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Abstract
This paper analyzes the effect of competition in a dynamic contest in which agents of
two types (A and B) differ in their expected performances; environments where type
A outperforms type B are more frequent than those where B outperforms A. In each
period, the population of agents is randomly matched in groups of n members (each
group faces a particular environment), with the top k < n performing agents from each
group being the winners of the prizes. Hence, the ratio k

n determines the proportion
of winning agents in each group. This ratio also describes the strength of competition
in the group: the lower k

n is, the higher the level of competition is. Our results show
that type A eventually dominates the entire population with moderate competition, but
type B survives in the long run for high levels of competition. Hence, we obtain that
no matter how low the expected success rate of a type is, if the strength of competition
is high enough those agents with the lowest expected success rate survive in the long
run.
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1 Introduction

Themost common use of contests is asmechanisms to create incentives towork harder.
However, they can also be used as selection mechanisms. For example, a contest can
select agents that differ in their expected efficiency levels. This can be relevant if
the institution or principal cannot either impose the strategy to be followed by an
agent or observe the type of agent. We seek to study the role of the number of prizes
(k) and the number of contestants (n) in the outcome of the selection process.1 These
institutional parameters define a ratio k

n , which can be seen as ameasure of the strength
of competition. For example, if k = 1 and n = 3, three agents compete for only one
prize in every group. Similarly, if k = 1 and n = 10 then 10 agents compete for only
one prize. Note that in the second case competition is higher (ceteris paribus). Hence,
the strength of competition increases as ratio k

n decreases. We focus on a specific kind
of selection, in particular this “strength of competition” in a contest, so we take an
evolutionary approach. To that end, we consider a large population with two possible
types of behavioral agents: A-agents and B-agents, where environments where type
A outperforms B are more likely to occur than environments where B outperforms A.
In this sense, A is a better type because it has a higher expected success rate.2

In this population of agents, we consider that each individual interacts with ran-
domly selected individuals.3 Thus, groups are formed by a random matching process.
However, a random matching process would generate a very complicated stochastic
system. In the economic literature, for large populations (either countable or uncount-
able) the population dynamic is usually approximated by a deterministic process,
where the frequency of different matches is identified with their corresponding expec-
tations. This simplifying assumption is analyzed in several papers fromdifferent points
of view. Examples include Boylan (1992, 1995), Alós-Ferrer (1999), and Duffie and
Sun (2012). In Sect. 2, we make some assumptions that guarantee the existence of a
matching process, so we can consider the deterministic process presented in this paper
as a good approximation of the complex stochastic system.

In the literature on evolutionary selection models the matching process is usually
made in pairs, which is a particular case of group size, n = 2, where one agent is
selected, k = 1. We must consider a more general matching process in which n ≥ 2,
and k ≥ 1 agents are selected. However, the rationale in this setting is the same as in

1 Note that the prizes can be very diverse, for example a promotion, a job opportunity, a contract, a sale,
etc.
2 As a stylized example, the behavioral rules (A and B) can be thought of as different available technologies:
one of them is bettermore often than the other, and agents are proficient in either technology A or B. Another
stylized example could be a sales company that promotes people according to their success in selling. The
company employs men and women and men sell better to men and women sell better to women. If the
potential market has more men than women, men could be the A-agents and women the B-agents. It is
not easy to find an application that fits all of the model’s elements because the model seeks to represent
a family of complex institutions in a very stylized manner to point out a very specific characteristic of
a selection process. Obviously, in any real institution the selection process is influenced by many more
factors. However, we believe that the properties identified in our model are robust enough to play a role in
more complex situations.
3 We assume that the institution cannot either impose the strategy to be followed by an agent or observe
the type of agent, so we consider that each individual interacts with randomly selected individuals. Thus,
the institution can only determine the size of the group n and the number of prizes k, i.e., the ratio k

n .
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matching in pairs. We consider that there is a continuum population of agents, and we
work with the proportions of different kinds of groups of agents.

To sum up, this paper analyzes the effect of strength of competition on the charac-
teristics of the successful agents. To that end, we consider that at t = 0 each agent is
given one behavioral rule, either A or B. They are not strategic, so they become agents
of type A or B. At each t , the population of A and B agents is randomly matched
in groups of n agents, with members of each group competing with each other, and
each group facing a particular environment. The mechanism selects4 the top k < n
performing agents from each group, with k ∈ {1, 2, 3, . . .} and n ∈ {2, 3, . . .}. We
assume that at t +1 nonwinners imitate the action of winners at t , so the population at
t+1 reproduces the distribution of the type of winners at t .5 Consequently, the propor-
tion of A-agents in the population is equal to that of the winners. Then they are again
randomly matched and the process repeats. We seek to learn how this competition
process changes the characteristics of the population.

There is an alternative imitative behavior, which adds a different but very inter-
esting point of view of the dynamic process. Nevertheless, the resulting dynamic is
the same as in the first imitative assumption. Let x be the number of A-agents in a
group (and (n − x) the number of B-agents). Under this second imitation behavior,
regardless of what environment a group is facing, if the number of individuals who
successfully match the environment exceeds a threshold k then the entire group adopts
the strategy matching the environment. However, if the number of agents is below the
threshold k then in groups facing environment A only a fraction x

k of the members
adopt the strategy matching the environment, strategy A, and the remaining 1 − x

k
adopt B.6 Similarly, in groups facing environment B only a fraction n−x

k copy B and
the rest copy A. This basically means that even if one strategy proves more successful
with the current environment it will not automatically dominate the group unless it is
sufficiently represented. The higher k is, the more easily the members of the group
imitate successful behavior. Thus, the ratio k

n measures the minimum proportion of
members of the group matching the environment needed to cause all members to copy
the successful action. Therefore, this ratio also measures the level of conformity in this
population. The higher k

n is, the more successful agents are needed to cause the group
to change behavior, so changing behavior becomes more difficult. On the other hand,
a lower k

n makes success more important relative to conformism and the environment
becomes more competitive. Therefore, in this context, conformism and competition
are correlated. In addition, notice that, after both imitation rules, the proportion of
A-agents among the nonwinners is equal to the proportion of A-agents in the popula-
tion of winners. Thus, we can focus on the proportion of A-agents among the agents
selected and study how the strength of competition changes the distribution of the
population.

4 “To win” and “to be selected” are used interchangeably in this paper.
5 An equivalent assumption is that only the winners at t are considered for competition at t + 1, thus, the
nonwinners are out of the contest.
6 Notice that in this case (x < k and the environment is A), there are only x agents of type A in a group,
and in addition they are all successful. The rest of the agents in the group are type B and some change to
A but others do not.
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In this model A-agents perform better than B-agents more often, so we should
expect an increase in the strength of competition to punish B-agents and the proportion
of B-agents to decrease as competition increases. However, our results show that an
increase in competition does not always work this way: In particular, we find that for
high enough levels of competition B-agents can persist in the long run, despite being
expected to perform worse.

More precisely, depending on the strength of competition we find three possible
cases: Cases L , M and H . First, case L: If the strength of competition is too low, the
selection process is not strong enough to offset the inertia of the initial population. The
dynamic thus depends on the initial conditions and the population eventually becomes
homogeneous, i.e. with only type A or type B persists in the long run. Second, case M :
If the strength of competition increases (intermediate level) the whole population will
become A-agents for any initial mixed population. In this case the selection process is
strong enough to eventually select the best performers, as expected. Finally, case H :
if competition increases far enough, B-agents also survive.7 Thus, surprisingly, we
show that no matter how low the success rate of a type is, if the strength of competition
is high enough agents of that type survive in the long run. In other words, too much
competition is always harmful to the best performers. The intuition behind our results
is broadly explained in Sect. 3.1.

The contribution of this paper is twofold. First, it presents a family of contest
selection mechanisms that parameterizes the strength of competition in a simple way.
In evolutionarymodels agents are usually matched in pairs and one of them is selected.
This paper generalizes this idea in contests and considers matchings of n agents with
k < n agents selected. Second, we show that this generalization is not innocuous but
has a surprising result even in a very simple model. As far as we are aware, there are
no similar approaches in the literature on evolutionary models.

Our approach is concerned with designing a suitable selection mechanism, which
depends on the objective function of the institution.8 This approach is related to some
extent to classic mechanism design, especially principal-agent models. In suchmodels
the information that players have about others players and their individual choices has
a major role in the design of the mechanism. However, our approach puts the focus on
an institutional characteristic, i.e. the strength of competition, and we try to highlight
that it can be an important factor to be considered even in a simple model.

