generado el árbol, es posible interpretar visualmente las reglas de decisión y los 

valores de predicción en cada nodo terminal. Para evaluar cuantitativamente el 

rendimiento del modelo, se emplea nuevamente el error cuadrático medio de la raíz 

(RMSE), ya descrito en el apartado del modelo lineal, como medida de la precisión de 

las predicciones obtenidas a partir del árbol. 

 

Árbol de clasificación 

En cuanto a los árboles de clasificación, permiten predecir una variable categórica a 

partir de un conjunto de variables predictoras. Su funcionamiento se basa en dividir de 

forma recursiva el espacio de los datos mediante reglas de decisión simples, generando 

una estructura en forma de árbol. En cada nodo interno del árbol se evalúa una 

condición sobre una de las variables predictoras, mientras que en las hojas se asigna una 

categoría como resultado final. 

Para construir el árbol, el algoritmo selecciona en cada paso la variable y el umbral de 

partición que mejor separen las clases según algún criterio de impureza, como el índice 

de Gini.  

Estos dos tipos de modelos son especialmente útiles por su capacidad para capturar 

relaciones no lineales entre las variables, su interpretación sencilla y la facilidad para 

visualizar el proceso de decisión.  

 

4.3.3 Random Forest 

Random Forest es un algoritmo de aprendizaje supervisado que se basa en la 

construcción de múltiples árboles de decisión, combinando sus predicciones para 

mejorar la precisión del modelo y reducir el riesgo de sobreajuste. Esta técnica puede 

aplicarse tanto a problemas de regresión como de clasificación y se caracteriza por su 

capacidad para manejar grandes volúmenes de datos y relaciones complejas entre 

variables. 



 

 

El algoritmo genera múltiples árboles a partir de muestras aleatorias con reemplazo 

(bootstrap) del conjunto de entrenamiento. En cada nodo de cada árbol, se selecciona 

aleatoriamente un subconjunto de variables predictoras para determinar la mejor 

partición, lo que introduce diversidad entre los árboles y reduce el riesgo de 

multicolinealidad. La agregación de resultados permite obtener un modelo más robusto 

que el basado en un único árbol. 

➔ Optimización del modelo 

Para evitar que los árboles individuales crezcan en exceso y se ajusten demasiado a los 

datos (overfitting), es necesario regular su complejidad mediante la optimización de 

varios hiperparámetros. Entre los más importantes se encuentran: 

● ntree: número de árboles en el bosque. 

● maxdepth: profundidad máxima del árbol. Limita el número de niveles 

jerárquicos para evitar sobreajuste y mejorar la interpretabilidad. 

● minsplit: número mínimo de observaciones requerido para dividir un nodo. 

● minbucket: número mínimo de observaciones en los nodos terminales. 

● mtry: número de predictores considerados en cada división. 

El ajuste adecuado de estos hiperparámetros permite encontrar un equilibrio entre 

complejidad del modelo y capacidad predictiva, optimizando su rendimiento. 

➔ Importancia de las variables 

La importancia de las variables predictoras se estima mediante los siguientes indicadores: 

● MeanDecreaseAccuracy: evalúa cuánto disminuye la precisión del modelo 

(medida a través del error OOB, out-of-bag) cuando se desordena aleatoriamente 

una variable. Si al hacer este desorden el rendimiento del modelo empeora 

considerablemente, se interpreta que esa variable tiene una influencia significativa 

en la predicción. 

● MeanDecreaseGini: mide cuánto contribuye una variable a reducir la impureza 

de los nodos en los árboles. La impureza representa la heterogeneidad dentro de 

un nodo: lo ideal es que los nodos sean internamente homogéneos (contengan 

observaciones similares) y estén bien diferenciados entre sí. Cuanto mayor es la 



 

 

reducción de impureza asociada a una variable, mayor es su importancia para 

generar divisiones efectivas en el árbol. 

Bosque de regresión 

En el contexto de regresión, Random Forest se emplea para predecir una variable 

numérica continua, en este caso, el nivel de éxito de una canción. La predicción final del 

modelo se obtiene como el promedio de las predicciones generadas por todos los árboles 

del bosque. 

Para evaluar el rendimiento del modelo, se utilizan las siguientes métricas: 

● Error cuadrático medio (Mean of Squared Residuals): indica el promedio de 

los residuos al cuadrado, es decir, la diferencia entre los valores predichos y los 

reales. Cuanto menor es este valor, mejor es el ajuste del modelo. 

● Porcentaje de varianza explicada (% Var Explained): mide qué proporción de 

la variabilidad de la variable dependiente es explicada por el modelo. Se calcula 

como: 

%𝑉𝑎𝑟 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 =  1 −
𝑀𝑆𝐸 𝑑𝑒𝑙 𝑚𝑜𝑑𝑒𝑙𝑜

𝑉𝑎𝑟𝑖𝑎𝑛𝑧𝑎 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒 𝑙𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑒𝑠𝑝𝑢𝑒𝑠𝑡𝑎
× 100 

Un valor más alto de esta métrica indica que el modelo captura mejor la 

estructura de los datos y tiene mayor capacidad explicativa. 

● También se calcula el Root Mean Squared Error (RMSE), ya descrito en el 

apartado del modelo lineal, como medida complementaria del ajuste del modelo. 

Estas medidas permiten evaluar tanto la precisión de las predicciones como la 

calidad del ajuste del modelo, ofreciendo una visión completa de su rendimiento en el 

análisis del éxito musical. 

Bosque de clasificación 

Para predecir el nivel de éxito categórico (bajo, moderado o alto), se utiliza Random 

Forest como modelo de clasificación. La clase predicha es aquella que más veces aparece 

como resultado en los árboles del bosque. Para evaluar el rendimiento del modelo, se 

utilizan varias métricas: 



 

 

● Accuracy: proporción total de predicciones correctas realizadas por el modelo. 