This paper is related to Harrington (1998, 1999a, b, 2000, 2003) and Garcia-
Martinez (2010) because our mechanism can be seen as a generalization of theirs.
Harrington uses a selection process in a hierarchical structure to compare the perfor-
mance of rigid behavior with that of flexible behavior. Agents are randomly matched
in pairs (n = 2) and one of them is selected. Thus, the strength of competition is fixed.
Garcia-Martinez (2010) analyzes a promotion system that works in two steps. The
first step is like Harrington’s mechanism: Agents are matched in pairs and one of them
is selected. In the second step, the agents selected in the first step are pooled together

7 We could consider the level of conformity mentioned above instead of the strength of competition. In
that case, we obtain that for high levels of conformity case L pertains, if the conformity requirement is
intermediate case M pertains and for low levels case H pertains.
8 For any objective function of the institution, there will be an optimal proportion of A-agents, which could
vary from 0 to 1. The institution should take the appropriate k and n to attain its objective.
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and the top fraction θ of best-performing agents is eventually selected; this is referred
to as “global selection”. In Vega-Redondo (2000) a hierarchical structure is used to
select agents, who play in pairs (n = 2) a 2 × 2 coordination game, where there is
only global selection. The present paper is also related to the literature on tournaments
produced since the seminal paper by Lazear and Rosen (1981), in particular to those
papers that focus on the selection role of contests, e.g., Rosen (1986), Section V, Hvide
and Kristiansen (2002), Tsoulouhas et al. (2007), Azmat and Möller (2009), and Groh
et al. (2012).

The rest of this paper is organized as follows: Sect. 2 describes the model and the
dynamic equation; Sect. 3 analyzes the dynamics, discusses the results, and provides
some intuitions; Sect. 4 analyzes the convergence time; and Sect. 5 concludes.

2 Themodel

At time t there is a continuous population of A and B agents. Let at ∈ [0, 1] denote the
proportion of A-agents at time t , and 1− at the proportion of B-agents. The dynamic
function at+1 = f (at ) describes the evolution of the proportion of A-agents at time
t + 1 as a function of the proportion of A-agents at t . First, we derive this function.

At t , agents are randomlymatched in groups of n ≥ 2.We assume that the random
matching process has the following properties:First, the probabilitywithwhich a given
agent is matched with agents of given types equals the product of the proportions of
agents of the respective types in the population. Second, the proportion of a given class
of grouping is equal to the probability (ex-ante) of such a grouping. The existence of
a random matching process with these properties is proved in Alós-Ferrer (1999).9

Thus, the proportion of groups containing a number x of A-agents (and (n − x)
B-agents) is equal to the probability of such a group, i.e.

(n
x

)
axt (1−at )n−x , let b(at , x)

stand for
(n
x

)
axt (1−at )n−x .10 This is also the proportion of agents in groups with x A-

agents with regard to the initial population (level t) because the groups are composed
of equal numbers of agents.

Agents face a stochastic environment that is the same for all members of a particular
group. However, the environment of each group is stochastically independent of that of
other groups.We categorize all the different possible environments into two types. In a
type A environment A-agents outperform B-agents. In a type B environment B-agents
outperform A-agents.11 The probability of an environment of type A is p > 1

2 , and that
of type B is (1 − p).12 Therefore, each agent faces an uncertain future environment,
but there is no aggregate uncertainty because of our assumptions. Therefore, at each
level after the random matching, a proportion p ((1 − p)) of the groups has a type
A (B) environment. This is assumed to be i.i.d. across levels, so that the probability

9 Alós-Ferrer (1999) gives a constructive existence proof for the case n = 2. The generalization to groups
of n agents is straightforward.
10 The x is distributed as a binomial distribution, x ∼ B(n, at ).
11 One further kindof environment canbe considered inwhichboth rules performequally.This environment
adds no new insights to the analysis, so we do not consider it.
12 This probability p and (1− p) can also be seen as the expected success rates of an agent of type A and
B respectively.

123



310 SERIEs (2018) 9:305–332

of an agent facing a given environment is independent of the environment that he/she
has faced in the past.

Therefore, the proportion of agents in groups with a number x of A-agents under a
type A environment is b(at , x)p. In such groups A-agents outperform B-agents. The
system selects the k top-performing agents from each group, where k ≤ n. The agents
selected from each group are the winners of that group. The proportion of winning
agents is k

n with regard to the initial population (time t). Thus, if a group in a type
A environment has more A-agents than vacancies available (i.e. x ≥ k) then all the
agents selected from that group are A-agents, and the proportion of A-agents selected
is k

n b(at , x)p. However, if x < k then only a number x of A-agents are selected
and some B-agents have to be randomly chosen to fill the k − x vacancies, so the
proportion of A-agents selected is x

n b(at , x)p. Consequently, in this case, the total pro-

portion of A-agents selectedwill be: E Aa
t = ∑k−1

x=0
x
n b(at , x)p+∑n

x=k
k
n b(at , x)p =

∑n
x=0 min[x, k] 1n b(at , x)p. Analogously, a fraction (1− p) of groups will face a type

B environment and similar reasoning applies. In that case, the proportion of A-agents
selected comprises the A-agents selected from the groups under the type B environ-
ment that do not have enough B-agents to fill all the k vacancies, i.e. x − (n − k)
A-agents: EBa

t = ∑n
x=n−(k−1)(x − (n − k)) 1n b(at , x)(1 − p).

The proportion of A-agents selected will be E Aa
t + EBa

t with regard to the initial
population (at t). Finally, the proportion of A-agents is 1

k
n

(
E Aa

t + EBa
t

)
with regard

to the population of agents selected. We assume that nonwinners imitate the winning
type, so this proportion of A-agents will also be the proportion of the whole population
at t + 1, i.e., at+1. Therefore, the dynamic equation has this form:13

at+1 = f (at ) = 1
k
n

(
E Aa

t + EBa
t

) =
n∑

x=0

min[x, k]
k

b(at , x)p

+
n∑

x=n−(k−1)

(x − (n − k))

k
b(at , x)(1 − p)

=
n∑

x=0

(Min[x, k]p + Max[x − (n − k), 0](1 − p))

k
b(at , x)

=
n∑

x=0

� (x, k, p, n) b(at , x) (1)

We use S[n,k] to denote the system that selects k agents from groups of n agents. We
consider the following equilibriumconcepts: The point a∗ ∈ [0, 1] is said to be a steady
state of Eq. (1) if it is a fixed point of f (.), i.e. f (a∗) = a∗. It is obvious that f (0) = 0
and f (1) = 1. Consequently, a = 0 and a = 1 are always steady states. The point
a∗ ∈ [0, 1] is aglobally stable equilibrium of (1) if for alla0 ∈ (0, 1), limt→∞ at = a∗.
13 We do not actually need to consider the sum from x = 0; it suffices to start at x = 1. This is because
groups with x = 0 contain no type A; in those groups only type B can survive, independently of k. This

also applies to f
′
(a) and f

′′
(a). It seems convenient to include this in the expressions only for symmetry

with the term where x = n. In addition, � (x, k, p, n) stand for (Min[x,k]p+Max[x−(n−k),0](1−p))
k .
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The point a∗ ∈ [0, 1] is a locally stable equilibrium if only for a0 ∈ B(a∗, ε)∩ (0, 1),
limt→∞ at = a∗, where B(a∗, ε) = {a ∈ (0, 1)/ |a − a∗| < ε} with ε > 0. Finally,
denote a∗[n, k] as an inner steady state for the system S[n,k], i.e. a∗[n, k] belongs to
the open interval (0, 1).

In the following section, the dynamics is analyzed and the intuition behind the result
is provided.

3 Results

Let a∗ be an inner root of the equation f (at ) − at = 0 that belongs to the open
interval (0, 1). This root exists and is unique if either k

n < (1 − p) or k
n > p (see the

proof of the result below in the “Appendix”). By definition, this root is a steady state.
The following result characterizes the dynamic for the selection process specified by
Eq. (1).

Proposition 1 Assume p > (1 − p), k
n < 1 and consider the dynamic equation (1):

(1) If k
n < (1 − p) there is only one inner steady state a∗ and it is globally stable.

The steady states a = 0 and a = 1 are unstable. B-agents survive.
(2) If k

n ∈ [(1 − p), p] there are no inner steady states. The steady state a = 0 is
unstable and a = 1 is globally stable. A-agents are eventually the only survivors.

(3) If k
n > p there is only one inner steady state a∗, which is unstable and divides

the interval a ∈ (0, 1) into two subintervals. The subinterval (0, a∗) is the basin
of attraction of the steady state a = 0 and the subinterval (a∗, 1) that of a = 1.
Both steady states are locally stable. Thus, initial conditions determine whether
either A-agent or B-agents are the only survivors.

Proposition 1 shows that the equilibrium behavior can be characterized according
to rate k

n , which measures the strength of competition in the contest. Note that for low
levels of competition ( kn > p), the selection process is not strong enough to overcome
the inertia of the initial population. The dynamic depends on the initial conditions,
and the population eventually becomes homogeneous, i.e. either type A or type B:
we refer to this case as case L (Low competition). If the strength of competition
increases enough ( kn ∈ [(1 − p), p]), the whole population become type A for any
initial population. In that case the selection process is strong enough to eventually
select only A-agents: we refer to this case as case M (Midrange competition). Finally,
if the strength of competition is high enough ( kn < (1− p)), B-agents also survive: we
refer to this case as case H (High competition). Figure 1 shows a phase diagram of
each case. Therefore, no matter how low the expected success rate of a type of agent
is, if the strength of competition is high enough agents of that type survive in the long
run.
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Fig. 1 Three phase diagrams are plotted with n = 20 and PA = 0.7. The parameter k varies: with k = 17
in case L, with k = 10 in Case M; and k = 3 in Case H

3.1 Discussion and intuition of themain result

To understand why this happens, it must first be observed that the dynamic of the
system depends on the probability of each type of agent winning.14 For example, if
the system is in a period t and the probability of an A-agent being selected is greater
than that of a B-agent, then the proportion of A-agents in period t+1 is greater than in
t , i.e. the proportion of A-agents increases and the proportion of B-agents decreases.
Now, focus on a particular type of agent who faces one of the two following extreme
scenarios:

• If agents of this particular type are scarce (say close to extinction) they will gener-
ally be matched with agents of the other type.15 Thus, in general, there will only
be one agent of this particular type in a group, who will only be selected if he/she
outperforms the other type of agents so that he/she is the top performer. In such a
context, the probability of this particular type of agent winning is not influenced by
an increase in the strength of competition. His/her probability of winning depends
almost entirely on his/her probability of outperforming the other type, i.e. it is p
if the agent is type A and (1 − p) otherwise.

• However, when agents of this particular type abound (say the other type is close
to extinction), an agent of this particular type will generally be matched with
agents of his/her own type (see footnote 15). Thus, if all the agents in a group
are of the same type, they respond in the same way to the same environment.
They all perform equally. The competitors of a particular agent in his/her own
group are as successful (or unsuccessful) as he/she is. Thus, selection does not
depend at all on the performance of this particular type of agent: the probability
of winning depends almost entirely on how many people are selected. Therefore,

14 Let P(A)
t (P(B)

t ) be the probability of an A(B)-agent being selected in period t . Notice that at+1 =
A-agents selected
agents selected = at P

(A)
t

at P
(A)
t +bt P

(B)
t

= at P
(A)
t
k
n

⇔ P(A)
t = at+1

at
k
n , analogously P(B)

t = bt+1
bt

k
n . Therefore,

P(A)
t > P(B)

t ⇔ at+1
at

>
bt+1
bt

⇔ at+1
at

>
(1−at+1)
(1−at )

> 0 ⇔ at+1 > at .
15 This happens with a probability close to one.
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the probability of this particular type of agent winning is strongly influenced by
an increase in the strength of competition.

Therefore, an increase in the strength of competition tends to punish the more
common type of agents because it decreases their probability of winning, but does not
affect the relatively scarce type. If competition is high enough, no one type can be
abundant enough to be the only survivor. Thus, diversity can be favored or punished
by tuning the strength of competition.

To obtain a clearer picture, consider the following particular case. Assume that
the dynamic of the model is case M . In that case, the only global equilibrium is the
whole population being type A (a∗ = 1). Consequently, for any state of the system
at , the probability of A-agents winning is greater than that of B-agents. The rest of
the discussion focuses on states in which at � 1. When at � 1, as mentioned above,
the probability that an A-agent (abundant type) will win is approximately equal to
the proportion of agents selected ( kn ), and the probability that a B-agent (scarce type)
will win is approximately equal to the probability of success of that type ((1 − p)).
Obviously, if the dynamic is case M , then k

n > (1 − p). However, if k
n is reduced

(competition increases), the probability of winning of an A-agent decreases, while the
probability of winning of a B -agent remains practically unchanged. Therefore, if k

n
decreases beyond (1 − p) the probability of winning of B-agents is greater than that
of A-agents, and the proportion of A-agents will decrease in the next period. When
this happens the homogeneous equilibrium a∗ = 1 becomes unstable, and the system
converges to a stable globally mixed equilibrium in which there are agents of both
types. The dynamic changes from case M to case H .

On the other hand, it can be shown by a similar argument that if k
n increases beyond

p, the state a = 0 becomes locally stable. In that case, for states of the system close to
a = 0, the probability ofwinning for B-agents is greater than for A-agents. In addition,
the state a = 1 changes from globally to locally stable, and the dynamic changes from
case M to case L . The lower the strength of competition of a system, the easier it is
for it to be dominated by one type of agent and for it to achieve homogeneity.

Therefore, if competition increases two forces work together: On the one hand, the
more important an agent’s success or failure in the selection becomes and thus the less
the effect of the initial proportions of the different types of agent matters. On the other
hand, an increase in the strength of competition tends to punish the more common
type of agents because it decreases their probability of winning, but it does not affect
that of the scarcer type. Thus, competition can encourage diversity.

It would be fair to ask how robust the results would be if the population were finite.
In this case, the dynamics would be a complex stochastic system. The probability
of a particular group of n individuals with x being A-agents being formed could
be calculated. However, the process is stochastic, and this particular group might or
might not eventually be created. Thus, it cannot be assumed that the frequency of
different matches can be identified with their corresponding expectations. However, if
the population increases the number of groups created also increases, so the probability
of either group having representatives among the groups eventually created increases.
The proportion of any kind of group can be expected to approach its expected value as
the population becomes very large. The average behavior of this finite stochasticmodel
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should approach our continuous deterministic model as the population increases. In
any event, the process continues to be stochastic. See Boylan (1995) for a study of
this issue. However, more interesting for checking the robustness of our model is the
fact that the intuition explained above for the continuous model would also apply
to this finite model. If B-agents are close to extinction (say only one remains in the
population), that B-agent will be matched with n − 1 A-agents. The only chance for
him/her to be promoted is for the environment to be type B, the probability of which
is (1 − p). Thus, his/her probability of promotion only depends on his/her expected
success rate. However, if the population is large enough the probability of an A-agent
being matched only with A-agents is almost one. Thus, the probability of promotion
will be k

n , and it does not depend on his/her expected success rate. Therefore, if
k
n < (1 − p) on average the population of B-agents should survive more often than
not.

In the following section we seek to obtain more insights about the behavior of the
inner steady state. To that end two specific values of k are considered. First, k is taken
to be 1 and then it is considered to be a function of parameter n, i.e. k = n − 1.
This enables us to obtain a closed form of Eq. (1). Thus, changes in the strength of
competition only depend on parameter n, so the behavior of the inner steady state
can be studied more easily. With k = 1, midrange and high strength competition is
analyzed, and with k = n − 1 the midrange and low cases are analyzed.

3.2 Low andmidrange competition

In this section, k = n−1 is assumed and only one agent of each group is not selected.
We consider S[n, k = n−1]. Nevertheless, a wide range of degrees of competition can
be considered. As mentioned above, the strength of competition is characterized by
the quotient kn , which is now

n−1
n ∈ { 1

2 ,
2
3 ,

3
4 , . . . , 1

}
. Thus, an increase in n decreases

the strength of competition because the fraction k
n = n−1

n increases. As (1 − p) is
smaller than 1

2 , it must hold that k
n = n−1

n > (1 − p). Thus, by Proposition 1 only
cases M and L can occur. When k

n = n−1
n > p case L arises and there is an unstable

inner steady state. Let a∗[n, k = n − 1] be that steady state. However, with n−1
n < p

there is no inner steady state ( case M) and the globally stable equilibrium is a∗ = 1.
The following result shows that a∗[n, k = n − 1] is increasing in n. The proof is

in the “Appendix”.

Proposition 2 If n−1
n > p, then a∗[n, k = n − 1] < a∗[n + 1, k = n].

With a low competition (case L), if the strength of competition increases (n
decreases) enough, the inner steady state decreases to zero (increasing the basin of
attraction of a = 1 and decreasing that of a = 0), and a = 1 eventually becomes
globally stable. In Fig. 1 the inner steady state of case L moves to the left, and the
case shifts from L to M. As mentioned above, in that case an increase in competition
increases the importance of an agent’s success or failure in the selection, and the effect
of the initial proportions of the different types of agent becomes less important.

The following result shows how a∗[n, k = n − 1] changes with the gap between
the success rates p − (1 − p) as expected. The proof is in the “Appendix”.
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Proposition 3 Let kn = n−1
n > p, if p increases, the inner steady state a∗[n, k = n−1]

decreases.

The greater the gap between the success rates is (p increases), the greater the
advantage of a type A agent is. With low-level competition (case L), an increase in p
decreases the inner steady state. In Fig. 1, the inner steady state of case L moves to
the left, and this causes a decrease in the basin of attraction of a = 0.

3.3 High andmidrange competition

In this section, assuming k = 1, only one agent of each group is selected and we
consider S[n, k = 1]. The strength of competition is characterized by k

n = 1
n ∈{

0, . . . , 1
4 ,

1
3 ,

1
2

}
. Thus, by Proposition 1 only cases H and M can be found. Let

a∗[n, k = 1] be the unique globally stable steady state, which is one in case M, i.e.
when 1

n ∈ [1− p, 1
2 ] and is smaller than one in case H, 1

n ∈ (0, 1− p]. The following
result shows that a∗[n, k = 1] is decreasing in n. The proof is in the “Appendix”.