● Sensitivity (Sensibilidad o Recall): capacidad del modelo para identificar 

correctamente los casos positivos de cada clase. 

● Specificity (Especificidad): capacidad del modelo para identificar correctamente 

los casos negativos (es decir, no pertenecientes a una clase dada). 

Para evitar problemas de ajuste asociados al desequilibrio o diferencia de tamaños 

muestrales en las clases de éxito, se utiliza la estratificación por éxito para crear las 

muestras de entrenamiento y test, así como las submuestras de los árboles. Este permite 

realizar un muestreo estratificado, garantizando que cada submuestra respete las 

proporciones originales de las clases presentes en el conjunto de entrenamiento. Se evita 

así el sesgo hacia una clase mayoritaria y se mejora la estimación en las clases 

minoritarias. 

Además, se emplea la matriz de confusión como herramienta para visualizar el 

desempeño del modelo, mostrando el número de observaciones correctamente 

clasificadas y los errores cometidos por clase. 

En resumen, el método Random Forest representa una herramienta versátil y eficaz para 

abordar tanto problemas de regresión como de clasificación dentro del análisis musical. 

Su capacidad para manejar grandes volúmenes de datos, reducir el riesgo de sobreajuste 

y ofrecer medidas interpretables de importancia de las variables lo convierte en una 

técnica especialmente útil en contextos complejos como el presente estudio. Además, la 

posibilidad de ajustar sus hiperparámetros permite adaptar el modelo a las características 

particulares de los datos, optimizando así su rendimiento predictivo. 

Para llevar a cabo todo el análisis estadístico y computacional del presente estudio, se ha 

utilizado software especializado que permite implementar de forma eficiente las distintas 

técnicas metodológicas empleadas. 

4.4 Software 

El software utilizado en este trabajo ha sido R (R Core Team, 2023), un lenguaje de 

programación y entorno de software libre ampliamente utilizado para el análisis 

estadístico, la visualización de datos y el desarrollo de modelos predictivos. Para facilitar 



 

 

su uso, se empleó RStudio (Posit, PBC, 2023), un entorno de desarrollo integrado 

(IDE) que mejora la organización del código, la ejecución de scripts y la interpretación 

de resultados, ofreciendo una interfaz para trabajar con R.  

Para el desarrollo del análisis estadístico y los modelos predictivos, se utilizaron diversas 

librerías de R, cada una con funcionalidades específicas que facilitaron la exploración, 

transformación, visualización y modelado de los datos: 

● ggplot2 (Wickham, 2023): utilizada para la creación de gráficos estadísticos de 

alta calidad. Permite representar de forma clara y personalizada la información 

mediante la gramática de gráficos. 

● gridExtra (Auguie, 2017): empleada para organizar múltiples gráficos de ggplot2 

en una misma figura, lo que facilita la comparación visual de distintos resultados. 

● patchwork (Pedersen, 2023): usada para combinar varios gráficos generados con 

ggplot2 de forma sencilla y flexible, permitiendo crear visualizaciones más 

completas y ordenadas. 

● dplyr (Wickham et al., 2023): utilizada para la manipulación eficiente de datos, 

incluyendo tareas como filtrado, selección de columnas, creación de nuevas 

variables o agrupación de observaciones. 

● corrplot (Wei & Simko, 2021): permite visualizar de forma gráfica las matrices 

de correlación entre variables, facilitando la interpretación de relaciones lineales. 

● rpart.plot (Milborrow, 2022): facilita la representación visual de los árboles de 

decisión ajustados con rpart, mostrando las reglas de decisión y los nodos de 

forma clara. 

● caTools (Tuszynski, 2021): se utiliza para dividir la base de datos en conjuntos de 

entrenamiento y test, manteniendo las proporciones originales de las clases. 

● rpart (Therneau & Atkinson, 2023): empleada para construir árboles de decisión 

simples, tanto para regresión como para clasificación. 

● randomForest (Liaw & Wiener, 2002): utilizada para ajustar modelos de Random 

Forest, tanto de regresión como de clasificación, permitiendo además obtener 

métricas de importancia de las variables y evaluar el rendimiento del modelo. 



 

 

● caret (Kuhn, 2023).: sirve como framework para entrenar y evaluar modelos 

predictivos. Es un conjunto de funciones que buscan optimizar el proceso de 

creación de modelos predictivos. 

A continuación, se exponen los resultados obtenidos tras aplicar las distintas técnicas 

estadísticas y de machine learning, valorando su capacidad para explicar y predecir el 

éxito musical a partir de las variables disponibles. 

 

5. Resultados 

En esta sección presentamos todos los resultados obtenidos de los análisis exploratorios 

y predictivos realizados, y descritos en la sección de Metodología. 

5.1 Análisis exploratorio y preprocesado 

Abordamos esta sección presentando en primer lugar los resultados del análisis 

exploratorio univariado, para describir la información disponible, y luego del análisis 

bivariado, para identificar asociaciones entre las variables disponibles. 

5.1.1 Análisis Univariado 

Se presentan a continuación los resultados del análisis exploratorio y las decisiones 

tomadas sobre el preprocesado, en base a este análisis. En primer lugar identificamos los 

valores faltantes en la base de datos y realizamos la imputación correspondiente. A 

continuación, presentamos el análisis exploratorio de las variables de éxito relativas a la 

interacción del público. Después presentamos el descriptivo de las variables predictoras, 

diferenciadas por su escala de variación: escala entre 0-1, escalas diversas y categórica. 

Observamos que algunas variables numéricas, como Views, Likes, Comments, Stream y 

Duration, presentan distribuciones muy asimétricas, con valores muy altos. Por ello, se 

optó por dividir los valores de Views y Stream entre 109 y los de Likes y Comments entre 

107 para facilitar su visualización en los boxplots de la Figura 1, sin alterar la forma 

general de la distribución.  



 

 

Cabe destacar que no ha sido necesario escalar las variables numéricas, ya que muchas 

de ellas ya se encontraban normalizadas en un rango entre 0 y 1, lo que facilita su 

comparación y análisis conjunto. 

Valores faltantes 

Durante la revisión inicial de la calidad del conjunto de datos, se identificó la presencia 

de 2.178 valores faltantes, distribuidos tanto entre las variables predictoras como en la 

respuesta. En concreto, las variables afectadas fueron: Danceability, Energy, Key, 

Loudness, Speechiness, Acousticness, Instrumentalness, Liveness, Valence, Tempo, 

Duration, Views, Likes, Comments y Stream. 

Del total de variables analizadas, se observó que las variables de respuesta —Views, 

Likes, Comments y Stream— son las que presentan un volumen mayor de valores 

faltantes, con 470, 541, 569 y 576 valores, respectivamente. 

En cambio, las variables predictoras Danceability, Energy, Key, Loudness, Speechiness, 

Acousticness, Instrumentalness, Liveness, Valence, Tempo y Duration presentan 

únicamente 2 valores faltantes cada una, lo que equivale a una proporción muy baja con 

respecto al tamaño total del conjunto de datos (20718). 

Destacar que la variable Key contiene la categoría “ND” que indica tonalidades no 

determinadas. Aunque no se considera un valor faltante formalmente, representa ausencia 

de información y no ha sido imputada, manteniéndose en el análisis por su posible 

relevancia. 

Dado que se trata de un número reducido de valores perdidos y que no se identificaron 

patrones sistemáticos de ausencia, se optó por aplicar una técnica de imputación simple 

pero efectiva: reemplazar los valores faltantes por la media de cada variable 

correspondiente.  

Variables de éxito 

En la Figura 1 se muestra la distribución de las 4 variables de éxito en la base de datos. 

Se aprecia en todas ellas, una distribución no negativa y asimétrica a la derecha. El rango 

de variación es mayor en las variables Views y Stream.  



 

 

 

Figura 1. Boxplots de las 4 variables de éxito: Views, Likes, Comments y Stream. 

Los diagramas de caja de las variables relacionadas con el éxito de las canciones (Views, 

Likes, Comments y Stream) muestran una distribución altamente asimétrica y 

concentrada. En todos los casos, aproximadamente el 70 % de los datos se encuentra 

agrupado en valores muy bajos, cercanos a cero.  

Sin embargo, se observa una gran dispersión hacia la derecha del gráfico en forma de 

numerosos valores atípicos (outliers), lo cual indica que existe una minoría de canciones 

que alcanzan cifras extremadamente altas en estas métricas, y que sin duda dificultará el 

análisis (al ser pocas y extremas). 

Variables predictoras 

En la Figura 2 se presentan los boxplots de las variables en escala 0/1. 



 

 

 

Figura 2. Boxplot variables numéricas entre 0 y 1 

Encontramos que Danceability, Energy y Valence tienen prácticamente el 75% de los 

datos por debajo de 0.75, lo que habla de datos distribuídos a lo largo de todo el rango de 

variación. Además, para estas variables aproximadamente el 50% central de los datos se 

encuentra en valores centrales de la escala 0-1, lo que implica simetría en sus 

distribuciones. 

Sin embargo, encontramos que las variables Speechiness, Instrumentalness y Liveness, 

tienen su percentil 75 por debajo de 0.25, lo que habla de una gran concentración de 

registros con valores muy pequeños. Como se observa en la Figura 2, el 25% de datos 

restantes, se distribuyen por valores entre 0.25 y 1, pero no se podría hablar de 

catalogación como valores atípicos, pues realmente son un volumen importante, y por lo 

tanto describen la asimetría severa y la gran dispersión de su distribución.  

A medio camino encontramos la variable Accousticness, que tiene una mediana cerca de 

0.3, y un rango intercuartílico entre 0.1 y 0.5, lo que pone de manifiesto también, la 

asimetría de los datos. El hecho de que el percentil 75 sea 0.48 y el 25% de los datos más 

altos se repartan hasta el máximo 1, tampoco permite reconocer valores anómalos 

relevantes. 

En resumen, variables como Danceability, Energy y Valence presentan distribuciones 

simétricas y centradas, mientras que variables como Speechiness, Acousticness e 

Instrumentalness presentan asimetría alta, con una proporción importante de 



 

 

observaciones en el cuartil superior. Esta diversidad sugiere que las canciones del 

conjunto abarcan una gran variedad de estilos y estructuras acústicas. 

La Figura 3 presenta los histogramas para las variables continuas Tempo, Loudness y Key 

(representada de forma categórica). Además, se muestra un diagrama de caja (boxplot) 

para Duration. 

 

Figura 3. Histogramas y boxplot de varias características registradas: Tonalidad, 

Pulsaciones por minuto, Minutos (duración) y Decibelios de las canciones en la base de 

datos.s 

Los histogramas presentados en la Figura 3 ofrecen una visión general de la distribución 

de las variables seleccionadas, a continuación, se presenta una interpretación general de 

cada variable: 

La variable Key muestra una distribución relativamente uniforme entre las distintas 

tonalidades musicales, aunque se aprecian ligeros picos de frecuencia en notas como C, 

F♯ y G. Además, se incluye la categoría “ND”, correspondiente a aquellas canciones cuya 

tonalidad no pudo ser determinada. 

Se ha decidido no incluir esta variable en el análisis predictivo, debido principalmente a 

que ésta es una variable categórica y el enfoque de este estudio se va a centrar en estudiar 



 

 

la asociación entre el éxito y las variables numéricas disponibles que describen las 

características de las canciones. 

En cuanto a Tempo, la distribución presenta una forma aproximadamente simétrica, con 

una leve asimetría positiva. La mayoría de las canciones se concentran en un rango de 80 

a 140 BPM, lo que sugiere una prevalencia de ritmos moderados a enérgicos. 