Proposition 4 If k
n = 1

n < 1 − p, then a∗[n, k = 1] > a∗[n + 1, k = 1].
Therefore, with midrange competition (case M), if competition increases (n

increases) enough, the steady state a∗ = 1 loses its stability and an inner state that is
globally stable appears. The case shifts from M to H, and the B-agents also survive.
As the strength of competition increases this inner steady state decreases and the pro-
portion of B agents in equilibrium increases. In Fig. 1 the inner steady state of case
H moves to the left. As already mentioned, in such cases competition can encourage
diversity. The strength of competition tends to punish the more common type of agent
but does not affect scarcer type.

The following result shows how a∗[n, k = 1] changes with the gap between the
success rates p − (1 − p) as expected. The proof is in the “Appendix”.

Proposition 5 Let k
n = 1

n < (1 − p), if p increases, the globally stable inner steady
state a∗[n, k = 1] increases.

With high competition (caseH) and increases in p there is an increase in the globally
stable inner steady state a∗[n, k = 1]. In Fig. 1 the inner steady state of case H moves
to the right, and the proportion of B agents decreases in equilibrium. If the increase
in p is high enough the case can shift from H to M.

4 Time of convergence and numerical analysis

An institution could be concerned not only about the final outcome but also about
how fast the goal is reached. We have carried out a numerical analysis to study the
convergence times. In this section we present our findings, which are summarized in
Table 1.

We find that convergence time can increase for several reasons. First, it decreases as
the proportion of the population selected decreases, i.e. as k/n decreases. As expected,
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Table 1 This table shows the number of periods T in which
∣
∣at − a∗∣

∣ < 0.0001 for any t > T

p = 0.55 p = 0.75 p = 0.95
k\n 5 10 15 25 k\n 5 10 15 25 k\n 5 10 15 25

1 8 3 2 1 1 36 7 4 2 1 8 13 28 30

2 53 4 2 1 2 23 21 6 3 2 6 8 10 19

3 44 9 3 2 3 14 56 16 4 3 6 6 8 11

4 31 28 5 2 4 15 23 151 6 4 8 6 7 9

5 104 8 2 5 16 36 11 5 6 6 8

6 42 20 3 6 14 23 49 6 6 6 7

7 30 290 4 7 13 18 89 7 6 6 6

8 28 66 5 8 14 15 42 8 7 6 6

9 38 41 7 9 19 14 29 9 11 6 6

10 32 14 10 13 23 10 6 6

11 28 60 11 13 20 11 6 6

12 28 167 12 13 17 12 7 6

13 31 76 13 15 16 13 9 6

14 48 52 14 24 14 14 15 6

15 40 15 14 15 6

16 34 16 13 16 6

17 30 17 13 17 6

18 28 18 12 18 6

19 27 19 13 19 6

20 27 20 13 20 7

21 28 21 14 21 8

22 32 22 16 22 9

23 41 23 20 23 12

24 71 24 34 24 22

The numerical analysis was conducted for three values of p ∈ {0.55, 0.75, 0.95}, and for different strengths
of competition. Four groups sizes are considered: n ∈ {5, 10, 15, 25} with all possible values of k. The
configurations of case H are in bold, those of case M in italic, and those of case L in roman. We take
a0 = 0.5 as the initial condition. Cases H and M only have one globally stable steady state. However, case
L has two locally stable steady states, and. a0 = 0.5 is always in the basin of attraction of a∗ = 1

if competition is not high, and consequently most of the population are selected, the
selection process slows down, see for example the column of n = 25 for p = 0.55 in
Table 1. However, there are other reasons that can slow down the process.

The process can become very slow when the level of competition is close to the
thresholds that mark the boundaries between the case H , M and L . These three cases
are shown respectively in bold, italic, and roman in Table 1. In other words, this
slowdown occurs when the level of competition k/n is close to the expected success
rate of either agent type A or type B. Note that the difference between the three cases
is that a steady state changes its stability; this means that when k/n is very close to
one of these boundaries the function at + 1 = f (a) is also very close to the diagonal
line at + 1 = at . Consequently, the changes in the population are minimal in each
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interaction. On the boundary between case M and L this effect does not appear in
Table 1. This is because in case L there are two locally stable equilibria and two
basins of attraction. In addition, the initial condition considered is in the basin of
attraction of a∗ = 1 and the slowdown of the process appears in the basin of attraction
of a∗ = 0. In any event, case L should be the least interesting for the institution
because the outcome depends on the initial conditions.

5 Conclusion

This paper analyzes the strength of competition in a simple dynamic contest model.
The dynamic depends on the probability of winning of each type of agent, which
in turn depends on three factors: First on the composition of the population, i.e. the
proportion of agents of each type; second on how strong the competition is; and
third on the probability of success in the activity undertaken by agents within the
organization. We find that as competition increases the initial conditions becomes less
relevant, so for an intermediate level of competition the best performing agents are
the only survivors. However, if competition is sufficiently strong the agents with the
lowest expected success rate also survive, no matter how low their expected success
rate is. Too much competition is always harmful to the best performers. An increase in
competition tends to punish the more common type of agent because it decreases their
probability of winning, but it does not affect the relatively scarce type. Consequently,
care must be taken with the strength of competition. As we show, if there is a desire to
increase the presence in a population of certain agentswith a high expected success rate
then in certain contexts it may be necessary to decrease the strength of competition
rather than to increase it. By contrast, competition may have to be increased if the
objective is to increase the presence of low-performing agents in the sense defined in
this paper.

Note that if a model with more than two types of agents with different expected
success rates is considered the agent with the lowest rate will always survive for
a sufficiently high level of competition. In addition, for a sufficiently low level of
competition any homogeneous state (the whole population is of the same type) will
be a locally stable steady state. The intuition discussed in Sect. 3 also applies to this
more general case.

The selection system considered makes sense if the institution cannot select agents
by type and the alternative is to use a selection process based on the performance
of agents. On the other hand, the selection of B-agents may or may not be desirable
depending on the nature of the situation and the preferences of the institutions involved.

Our result depends largely on one particular critical assumption: in a group, all
agents of the same type are either better or worse than other types simultaneously, so
their successes (or failures) perfectly correlatewith one another. If two agents are under
the same environment and are following the same rule and one of them is successful,
then the other will also be successful, or at least more successful than other types. If
that is the case, the strength of competition will have this paradoxical effect in the
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dynamic of the process. In a real institution, this paradoxical effect should be more
noticeable as this correlation becomes stronger.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A. Appendix

First, some preliminary results are shown. Then the propositions are proved in the
following order: first proposition 1, then 4, 5, 2, and 3.

Assume 1
2 < p < 1, k ∈ N, n ∈ N, k > 0, n > k ≥ 2, at ∈ [0, 1], and the

time subscript is omitted wherever it is not confusing to do so. Let b(a, x) stand for(n
x

)
ax (1 − a)n−x .

A.1 Preliminary results

It is helpful to write down some basic results that are widely used in the proof of the
propositions.

The binomial theorem

(a + b)n =
n∑

x=0

(
n

x

)
axbn−x (2)

The corollary

2n =
n∑

x=0

(
n

x

)
(3)

The following expressions are directly derived from the factorial formula16
(n
x

) =
n!

x !(n−x)! .

(
n

x

)
=

(
n

n − x

)
(4)

(
n

x

)
=

(
n − 1

x − 1

)
+

(
n − 1

x

)
(5)

x

(
n

x

)
= n

(
n − 1

x − 1

)
(6)

(
n

x

)
=

(
n

x − 1

)
n − x + 1

x
(7)

16 For example, expression (9):
( n
x+1

) = n!
(x+1)!(n−x−1)! = n!

(x+2)!(n−x−2)!
x+2

n−x−1 = ( n
x+2

) x+2
n−x−1 .
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(
n

x + 1

)
=

(
n

x + 2

)
x + 2

n − x − 1
(8)

(
n

n − x + 1

)
=

(
n

(n − (x − 1)

)
=

(
n

x − 1

)
=

(
n

x + 1

)
(x + 1)x

(n − x)(n − x + 1)
(9)

The following results are also used in the proofs of the propositions.