Respecto a Duration, se observa en el boxplot una distribución claramente asimétrica 

hacia la derecha, indicando la presencia de una cola larga. Esto revela que, si bien la 

mayoría de los temas tienen duraciones comprendidas entre los 150 y 500 segundos, 

existen canciones que exceden considerablemente este rango. 

Por último, la variable Loudness presenta una asimetría negativa. La mayoría de las 

canciones se sitúan en un rango entre -10 y -5 dB, lo que refleja un volumen medio-alto 

característico de producciones musicales modernas. 

5.1.2 Análisis bivariado 

Con el fin de investigar las relaciones entre las variables numéricas predictoras y con las 

variables de éxito, representamos un correlograma en la Figura 4, que presenta las 

correlaciones en una escala de color en la que los colores fríos (azules) intensos 

representan correlaciones próximas a 1 y colores cálidos (rojos) intensos las próximas a -

1, y por supuesto una gradación en color e intensidad para correlaciones intermedias.  



 

 

 

Figura 4. Correlograma de las variables numéricas. 

Tras representar la matriz de correlaciones del conjunto de variables numéricas (Figura 

4), examinamos el coeficiente de correlación entre dos variables y observamos que varias 

parejas de nuestros datos tienen correlaciones positivas fuertes, como son:  

● Views, Likes, Comments, y Streams: Existe una fuerte correlación positiva entre 

estas variables, lo que indica que las canciones con más reproducciones tienden a 

tener más "me gusta", comentarios y, por lo tanto, son más populares. Cabe 

destacar que la variable Likes es la que más correlacionada está con el resto de 

estas cuatro variables. Estas correlaciones tan altas justifican la búsqueda de un 

índice, construido con estas cuatro variables, para definir, si es posible, un único 

‘indicador de éxito’. 

● Loudness y Energy: Las canciones más fuertes suelen ser más enérgicas. 

● Danceability y Valence: Existe una ligera correlación positiva entre la bailabilidad 

y la valencia (positividad emocional de la canción). Esto podría indicar que las 

canciones más bailables suelen ser las más positivas. 



 

 

● Valence y Energy: Ligera correlación positiva entre la energía y la valencia 

(positividad) de una canción. Esto nos indica que las canciones con más energía 

suelen ser las más positivas. 

También podemos visualizar que tenemos parejas de variables con correlaciones 

negativas, estas son: 

● Acousticness y Loudness: Las canciones acústicas tienden a ser menos fuertes y 

viceversa.  

● Acousticness y energy: correlación fuerte negativa, esto implica que una canción 

con instrumentalidad acústica no tiene porque tener energía.  

● Instumentalness y Loudness: Las canciones sin contenido vocal tienden a ser 

menos fuertes y viceversa.  

En conclusión, las correlaciones entre las variables sonoras y las de éxito son, en general, 

bastante bajas. Esto sugiere que la capacidad explicativa de las características musicales 

para predecir el éxito de una canción podría ser limitada, lo que puede dificultar la 

construcción de modelos predictivos eficientes basados únicamente en estas variables. 

 

5.2 Aprendizaje no supervisado para la reducción de la dimensión 

Habiendo explorado diversas técnicas de reducción de dimensionalidad, pasamos ahora a 

presentar los resultados obtenidos al aplicar el Análisis de Componentes Principales. 

Realizamos el análisis de componentes principales para calcular un índice de éxito que 

aglutine la información en las variables de éxito Views, Comments, Likes y Stream, y 

encontramos, como se aprecia en la Tabla 2, que sólo con la primera componente ya 

explicamos un 69.43% de la variabilidad en los datos, como se aproxima en gran medida 

al 70% la consideraremos como válida.  

 

 

 



 

 

Tabla 2. Resumen de la Varianza Explicada por los Componentes Principales. 

 

Así pues, es razonable asumir que estas variables numéricas de éxito podemos resumirlas 

en una única dimensión, sin perder información relevante, que es la primera componente 

resultante. A esta nueva variable la denominaremos “Éxito” en adelante, que será nuestra 

variable respuesta a predecir en función del resto.  

Tabla 3. Pesos de las variables de éxito en la primera componente principal. 

Variable Pesos en la PC1 

Views -0.5413415 

Likes -0.5804891 

Comments -0.4053259 

Stream -0.4535336 

La nueva variable de éxito se define como una combinación lineal de las variables: 

𝐸𝑥𝑖𝑡𝑜 = −0.54 × 𝑉𝑖𝑒𝑤𝑠 − 0.58 × 𝐿𝑖𝑘𝑒𝑠 − 0.41 × 𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝑠 − 0.45 × 𝑆𝑡𝑟𝑒𝑎𝑚 

En base a los pesos que mostramos en la Tabla 3, observamos que los valores más bajos 

en PC1 (negativos), corresponden a valores más altos en las variables originales, lo que 

 PC1 PC2 PC3 PC4 

Standard 

deviation 

1,6665 0,8679 0,6322 0,26423 

Proportion of 

Variance 

0,6943 0,1883 0,0999 0,01745 

Cumulative 

Proportion 

0,6943 0,8826 0,9826 1,00000 



 

 

implica mayor éxito. Por tanto, esta componente puede interpretarse como un indicador 

inverso de éxito: a menor puntuación en PC1, mayor popularidad de la canción. 

Entre las variables consideradas, Likes y Views son las que más influyen en esta 

dimensión, lo que sugiere que estas métricas son especialmente relevantes para 

caracterizar el éxito. 

Una vez obtenido el nuevo indicador de éxito, se analiza su relación con las distintas 

variables disponibles en la base de datos, con el objetivo de identificar aquellas que 

podrían actuar como potenciales predictores. 

 

 

Figura 5. Gráficos de dispersión entre la variable Éxito y las variables predictoras 

numéricas. 

Las observaciones con mayores valores de variables como Danceability, Energy, Valence 

y Loudness tienden a presentar una mayor dispersión en los niveles de éxito. Es decir, 

hay canciones con características muy "altas" en estos atributos que tienen tanto altos 

como bajos niveles de éxito, reflejando mayor variabilidad. 



 

 

En cambio, cuando estas variables tienen valores bajos, el éxito tiende a concentrarse en 

niveles más reducidos (menor dispersión). 

Por otro lado, variables como Instrumentalness, Speechiness, Acousticness y Duration 

muestran que la mayoría de los datos están concentrados en los extremos bajos del éxito, 

lo que indica que estas características, en su mayoría, no están asociadas a canciones 

particularmente exitosas. 

En particular, se evidencia una forma de “triángulo invertido” en muchas variables, 

indicando que existe un rango de valores centrales en la característica, asociados a un 

mayor éxito, mientras que valores extremos a la izquierda y derecha suelen estar 

asociados a éxitos más leves.  

El objetivo a continuación es ajustar diversos modelos para predecir esta variable de éxito. 

5.3 Aprendizaje supervisado para la predicción del éxito 

Con el objetivo de estudiar la capacidad predictiva de las variables disponibles en la base 

de datos sobre el nivel de éxito de las canciones, se recurre a técnicas de aprendizaje 

supervisado.  

Para facilitar la interpretación del indicador de éxito derivado de la primera componente 

principal, se optó por trabajar con su versión simétrica, de modo que los pesos pasan a 

ser positivos y, por tanto, los valores más altos se asocian a un mayor nivel de éxito. Con 

el objetivo de posibilitar una transformación logarítmica (que escala a magnitudes 

menores la variable indicadora), se procedió a reescalar la variable Exito para que tomara 

valores estrictamente positivos, con la transformación 𝐿𝑜𝑔𝐸𝑥𝑖𝑡𝑜 = 𝑙𝑜𝑔(𝑚𝑎𝑥(𝐸𝑥𝑖𝑡𝑜) −

𝐸𝑥𝑖𝑡𝑜 + 1), que cumple: 

𝑚𝑖𝑛(𝐸𝑥𝑖𝑡𝑜)  ⇐  𝐸𝑥𝑖𝑡𝑜 ⇐  𝑚𝑎𝑥 (𝐸𝑥𝑖𝑡𝑜)  →  1 ⇐  𝑚𝑎𝑥(𝐸𝑥𝑖𝑡𝑜) − 𝐸𝑥𝑖𝑡𝑜 + 1 

⇐  𝑚𝑎𝑥(𝐸𝑥𝑖𝑡𝑜)  − 𝑚𝑖𝑛(𝐸𝑥𝑖𝑡𝑜) + 1  

 

Esta nueva variable LogExito será utilizada como variable respuesta en el análisis. 

Para el ajuste de estos modelos, las variables predictoras Tempo, Duration y Loudness 

fueron previamente estandarizadas (restando media y dividiendo por la desviación 

típica), ya que se trata de variables numéricas que pueden presentar escalas diferentes. 



 

 

A continuación, se presentan los distintos modelos supervisados que se aplicaron, 

comenzando por el modelo lineal. 

5.3.1 Modelo lineal 

Inicialmente se ajustó un modelo lineal basal que incluía todas las variables disponibles 

como predictoras del éxito. Este modelo completo sirvió como punto de partida para 

identificar qué variables aportan significativamente a la explicación de la variabilidad en 

la respuesta LogExito. 

Tras aplicar un procedimiento de selección automática de variables mediante la función 

step en R, se obtuvo un modelo lineal final que incluye las siguientes variables predictoras 

del índice de éxito: Danceability, Energy, Valence, Loudness, Speechiness, Acousticness, 

Instrumentalness, Liveness y Duration. 

El modelo resultante es estadísticamente significativo (F = 121.8, gl = 9 y 20.708, 

pvalor< 2.2e-16), sin embargo, su capacidad explicativa es muy limitada: el coeficiente 

de determinación ajustado (R² ajustado) es de apenas 0.04987, lo que indica que el 

modelo sólo explica alrededor del 5% de la variabilidad observada en la variable de éxito. 

Además, el error cuadrático medio de la raíz (RMSE), que cuantifica la diferencia 

promedio entre los valores predichos y observados, se ha estimado en 0.4516, lo que 

refuerza la limitada capacidad predictiva del modelo. 

Este bajo poder predictivo era esperable, ya que los análisis exploratorios previos ya 

mostraban que no existía una relación lineal clara entre las variables independientes y el 

éxito. Además, se han detectado violaciones de supuestos fundamentales (Figura 6) del 

modelo lineal, como la linealidad y la normalidad de los residuos, lo que invalida a 

este modelo como herramienta predictiva. 

 



 

 

 

Figura 6. Gráfico de residuos frente a valores ajustados del modelo lineal 

En este caso, se observa una clara forma de abanico (patrón de dispersión creciente), lo 

que indica heterocedasticidad: los residuos aumentan a medida que lo hacen los valores 

ajustados. Esto sugiere que el modelo no se ajusta de forma uniforme a lo largo del rango 

de valores predichos y, por tanto, viola uno de los supuestos fundamentales del modelo 

lineal. 

La Figura 7 muestra los coeficientes estimados del modelo lineal final obtenido. En el 

eje horizontal se representan los valores estimados de los coeficientes, mientras que en el 

eje vertical se listan las variables incluidas en el modelo. 



 

 

 

Figura 7. Coeficientes del modelo lineal ajustado con las variables seleccionadas por el 

procedimiento automático adelante-atrás basado en el AIC. 

El gráfico de coeficientes del modelo lineal permite identificar cómo influyen las distintas 

variables en el nivel de éxito de una canción. Las variables con coeficientes positivos, 

como Loudness (0.08897) y Danceability (0.03946), se asocian a un mayor éxito: es decir, 

canciones más fuertes y bailables tienden a alcanzar mejores resultados. 