Claim 1 For any k and n,
∑k

x=0(k − x)
(n
x

) = ∑n
x=n−(k−1)(x − (n − k))

(n
x

)

Proof By the symmetry of the binomial coefficient,
(n
x

)=( n
n−x

)
. Therefore,

(
k∑

x=0

(
n

x

)
=

n∑

x=n−k+1

(
n

x

))

⇔
(

k∑

x=0

(k − x)

(
n

x

)
=

n∑

x=n−k+1

(k − (n − x))

(
n

x

))

⇔
⎛

⎝
k∑

x=0

(k − x)

(
n

x

)
=

n∑

x=n−(k−1)

(x − (n − k))

(
n

x

)⎞

⎠


�
Claim 2 For any k and n,

∑n
x=0 xb(a, x) = an

Proof Using (7), (5), and (2),

n∑

x=0

x

(
n

x

)
ax (1 − a)n−x =

n∑

x=0

n

(
n − 1

x − 1

)
ax (1 − a)n−x

=
n∑

x=0

n

((
n

x

)
−

(
n − 1

x

))
ax (1 − a)n−x

= n
n∑

x=0

(
n

x

)
ax (1 − a)n−x − n

n∑

x=0

(
n − 1

x

)
ax (1 − a)n−x

= n − n
n∑

x=0

(
n − 1

x

)
ax (1 − a)n−1−x (1 − a)

Since
(n−1

n

) = 0, the above expression is equal to n − n
∑n−1

x=0

(n−1
x

)
ax (1 −

a)n−1−x (1 − a) = n − n(1 − a) = an 
�
Let z(.) stand for b(a, x) ((an − 2x) a(n − 1) + x(x − 1))

Lemma 1 Let h be an integer and 0 < h ≤ n, then,∑h
x=0 z(.) = (1 − a)n−hah+1(a(n − 1) − h)(h + 1)

( n
h+1

)
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Proof This is proved by induction on h. If h = 1:

1∑

x=0

(
n

x

)
ax (1 − a)n−x ((an − 2x) a(n − 1) + x(x − 1))

= (1 − a)na2n(n − 1) + na(1 − a)n−1
(
a2n(n − 1) − 2a(n − 1)

)

= (1 − a)n−1a2n(n − 1) ((1 − a) + na − 2)

= (1 − a)n−1a2n(n − 1) (a(n − 1) − 1)

= (1 − a)n−hah+1(a(n − 1) − h)(h + 1)

(
n

h + 1

)∣
∣∣∣
h=1

It is proved that it holds for h + 1 if it holds for h:

h+1∑

x=0

(
n

x

)
ax (1 − a)n−x ((an − 2x) a(n − 1) + x(x − 1))

=
h∑

x=0

(
n

x

)
ax (1 − a)n−x ((an − 2x) a(n − 1) + x(x − 1))

+
((

n

h + 1

)
ah+1(1 − a)n−h−1 (

a2n(n − 1) − 2a(n − 1)(h + 1) + (h + 1)(h
)
)

)

= (1 − a)n−hah+1(a(n − 1) − h)(h + 1)

(
n

h + 1

)

+
((

n

h + 1

)
ah+1(1 − a)n−h−1 (

a2n(n − 1) − 2a(n − 1)(h + 1) + (h + 1)(h)
)
)

= (1 − a)n−h−1ah+2
(

n

h + 1

)

(
(1 − a)(a(n − 1) − h)(h + 1)

a
+

(
a2n(n − 1) − 2a(n − 1)(h + 1) + (h + 1)(h)

)

a

)

[using expression (8)]
= (1 − a)n−h−1ah+2

((
n

h + 2

)
h + 2

n − h − 1

)

×
(

(n (n − 1) − (h + 1) (n − 1)) a2 + ((h + 1) (h + n − 1) − 2 (h + 1) (n − 1)) a

a

)

= (1 − a)n−h−1ah+2
((

n

h + 2

)
h + 2

n − h − 1

)

×
(

(n − 1) (n − h − 1) a2 − ((h + 1) (n − h − 1)) a

a

)

= (1 − a)n−h−1ah+2
(

n

h + 2

)
(h + 2) (a (n − 1) − (h + 1))

The last expression is equal to (1 − a)n−hah+1(a(n − 1) − h)(h + 1)
( n
h+1

)
but in

(h + 1) instead of h. 
�
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Lemma 2 Let h be an integer and 0 < h ≤ n, then,
∑h

x=0 xz(.) = (1 −
a)n−hah+1(an − h − 1)(h + 1)h

( n
h+1

)

Proof The proof is analogous to the lemma above, and it is also proved by induction
on h.

If h = 1:

1∑

x=0

x

(
n

x

)
ax (1 − a)n−x ((an − 2x) a(n − 1) + x(x − 1))

= 0 + na(1 − a)n−1
(
a2n(n − 1) − 2a(n − 1)

)

= n(1 − a)n−1a2(n − 1) (an − 2))

= (1 − a)n−hah+1(an − h − 1)(h + 1)h

(
n

h + 1

)∣∣∣
∣
h=1

It is proved that it holds for h + 1 if it holds for h:

h+1∑

x=0

x

(
n

x

)
ax (1 − a)n−x ((an − 2x) a(n − 1) + x(x − 1))

=
h∑

x=0

x

(
n

x

)
ax (1 − a)n−x ((an − 2x) a(n − 1) + x(x − 1))

+
(

(h + 1)

(
n

h + 1

)
ah+1(1 − a)n−h−1

×
(
a2n(n − 1) − 2a(n − 1)(h + 1) + (h + 1)(h)

) )

= (1 − a)n−hah+1(an − h − 1)(h + 1)h

(
n

h + 1

)

+
(

(h + 1)

(
n

h + 1

)
ah+1(1 − a)n−h−1

×
(
a2n(n − 1) − 2a(n − 1)(h + 1) + (h + 1)h

) )

[using expression (9)]

= (1 − a)n−h−1ah+2(h + 1)

((
n

h + 2

)
h + 2

n − h − 1

)

(
(1 − a)h(an − h − 1)

a
+

(
a2n(n − 1) − 2a(n − 1)(h + 1) + (h + 1)h

)

a

)

= (1 − a)n−h−1ah+2 (an − h − 2) (h + 1)(h + 2)

(
n

h + 2

)
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The last expression is equal to (1 − a)n−hah+1(an − h − 1)(h + 1)h
( n
h+1

)
but in

(h + 1) instead of h. 
�
Lemma 3 The function g(a) in a = 1

2 is greater than zero, i.e., g(
1
2 ) = f ( 12 )− 1

2 > 0

Proof The Eq. (1) evaluated in a = 1
2 and minus 1

2 is g( 12 ) = f ( 12 ) −
1
2 =

(∑n
x=0

min[x,k]
k

(n
x

)
p + ∑n

x=n−(k−1)
(x−(n−k))

k

(n
x

)
(1 − p)

) ( 1
2

)n − 1
2 > 0 ⇔

∑n
x=0 min[x, k](nx

)
p + ∑n

x=n−(k−1)(x − (n − k))
(n
x

)
(1 − p) − 1

2k2
n > 0

(using Claim 1)

⇔
n∑

x=0
min[x, k](nx

)
p +

k∑

x=0
(k − x)

(n
x

)
(1 − p) − 1

2k2
n > 0

⇔
k∑

x=0
x
(n
x

)
p + k

n∑

x=k+1

(n
x

)
p +

k∑

x=0
(k − x)

(n
x

)
(1 − p) − 1

2k2
n > 0

⇔
k∑

x=0
x
(n
x

)
p + k

(
n∑

x=0

(n
x

) −
k∑

x=0

(n
x

))
p +

k∑

x=0
(k − x)

(n
x

)
(1 − p) − 1

2k2
n > 0

[using (3)]

⇔
k∑

x=0
x
(n
x

)
p + k

(
2n −

k∑

x=0

(n
x

)
)
p +

k∑

x=0
(k − x)

(n
x

)
(1 − p) − 1

2k2
n > 0

⇔
k∑

x=0
x
(n
x

)
p − k

k∑

x=0

(n
x

)
p +

k∑

x=0
(k − x)

(n
x

)
(1 − p) + kp2n − 1

2k2
n > 0

⇔ −
k∑

x=0
(k − x)p

(n
x

) +
k∑

x=0
(k − x)

(n
x

)
(1 − p) + kp2n − 1

2k2
n(p + (1 − p)) > 0

⇔ −
k∑

x=0
(k − x)

(n
x

)
p +

k∑

x=0
(k − x)

(n
x

)
(1 − p) + 1

2k2
n p − 1

2k2
n(1 − p) > 0

⇔
(

1
2k2

n −
k∑

x=0
(k − x)

(n
x

))
(p − (1 − p)) > 0 ⇔

(
1
2k2

n −
k∑

x=0
(k − x)

(n
x

))
>0

[using (3)]

⇔
(
1

2
k

n∑

x=0

(
n

x

))

−
(

k∑

x=0

(k − x)

(
n

x

))

> 0

⇔
(
1

2
k

k∑

x=0

(
n

x

)
+ 1

2
k

n∑

x=k+1

(
n

x

))

−
(

k∑

x=0

(k − x)

(
n

x

))

> 0

⇔
(

k∑

x=0

(
1

2
k − k + x

) (
n

x

)
+ 1

2
k

n∑

x=k+1

(
n

x

)
> 0

)

⇔
(

k∑

x=0

(
x − k

2

)(
n

x

)
+ k

2

n∑

x=k+1

(
n

x

)
> 0

)

123



SERIEs (2018) 9:305–332 323

Obviously, k
2

∑n
x=k+1

(n
x

)
> 0. The expression

∑k
x=0

(
x − k

2

) (n
x

)
is also positive.

First note that
(
x − k

2

)
is negative17 for 0 ≤ x ≤ ⌊ k

2

⌋
and positive for

⌊ k
2

⌋
< x ≤ k.