Por el contrario, variables como Energy (–0.03653), Valence (–0.03097), Acousticness (–

0.02579), Instrumentalness (–0.01559) y Speechiness (–0.01359) presentan coeficientes 

negativos, lo que indica que un mayor valor en estas características se relaciona con un 

menor nivel de éxito. 



 

 

Finalmente, variables como Liveness (–0.0088) y Duration (0.00813), a pesar de estar 

incluidas en el modelo, muestran un peso reducido, lo que sugiere que su influencia sobre 

el éxito es menos relevante. 

La variable Tempo fue descartada durante el proceso de selección, al no aportar una 

mejora significativa al ajuste del modelo. En conjunto, estos resultados refuerzan la idea 

de que, si bien ciertos rasgos musicales tienen una relación con el éxito, esta es limitada 

y no estrictamente lineal. 

5.3.2 Árboles de decisión  

A continuación, se aplicaron árboles de decisión sobre las variables predictoras 

musicales con el objetivo de analizar el éxito de las canciones. Para ello, se realizó 

previamente una partición del conjunto de datos, tomando como referencia la variable 

de éxito, LogExito, dividiéndolo en un 70% para entrenamiento y un 30% para prueba. 

Esta división permite ajustar los modelos con los datos de entrenamiento y evaluar su 

rendimiento sobre datos no vistos, garantizando así una validación adecuada. 

En primer lugar, se construyó un árbol de regresión utilizando como variable respuesta 

LogExito. Posteriormente, dicha variable fue categorizada en tres niveles para ajustar un 

árbol de clasificación: 

● Éxito bajo: valores entre 0 y 1 

● Éxito moderado: valores entre 1 y 2 

● Éxito alto: valores mayores a 2 

Esta estrategia, de utilizar la variable de éxito en su versión numérica y en una versión 

categórica, permitió comparar ambos enfoques en términos predictivos y, además, 

identificar las variables musicales que más influyen en el nivel de éxito. 

Árbol de regresión 

A continuación vamos a ver un árbol de regresión que ofrece una representación visual y 

simplificada de cómo distintas características musicales influyen en el éxito: 



 

 

 

Figura 7. Árbol de regresión para la predicción del éxito musical en función de 

características acústicas. 

Se construyó un árbol de regresión para predecir el LogExito a partir de las variables 

musicales. Para evitar sobreajuste y favorecer la interpretabilidad, se estableció una 

profundidad máxima (maxdepth) de 4, valor seleccionado tras observar que 

profundidades mayores no reducían significativamente el error y aumentaban la 

complejidad del árbol dificultando su interpretación. No obstante, se permitió que el 

proceso de poda considerase hasta profundidad 8. Los parámetros mínimos para dividir 

un nodo (minsplit) y para crear nodos terminales (minbucket) se fijaron en el 10% del 

tamaño total del conjunto de entrenamiento, lo que asegura que las particiones tengan una 

representatividad adecuada. 

En cuanto al parámetro de complejidad (cp), se seleccionó el valor más bajo posible (cp 

= 0.001), ya que fue el que minimizó el error de validación cruzada (xerror). Este ajuste 

reflejó un mejor rendimiento en términos de capacidad predictiva generalizada, es decir, 

una menor tasa de error esperada en datos nuevos, en comparación con el valor por 

defecto (cp = 0.01), que resultó en un mayor error de validación. Por tanto, se optó por el 

cp más bajo sin sacrificar estabilidad del modelo, permitiendo capturar más estructura 

relevante en los datos. 



 

 

El modelo resultante tiene un RMSE de 0.4507, lo cual indica un error moderado en la 

predicción del éxito musical. Este valor es muy similar al obtenido con el modelo lineal 

(RMSE = 0.4516), lo que sugiere que, pese a utilizar enfoques distintos, ambos modelos 

presentan un rendimiento comparable en términos de precisión. No obstante, el árbol de 

regresión presenta una ligera mejora, aunque insuficiente como para considerarlo 

significativamente superior. 

El árbol comienza dividiendo según Loudness, seguido por variables como Duration, 

Danceability, Energy e Instrumentalness. Estas divisiones reflejan los umbrales que 

permiten segmentar las canciones según su nivel de éxito predicho. Se observa que los 

nodos terminales con valores más altos de éxito están asociados a canciones con mayor 

Danceability e Instrumentalness, mientras que los valores más bajos se concentran en 

ramas con niveles reducidos de Loudness y Duration. Esto sugiere que ciertos patrones 

musicales pueden tener relación con la popularidad, aunque de forma no lineal. 

Árbol de clasificación 

Se construyó a continuación un árbol de clasificación con el objetivo de predecir el nivel 

de éxito categorizado de las canciones a partir de sus características medidas. La Figura 

8 muestra la estructura del árbol que proporciona el modelo, basada en los valores de las 

distintas variables musicales. 

 



 

 

Figura 8. Árbol de clasificación para la predicción del nivel de éxito categórico de las 

canciones a partir de variables musicales. 

Para la construcción del árbol se fijaron los siguientes parámetros: una profundidad 

máxima (maxdepth) de 5, un mínimo de observaciones para dividir un nodo (minsplit) 

igual a 20, y un parámetro de complejidad (cp) de 0.008. Este valor fue elegido porque 

minimiza el error, mostrando mejores resultados que otros valores como cp = 0.001. 

En el gráfico, cada nodo terminal presenta el valor de predicción dominante (éxito bajo, 

moderado o alto), junto con la proporción de observaciones que pertenecen a cada 

categoría. 

El árbol parte de la variable Loudness, que resulta ser la primera condición de partición. 

Si el valor de Loudness es menor que 0.46, el modelo predice directamente la clase “bajo” 

con un alto grado de certeza (65% de los datos se encuentran en esta rama). En el caso 

contrario, el modelo realiza particiones adicionales utilizando las variables Duration, 

Danceability y Speechiness, identificadas como relevantes para diferenciar entre niveles 

de éxito. 

Aunque la mayoría de las ramas terminan en la categoría "bajo", se observa que en 

algunas rutas específicas, como aquellas con valores intermedios de Speechiness, se 

consigue una cierta discriminación hacia la clase "moderado", aunque sigue siendo poco 

frecuente. Por otro lado, la clase "alto" no aparece representada en los nodos terminales 

del árbol podado, lo que indica que no existen suficientes patrones consistentes en los 

datos que permitan identificarla con un mínimo de fiabilidad dentro de la estructura del 

modelo. 

Esto refleja el desequilibrio existente entre clases, siendo "bajo" la categoría claramente 

mayoritaria en los datos, lo cual limita la capacidad del árbol para detectar patrones en 

las clases menos representadas. 

 

5.3.3 Random Forest 

Con el objetivo de evaluar la capacidad predictiva de los modelos Random Forest, se 

construyeron dos enfoques: uno de regresión, orientado a predecir una variable continua 



 

 

de éxito, y otro de clasificación, que utiliza una versión categórica del éxito. Ambos 

modelos se ajustaron sobre los mismos predictores musicales y emplearon el conjunto de 

entrenamiento derivado de la partición de los datos (70% entrenamiento, 30% prueba). 

Modelo regresión 

Con el objetivo de optimizar el rendimiento del modelo de regresión mediante Random 

Forest, se evaluaron tres configuraciones distintas del parámetro mtry, correspondiente al 

número de variables seleccionadas aleatoriamente en cada división del árbol. Se probaron 

los valores de mtry = 3, mtry = 4 y mtry = 5, manteniendo constantes el resto de 

parámetros (ntree = 500). 

Tabla 4. Comparación del rendimiento del modelo Random Forest de regresión con 

distintos valores de mtry (3, 4 y 5). Se muestran el error cuadrático medio (Mean of 

Squared Residuals) y el porcentaje de varianza explicada. 

 

 Modelo mtry = 3 Modelo mtry = 4 Modelo mtry = 5 

Mean of squared 

residuals 

0.1707164 0.1720466 0.1721477 

% Var explained 20.4 19.78 19.74 

Los resultados obtenidos se resumen en la Tabla 4, donde se comparan los valores del 

error cuadrático medio (Mean of Squared Residuals) y el porcentaje de varianza 

explicada por cada modelo. El modelo con mtry = 3 mostró el mejor rendimiento, al 

presentar el menor error (0.1707) y el mayor porcentaje de varianza explicada (20.4 %). 

Además, se calculó el RMSE para este modelo, obteniéndose un valor de 0.4142, lo que 

respalda su rendimiento relativamente superior frente a los demás modelos evaluados, 

aunque con un margen de error aún moderado. 

 

Por tanto, se selecciona este modelo como el óptimo para el análisis. A partir de él se 

generó el gráfico de importancia de las variables predictoras (Figura 9), el cual permite 



 

 

identificar los atributos musicales que más influyen en la predicción del éxito de una 

canción. 

 

Figura 9. Importancia de las variables en el modelo Random Forest de regresión (Basado 

en %IncMSE e IncNodePurity) 

La Figura 9 muestra la importancia relativa de cada variable predictora en el modelo 

Random Forest de regresión seleccionado (mtry = 3). En la gráfica de la izquierda, el eje 

horizontal representa el incremento porcentual del error de predicción (%IncMSE) al 

eliminar cada variable: valores más altos indican mayor influencia en la predicción. En la 

derecha, la métrica IncNodePurity refleja la contribución de cada variable a la 

reducción de impureza en los nodos del árbol. 

Ambos criterios coinciden en señalar que Duration y Loudness son las variables más 

importantes para explicar el nivel de éxito de una canción, seguidas por Danceability y 

Energy. Por el contrario, variables como Liveness e Instrumentalness tienen un impacto 

mucho menor en el modelo. 



 

 

Modelo clasificación 

Tabla 5. Métricas de rendimiento para el modelo Random Forest de clasificación con 

distintos valores de mtry. Se muestran los valores de sensibilidad, especificidad y 

precisión global (accuracy) para cada categoría de éxito (bajo, moderado y alto). 

 

Para el análisis del éxito musical categórico (clasificado en bajo, moderado y alto), se 

aplicó un modelo de Random Forest de clasificación. Se probaron distintos valores del 

parámetro mtry (2, 3, 4 y 5), con el fin de identificar la combinación que proporcionara 

el mejor rendimiento del modelo. Los resultados se resumen en la Tabla 5, donde se 

comparan las métricas de accuracy, sensitivity y specificity para cada una de las clases. 

En general, los modelos con mtry = 2 y mtry = 3 obtienen el mejor rendimiento, con una 

accuracy del 91.91% y 91.89%, respectivamente. No obstante, observando las métricas 

de sensitivity y specificity por clase, el modelo con mtry = 2 destaca por lograr valores de 

sensibilidad ligeramente superiores en las clases minoritarias (moderado y alto), sin 

sacrificar precisión en la clase mayoritaria (bajo). 

Por tanto, se selecciona el modelo con mtry = 2 como el modelo óptimo para la 

clasificación. A partir de este modelo, se construyó la matriz de confusión para visualizar 

el rendimiento por clase (Figura 10), y se generó el gráfico de importancia de las 

variables predictoras (Figura 11), con el objetivo de identificar qué características 

musicales influyen más en la clasificación del éxito. 