In addition, the value of
(
x − k

2

)
for x = i is equal to x = k − i in absolute value; the

values are symmetrical. Second,
(n
x

)
takes increasing values from x = 0 to x = ⌊ n

2

⌋
,

and then it decreases symmetrically. As
⌊ k
2

⌋
<

⌊ n
2

⌋
, the sum of the positive terms has

to be greater than the sum of the negative terms in absolute value:
(

n∑

x=0

(
x − k

2

) (n
x

)
> 0

)
⇔

⎛

⎜
⎝

⌊
k
2

⌋

∑

x=0

(
x − k

2

) (n
x

) +
n∑

x=
⌊
k
2

⌋
+1

(
x − k

2

) (n
x

)
> 0

⎞

⎟
⎠

⇔
⎛

⎜
⎝

n∑

x=
⌊
k
2

⌋
+1

(
x − k

2

) (n
x

)
> −

⌊
k
2

⌋

∑

x=0

(
x − k

2

) (n
x

)
⎞

⎟
⎠ 
�

Claim 3 For any n and a,
n∑

x=0
b(a, x)(x − an) = 0

Proof ByClaim2andusing (2)
n∑

x=0
b(a, x)(x−an) =

n∑

x=0
xb(a, x)−an

n∑

x=0
b(a, x) =

an − an = 0 
�

A.2 Proof of Proposition 1.

The dynamic of S[n,k] is given by Eq. (1):

at+1 = f (at ) =
n∑

x=0

� (x, k, p, n) b(at , x)

It is useful to start by presenting an outline of the proof. First it is shown that the
function g(a) = f (a) − a is continuous in a = [0, 1] with g(0) = g(1) = 0. Second,
local stability in the steady states a = 0 and a = 1 is studied by means of the first
derivative of g(a). Thus, it is shown that if k

n < (1− p) the states a = 0 and a = 1 are
unstable because g′(0) > 0 and g′(1) > 0; if k

n ∈ [(1 − p), p], then a = 0 is unstable
and a = 1 is locally stable because g′(0) > 0 and g′(1) < 0; if k

n > p, then a = 0
and a = 1 are locally stable because g′(0) < 0 and g′(1) < 0. Third, it is proved that
g(a) has no more than one inner root. Fourth, it is proven that there are no periodic
points.18

With all these results, the proposition can be easily proved in the following way.
First, the function g(a) is continuous with no more than one inner root in a = (0, 1),

17 It can be also zero if x =
⌊
k
2

⌋
= k

2 . However the rationale is the same. Where
⌊
k
2

⌋
gives the highest

integer less than or equal to k
2 .

18 It is possible in difference equations for a solution not to be a steady point. Thus, point b is called a
periodic point of xt+1 = f (xt ) if f k (b) = b for a positive integer k, i.e. b is again reached after k iterations.
See Elaydi (1996).
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and g(0) = 0 and g(1) = 0. Second, if k
n < (1− p), then g′(0) > 0 and g′(1) > 0, so

g(a) must have at least one root, but as it cannot be possible for it to have more than
one g(a) necessarily has a unique inner root â. As g′(â) is necessarily negative,19 that
inner root is a stable steady state. As g(a) > 0 if a ∈ (

0, â
)
and g(a) < 0 if a ∈ (

â, 1
)
,

and there are no periodic points, this inner root is a globally stable steady state and
the other two steady states (a = 0 and a = 1) are unstable. Third, if k

n ∈ [(1 − p), p]
then g′(0) > 0 and g′(1) < 0, so the minimum number of roots compatible with
this case is two, which is not possible. Therefore there cannot be any inner roots, and
g(a) > 0 for all a ∈ (0, 1). Fourth, if k

n > p, then g′(0) < 0 and g′(1) < 0, so
g(a) necessarily has a unique inner root â ∈ (0, 1) with g(a) < 0 if a ∈ (

0, â
)
and

g(a) > 0 if a ∈ (
â, 1

)
. This inner root is an unstable stable steady state, and the other

two steady states (a = 0 and a = 1) are locally stable. This completes the proof.
It is straightforward to show that g(a) is continuous because f (a) is a polynomial.

In addition, it is obvious that f (0) = 0 and f (1) = 1, so g(0) = g(1) = 0.
Using Eq. (1), it is straightforward to show that the first derivative of g(a) =

f (a) − a is:20

g′(a) = f ′(a) − 1 =
n∑

x=0

� (x, k, p, n) b(a, x)
x − na

a(1 − a)
− 1 (10)

If a = 0 the terms of the series g′(a) are equal to zero except for x = 1.21(
g′(0) = p

k n − 1 ≥ 0
) ⇐⇒ ( k

n ≤ p
)

If a = 1 the terms of the series g′(a) are equal to zero except for x = n − 1 and
x = n.

g′(1) = kp+(k−1)(1−p)
k n(−1) + kp+k(1−p)

k n − 1 = n
k (1 − p) − 1 ≥ 0 ⇐⇒( k

n ≤ (1 − p)
)

To prove that g(a) = 0 has no more than one inner root in a ∈ (0, 1), it suffices
to show that g(a) has no more than one inflection point in a ∈ (0, 1) since g(0) =
g(1) = 0 and f ′(a) is continuous in (0, 1). The following Claim gives a close form
of the second derivative, g′′(a).

Claim 4 The function g′′(a) = f ′′(a) = −(k + 1)
( n
k+1

)
(1 − a)−k−1a−k−1(p(1 −

a)na2k − (1 − p)(1 − a)2kan)

19 The function g(a) must be decreasing at a = â, because it is positive to the left side, negative to the
right, and continuous.
20 Note that � (x, k, p, n) is independent of a and ∂b(a,x)

∂a = x−na
a(1−a)

b(a, x).
21 The first derivative of g(a) is the sequence of the derivatives of each term of g(a). It is necessary to
simplify the expression to obtain the properly defined derivative function.
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Proof It is straightforward to show that the second derivative22 of g(a) is:23

g′′(a) = f ′′(a) =
n∑

x=0

� (x, k, p, n)
(x − an) (x − (n − 1)a) − x(1 − a)

a2(1 − a)2
b(a, x)

=
n∑

x=0

� (x, k, p, n)
(an − 2x) a(n − 1) + x(x − 1)

a2(1 − a)2
b(a, x)

Where if z(.) = b(a, x) ((an − 2x) a(n − 1) + x(x − 1)),
g′′(a) = ∑n

x=0 � (x, k, p, n)
z(.)

a2(1−a)2

First, we rewritten this functions depending on
∑h

x=0 z(.) and
∑h

x=0 xz(.), thus,
we will be able to apply Lemmas 1 and 2 to simplify the expression.

g′′(a) = f ′′(a)

=
n∑

x=0

� (x, k, p, n)
z(.)

a2(1 − a)2
=

n∑

x=0

(Min[x, k]p + Max[x − (n − k), 0](1 − p))

k

z(.)

a2(1 − a)2

=
n∑

x=0

(Min[x, k]z(.)p + Max[x − (n − k), 0]z(.)(1 − p))

ka2(1 − a)2

=
(∑k−1

x=0 xz(.) + ∑n
x=k kz(.)

)
p + ∑n

x=n−(k−1)(x − (n − k))z(.)(1 − p)

ka2(1 − a)2

=
(∑k

x=0 x z(.) + k
∑n

x=k+1 z(.)
)
p +

(∑n
x=n−(k−1) ((x − (n − k))z(.))

)
(1 − p)

ka2(1 − a)2

=
∑k

x=0 x z(.)p + k
(∑n

x=0 z(.) − ∑k
x=0 z(.)

)
p +

(∑n
x=0(x − (n − k)z(.) − ∑n−k

x=0(x − (n − k))z(.)
)

(1 − p)

ka2(1 − a)2

=
(∑k

x=0 x z(.)p + k
(∑n

x=0 z(.) − ∑k
x=0 z(.)

)
p +

((∑n
x=0 xz(.) − (n − k)

∑n
x=0 z(.)

) −
(∑n−k

x=0 x z(.) − (n − k)
∑n−k

x=0 z(.)
))

(1 − p)
)

ka2(1 − a)2

Notice that, from Lemmas 1 and 2 with h = n,
∑n

x=0 z(.) = ∑n
x=0 xz(.) = 0

because
( n
n+1

) = 0, thus:

g′′(a)=
∑k

x=0 x z(.)p−k
∑k

x=0 z(.)p

ka2(1 − a)2
−

(∑n−k
x=0 x z(.)−(n − k)

∑n−k
x=0 z(.)

)
(1 − p)

ka2(1 − a)2

(11)
By Lemmas 1 and 2 with h = k, after some algebra, the first term of (11) above is
∑k

x=0 x z(.)p−k
∑k

x=0 z(.)p
ka2(1−a)2

= −(1 − a)n−k−1ak−1(k + 1)
( n
k+1

)
p

and by Lemmas 1 and 2 with h = n − k, after some algebra, the second term of
(11) is:(∑n−k

x=0 x z(.)−(n−k)
∑n−k

x=0 z(.)
)
(1−p)

ka2(1−a)2
= − (1−p)(1−a)k−1a(n−k)−1(n−k)((n−k)+1)( n

n−k+1)
k

[using expression (9)]

22 The second derivative of g(a) is the sequence of the second derivatives of each term of g(a). It is
necessary to simplify these terms to obtain the properly defined derivative function.
23 As mentioned above � (x, k, p, n) is independent of a and ∂2b(a,x)

∂a2
=

(x−an)(x−(n−1)a)−x(1−a)

a2(1−a)2
b(a, x).
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= − (1−p)(1−a)k−1a(n−k)−1(n−k)((n−k)+1)( n
k+1)

(k+1)k
(n−k)(n−k+1)

k = −(1 − p)(1 − a)k−1

a(n−k)−1
( n
k+1

)
(k + 1)

Therefore,

g′′(a) = −p(1 − a)n−k−1ak−1(k + 1)

(
n

k + 1

)

−(−(1 − p)(1 − a)k−1a(n−k)−1
(

n

k + 1

)
(k + 1))

= −(k + 1)

(
n

k + 1

)
(1−a)−k−1a−k−1(p(1−a)na2k − (1 − p)(1 − a)2kan).

�
We now show that there is no more than one inflection point in a ∈ (0, 1). First,

note that if ā is an inflection point, then g′′(ā) = 0. Thus, by Claim 4,

g′′(ā) = 0 ⇔
(
p(1 − ā)nā2k − (1 − p)(1 − ā)2k ān = 0

)

⇔
(

p(1 − ā)nā2k

(1 − p)(1 − ā)2k ān
= 1

)
⇔

(
(1 − ā)n−2k

ān−2k

p

(1 − p)
= 1

)

⇔
(
1 − ā

ā

(
p

(1 − p)

) 1
n−2k = 1

)

⇔

⎛

⎜⎜
⎝ā = 1

1 +
(

p
(1−p)

) 1
2k−n

⎞

⎟⎟
⎠ (12)

Therefore, the Eq. (12) can have only one real root in the interval a ∈ (0, 1).
Consequently, there is no more than one inflection point in a ∈ (0, 1), which means
that the function g(a) has no more than one root in a ∈ (0, 1).

Before concluding, it is proved that there are no periodic points.24 It has been
proved that the function g(at ) has either one inner root or none, i.e. there is only
one inner steady state in (0, 1) or none at all. If it has none, the function g(at ) is
necessarily positive,25 so there are obviously no periodic points because at < at+1
for all at ∈ (0, 1). If there is one steady state in (0, 1) any possibility of there being
periodic points completely disappears if the function f (at ) is increasing. Note that
if f (at ) is increasing, then for all at equal to or greater than the inner steady state
(â) either at < at+1 for all at ∈ (â, 1) or at > at+1 for all at ∈ (â, 1), and always
at+1 ≥ â for any at ∈ (â, 1). Thus, it suffices to prove that the function f (at ) is
increasing. The following claim is needed to prove that f ′(at ) > 0. 
�
Claim 5 Let the function r(x) = b(a, x)(x − an) and h(x) be a positive function and
increasing in x. Then

∑n
x=0 h(x)r(x) > 0

24 See footnote 18.
25 In any event, even if g(at ) was negative there would be no periodic points.
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Proof The expression b(a, x)(x − an) is negative26 if x ≤ �an� and positive if x >

�an�. Where �an� gives the highest integer less than or equal to an. By Claim 3,

(
n∑

x=0

r(x) = 0

)

⇐⇒
⎛

⎝
�an�∑

x=0

r(x) +
n∑

x=�an�+1

r(x) = 0

⎞

⎠

⇐⇒
⎛

⎝−
�an�∑

x=0

r(x) =
n∑

x=�an�+1

r(x)

⎞

⎠

As h(x) > 0 is a function increasing in x ,(

−
�an�∑

x=0
h(x)r(x) <

n∑

x=�an�+1
h(x)r(x)

)

⇐⇒
(

n∑

x=0
h(x)r(x) > 0

)
�

That f ′(at ) > 0 is now proved. From expression (10),

f ′(at ) =
n∑

x=0
� (x, k, p, n) b(a, x) x−na

a(1−a)
> 0 ⇐⇒

n∑

x=0
� (x, k, p, n) b(a, x)

(x − na) > 0

It is straightforward to show that the expression� (x, k, p, n) takes values in [0, 1]
and is increasing in x . Therefore, by Claim 5, f ′(at ) > 0, and f (at ) is increasing.
Periodic points are therefore not possible.

It can be concluded that:

(1) If k
n < (1− p) then g′(0) > 0 and g′(1) > 0. Thus, on the one hand, the function

g(a) is continuous and g(0) = g(1) = 0. On the other hand g(a) is positive
around a = 0 and negative around a = 1. Consequently, by Bolzano’s Theorem
there is at least one inner root. It has been proved that there cannot be more than
one inner root. Therefore, there is only one inner root a∗ and it is globally stable.

(2) If k
n ∈ [(1− p), p] then g′(0) > 0 and g′(1) < 0. In that case, as g(0) = g(1) = 0,

the function g(a) is positive around a = 0 and around a = 1. There cannot be
more than one inner root, so the function g(a)must be positive for a ∈ (0, 1). The
only possibility of having an inner point is for the inner point to be a minimum of
the function, so that the function would be positive for a ∈ (0, 1). However, this
is not possible because there is no more than one inflection point. Therefore, there
is necessarily no inner root. The steady state a = 0 is unstable, and the steady
state a = 1 is globally stable.

(3) If k
n > p, then g′(0) < 0 and g′(1) < 0. In that case, as g(0) = g(1) = 0,

the function g(a) is negative around a = 0 and positive around a = 1. There
is necessarily only one inner root a∗ for the same reason as in point 1). This
unique inner root a∗ must be unstable and divides the interval a ∈ (0, 1) into
two subintervals. The subinterval (0, a∗) is the basin of attraction of a = 0 and
(a∗, 1) of a = 1 which are locally stable.

The proof is complete. 
�
26 It can be also zero if x = �an� = an. However the rationale is the same.
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First we show the proofs of Proposition 4 and 5 and then that of Propositions 2 and
3.

A.3 Proof of Proposition 4.

A closed form of g(a) is first obtained. The Eq. (1) with k = 1 can be rewritten as

f (a) =
n∑

x=0

min[x, 1]b(a, x)p +
n∑

x=n

(x − (n − 1))b(a, x)(1 − p)

=
n∑

x=1

b(a, x)p +
(
n

n

)
an(1 − p)

=
(

n∑

x=0

b(a, x) −
(
n

0

)
a0(1 − a)n−0

)

p + an(1 − p)

= (
1 − (1 − a)n

)
p + an(1 − p)

Thus, the function g(a) can be written as g(a; n) = (1 − (1 − a)n) p+an(1− p)−a
Let ã be the unique inner root of g(a; n̄) = 0, where n = n̄, and k

n = 1
n̄ < (1− p),

see Proposition 1, i.e., a∗[n̄, k = 1] = ã.
Let ǎ be the unique inner root of g(a; n̄ + 1) = 0, where n = (n̄ + 1), and

k
n = 1

n̄+1 < (1 − p), i.e., a∗[n̄ + 1, k = 1] = ǎ. The proof of Proposition 1
shows, on the one hand, that g(0; n̄ + 1) = g(1; n̄ + 1) = 0. On the other hand, if
k
n = 1

n̄+1 < (1 − p), the function g(a; n̄ + 1) > 0 if a ∈ (0, ǎ), and g(a; n̄ + 1) < 0
if a ∈ (ǎ, 1). Consequently, if the function g(a; n̄ + 1) is negative in a = ã, i.e.,
g(ã; n̄ + 1) < 0, then ã > ǎ because g(ǎ; n̄ + 1) = 0, and the proof is complete.
Thus, we only need to prove that g(ã; n̄+1) < 0. Before doing this we characterized,
the steady state ã. As the state ã is a steady state with n = n̄,

g(ã; n̄) = (
1 − (1 − ã)n̄

)
p + ãn̄(1 − p) − ã = 0

⇐⇒
((

1 − (1 − ã)n̄
)
p + ãn̄(1 − p) − ã(p + (1 − p)) = 0

)

⇐⇒
((

(1 − ã) − (1 − ã)n̄
)
p =

(
ã − ãn̄

)
(1 − p)

)

⇔ p

(1 − p)
= ã − ãn̄

(1 − ã) − (1 − ã)n̄
(13)

We now prove that g(ã; n̄ + 1) < 0,
g(ã; n̄ + 1) = (

1 − (1 − ã)n̄+1
)
p + ãn̄+1(1 − p) − ã < 0

⇔ p−(1−ã)n̄+1 p+ãn̄+1(1−p)−ã(p+(1−p)) < 0 ⇐⇒ (
(1 − ã) − (1 − ã)n̄+1

)

p <
(
ã − ãn̄+1

)
(1 − p)

⇔ ã−ãn̄+1

(1−ã)−(1−ã)n̄+1 >
p

(1−p)

[using (13)]

⇔ ã−ãn̄+1

(1−ã)−(1−ã)n̄+1 >
p

(1−p) = ã−ãn̄

(1−ã)−(1−ã)n̄
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⇔
(

ã−ãn̄+1

(1−ã)−(1−ã)n̄+1 > ã−ãn̄

(1−ã)−(1−ã)n̄

)
⇔

(
ã
(
1−ãn̄

)

(1−ã)(1−(1−ã)n̄)
>

ã
(
1−ãn̄−1

)

(1−ã)(1−(1−ã)n̄−1)

)

⇔
(

1−ãn̄

1−ãn̄−1 >
1−(1−ã)n̄

1−(1−ã)n̄−1

)

It is shown below that 1−an̄

1−an̄−1 is increasing in a and 1−(1−a)n̄

1−(1−a)n̄−1 is decreasing in

a. In addition, the two terms are equal if a = 1

2
. Consequently, if a >

1

2
, then

1−an̄

1−an̄−1 >
1−(1−a)n̄

1−(1−a)n̄−1 . Therefore, if ã > 1
2 , then g(ã; n̄ + 1) < 0, and the proof is

complete.