 Modelo mtry = 2 Modelo mtry = 3 Modelo mtry = 4 Modelo mtry = 5 

 Bajo Moderado Alto Bajo Moderado Alto Bajo Moderado Alto Bajo Moderado Alto 

Sensitivity 0,9984 0,19439 0,231707 0,998 0,19626 0,231707 0,9979 0,19439 0,231707 0,9977 0,19626 0,231707 

Specificity 0,1994 0,99859 0,999837 0,201 0,99824 0,999837 0,1994 0,99806 0,999837 0,201 0,99789 0,999837 

Accuracy 0,9191 0,9189 0,9186 0,9186 



 

 

 

Figura 10. Matriz de confusión del modelo Random Forest de clasificación con mtry = 2 

La matriz de confusión muestra que el modelo clasifica muy bien la clase "bajo", con 

5590 aciertos, pero tiende a confundir muchas canciones de éxito "moderado" (431) y 

algunas de "alto" (63) como "bajo". La clase "moderado" presenta menor sensibilidad, 

con solo 104 aciertos y gran parte de sus casos mal clasificados como "bajo". En cambio, 

la clase "alto" se predice correctamente en 19 casos, con solo un error. En conjunto, el 

modelo funciona bien para la clase mayoritaria, pero tiene dificultades para identificar 

correctamente las clases menos representadas. 

A continuación, el gráfico de importancia de variables (Figura 11) muestra que, según el 

MeanDecreaseAccuracy, las variables Energy, Danceability, Speechiness y Valence son 

las que más afectan a la precisión del modelo. Esta métrica evalúa cuánto disminuye la 

exactitud del modelo cuando se desordena aleatoriamente una variable. Por otro lado, 

según el MeanDecreaseGini, destacan Loudness, Duration y Tempo como las más 

relevantes para la partición de los datos. Esta métrica mide cuánto contribuye cada 

variable a reducir la impureza de los nodos en el árbol, es decir, busca que los datos dentro 

de cada nodo sean lo más homogéneos posible. Esto indica que el modelo basa sus 



 

 

decisiones principalmente en características relacionadas con la energía, ritmo y 

volumen de las canciones. Sin embargo, como se observó en la matriz de confusión, estas 

variables no son suficientes para clasificar correctamente las clases menos representadas, 

especialmente “Moderado” y “Alto”. 

Figura 11.  Importancia de las variables en el modelo Random Forest de clasificación 

(Basado en MeanDecreaseAccuracy y MeanDecreaseGini) 

 

Los resultados obtenidos a partir de los modelos de Random Forest reflejan un 

rendimiento moderado en ambas aproximaciones. El modelo de regresión explicó 

aproximadamente un 20,4% de la varianza del éxito musical, lo que indica que, aunque 

el modelo captura parte de la complejidad del fenómeno, aún existe margen de mejora. 

En cambio, el modelo de clasificación mostró una alta precisión global, pero con 

limitaciones en la detección de las clases menos representadas (éxito moderado y alto), a 

consecuencia del grave desequilibrio entre clases. Aun así, ambos modelos identificaron 

de forma consistente las variables musicales más influyentes, como Danceability, Energy 

y Speechiness. 



 

 

 

6. Conclusiones 

Los objetivos planteados al inicio del trabajo se han cumplido de forma progresiva a 

través del análisis exploratorio, la reducción de dimensión y la aplicación de distintos 

modelos de aprendizaje supervisado. En primer lugar se construyó un único indicador 

de éxito para cada canción, combinando variables bastante correlacionadas entre ellas 

mediante la aplicación de PCA (Análisis de Componentes Principales). Este indicador 

nos ha permitido sintetizar de forma eficiente la información de la interacción del público 

con cada tema musical. 

Posteriormente, se abordó la predicción del éxito musical empleando modelos de 

regresión y clasificación.  

Tabla 6. Comparativa de rendimiento e importancia de variables entre los distintos 

modelos predictivos. 

Modelos de regresión 

 RMSE Variables más influyentes en 

el éxito 

Modelo lineal 0.4515593 Loudness y Danceability  

Árbol de regresión 0.4507146 Danceability y 

Instrumentalness 

Random Forest 0.4141518  Duration , Loudness y 

Danceability 

Modelos de clasificación 

 Variables más influyentes en el éxito 

Árbol de clasificación Duration, Danceability y Speechiness 

Random Forest Danceability y Energy 

Esta tabla resume los errores (RMSE) obtenidos en los modelos de regresión y de las 

variables predictoras musicales más influyentes en la predicción del éxito, tanto para 

modelos con respuesta continua como categórica. 



 

 

Como puede observarse, el modelo de Random Forest aplicado a regresión es el que 

presenta un mejor ajuste, con un RMSE de 0.4142, sensiblemente inferior al de los 

modelos lineal (0.4516) y de árbol de regresión (0.4507). Esto confirma su mayor 

capacidad para capturar relaciones no lineales en los datos. 

En el modelo lineal se observaron asociaciones relevantes entre el éxito y variables como 

Loudness y Danceability, mientras que otras como Liveness o Duration mostraron menor 

influencia. Además, se descartaron variables sin aportación predictiva significativa, como 

Tempo. No obstante, este modelo presenta una capacidad predictiva limitada, por lo 

que debemos destacar su escaso poder para predecir el éxito musical, no supera el 

diagnóstico. 

Los árboles de decisión ofrecieron una representación visual clara de las reglas de 

partición, facilitando la interpretación del proceso predictivo. En estos modelos, se 

observó que la mayoría de las canciones tienden a clasificarse como de bajo éxito, lo 

que evidencia un desequilibrio en la distribución de la variable respuesta. 

Por su parte, los modelos Random Forest, tanto de regresión como de clasificación, 

aportaron mayor robustez y fiabilidad. En ambos casos, se identificaron consistentemente 

como variables clave Loudness y Danceability, lo que sugiere que canciones con mayor 

volumen y ritmo bailable presentan más probabilidades de alcanzar éxito. Los 

indicadores de importancia de variables respaldaron estos hallazgos de forma sólida. 

En conjunto, el análisis muestra que el uso de técnicas de aprendizaje automático 

aplicadas a características musicales permite construir modelos predictivos con capacidad 

interpretativa y rendimiento competitivo. Esta aproximación constituye una base sólida 

para futuros desarrollos, como sistemas de recomendación musical basados en 

contenido. 
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