First, the derivative is d
da

(
1−an̄

1−an̄−1

)
= an̄

(a−an̄)
2

(
n̄ − an̄ + an̄ − 1

)
. The expres-

sion
(
n̄ − an̄ + an̄ − 1

)
is decreasing in a, takes the minimum value in a = 1, and

(
n̄ − an̄ + an̄ − 1

)∣∣
a=1 = 0, so d

da

(
1−an̄

1−an̄−1

)
> 0.

Second, the derivative d
da

(
1−(1−a)n̄

1−(1−a)n̄−1

)
= − (1−a)n̄

(
a+(1−a)n̄−1

)2
(
(1 − a)n̄ + an̄ − 1

)
.

The expression − (
(1 − a)n̄ + an̄ − 1

)
is decreasing in a, takes the maximum value

in a = 0, and − (
(1 − a)n̄ + an̄ − 1

)∣∣
a=0 = 0, so d

da

(
1−(1−a)n̄

1−(1−a)n̄−1

)
< 0

To conclude, it is shown that ã > 1
2 . The following claim proves this.

Claim 6 Let a∗[n, k = 1] = ã, then ã > 1
2

Proof With ã the only steady state, the proof of Proposition 1 shows that, if a ∈ (0, ã),
then g(a) > 0 and, if a ∈ (ã, 1), then g(a) < 0. In addition, by Lemma 3, g( 12 ) > 0,
so ã > 1

2 . � 6 
�

A.4 Proof of Proposition 5.

By Proposition 1, if k
n = 1

n < (1 − p) then there is only one inner steady state
a∗[n, k = 1], which is globally stable. Let a∗[n, k = 1] = ã, and consequently
g(ã) = 0.

In the proof of Proposition 4, it is shown that the expression g(ã) = 0 is equivalent
to (13),

g(ã) = 0 ⇐⇒
(

p
1−p = ã−ãn

(1−ã)−(1−ã)n

)

On the one hand, the expression p
1−p is increasing in p. On the other hand,

the expression ã−ãn

(1−ã)−(1−ã)n
is increasing in ã. Therefore, if p increases, then p

1−p

increases, which finally means that ã must increase.27 To end the proof, we only need
to prove that:

d
dã

(
ã−ãn

(1−ã)−(1−ã)n

)
= (1−ã−(1−ã)n)

(
1−n ãn−1

)+(ã−ãn)
(
1−n (1−ã)n−1

)

(1−ã−(1−ã))2
> 0

⇐⇒ (1 − ã − (1 − ã)n)
(
1 − n ãn−1

) + (ã − ãn)
(
1 − n (1 − ã)n−1

)
> 0

the previous expression is decreasing in ã for ã > 1
2 and increasing for ã < 1

2 .
Notice that,

27 By Claim 6, ã > 1
2 . Thus, we only need to prove that d

dã

(
ã−ãn

(1−ã)−(1−ã)n

)
> 0 for ã > 1

2 . However,

as the proof of Proposition 3 is omitted because it is analogous with ã < 1
2 , we consider both cases.
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d
dã ((1 − ã − (1 − ã)n)

(
1 − n ãn−1

) + (ã − ãn)
(
1 − n (1 − ã)n−1

)
) =

((1−ã)n ã3+ãn(1−ã)n+ãn((−1+ã)3−2(1−ã)n ã))(n−1)n)

(−1+ã)2ã2
≷ 0

⇐⇒ ((1 − ã)nã3 + ãn(1 − ã)n + ãn((−1 + ã)3 − 2(1 − ã)nã)) ≷ 0
⇐⇒ ((1 − ã)nã3 − ãn(1 − ã)3 + ãn(1 − ã)n − ãn(1 − ã)n2ã ≷ 0
⇐⇒ ã3(1 − ã)3((1 − ã)n−3 − ãn−3) + ãn(1 − ã)n(1 − 2ã) ≷ 0
Clearly,with ã > 1

2 the expression is negative, and it is positive if ã < 1
2 .

Consequently, as (1 − ã − (1 − ã)n)
(
1 − n ãn−1

)+ (ã − ãn)
(
1 − n (1 − ã)n−1

)

is zero in ã = 1, it will be positive for all ã ∈ ( 12 , 1). In addition, since
(1 − ã − (1 − ã)n)

(
1 − n ãn−1

) + (ã − ãn)
(
1 − n (1 − ã)n−1

)
is zero in ã = 0,

it will be positive for all ã ∈ (0, 1
2 ). 
�

A.5 Proof of Proposition 2.

The proof is analogous to the proof of Proposition 4 and some of the identical steps
are omitted.

The claim above gives a closed form of the function g(a) with k = n − 1.

Claim 7 With k = n − 1, the function g(a) = 1
n−1 (an − an p − (1 − p) + (1 − a)n

(1 − p)) − a

Proof From Eq. (1) with k = n − 1:

f (a) =
n∑

x=0

min[x, n − 1]
n − 1

b(a, x)p +
n∑

x=2

(x − 1)

n − 1
b(a, x)(1 − p)

=
(
n−1∑

x=0

xb(a, x)p

n − 1
+ (n − 1)

(n
n

)
an p

n − 1

)

+
n∑

x=2

(x − 1)b(a, x)(1 − p)

n − 1

=
(

n∑

x=0

xb(a, x)p

n − 1
− an p

n − 1

)

+

n∑

x=2
xb(a, x)(1 − p) −

n∑

x=2
b(a, x)(1 − p)

n − 1

(using Claim 2)

= anp − an p

n − 1
+

(∑n
x=0 xb(a, x)(1 − p) − (n

1

)
a(1 − a)n−1(1 − p)

) − (∑n
x=0 b(a, x)(1 − p) − (n

0

)
(1 − a)n (1 − p) − (n

1

)
a(1 − a)n−1(1 − p)

)

n − 1

= anp − an p

n − 1
+

(∑n
x=0 xb(a, x)(1 − p)

) − (∑n
x=0 b(a, x)(1 − p) − (1 − a)n (1 − p)

)

n − 1

(using (2) and Claim 2)

= anp − an p

n − 1
+ an(1 − p) − (1 − p) + (1 − a)n(1 − p)

n − 1

= 1

n − 1

(
an − an p − (1 − p) + (1 − a)n(1 − p)

)
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Thus, g(a) = f (a) − a = 1
n−1 (an − an p − (1 − p) + (1 − a)n(1 − p)) − a

= 1
n−1 (an − an p − (1 − p) + (1 − a)n(1 − p)) − a �

Let ã be the unique inner root of g(a; n̄) = 0, where n = n̄, and k
n = n̄−1

n̄ > p.
See Proposition 1.

Let ǎ be the unique inner root of g(a; n̄ + 1) = 0, where n = n̄ + 1, and k
n =

(n̄+1)−1
n̄+1 = n̄

n̄+1 > p. The proof of Proposition 1 shows, on the one hand, that g(0; n̄+
1) = g(1; n̄+1) = 0.On theother hand,with k

n = n̄
n̄+1 > p, the function g(a; n̄+1) <

0 if a ∈ (0, ǎ), and g(a; n̄ + 1) > 0 if a ∈ (ǎ, 1). Consequently, if the function
g(a; n̄ + 1) is negative in a = ã then ã < ǎ, because g(ǎ; n̄ + 1) = 0, and the proof
is complete. Thus, we only need to prove that g(ã; n̄ + 1) < 0. Before we do so, we
characterized the steady state ã is . As the state ã is a steady state with n = n̄,

g(ã; n̄) = 1
n̄−1

(
ãn̄ − ãn̄ p − (1 − p) + (1 − ã)n̄(1 − p)

) − ã = 0

⇔
(
−ãn̄ p − (1 − p) + (1 − ã)n̄(1 − p) + ã = 0

)

⇔
(
(1 − (1 − ã)n̄)(1 − p) + ãn̄ p − ã(p + (1 − p)) = 0

)

⇔ (1 − p)

p
= ã − ãn̄

(1 − ã) − (1 − ã)n̄
(14)

We now prove that g(ã; n̄ + 1) < 0,

g(ã; n̄ + 1) = 1

n̄

(
ã(n̄ + 1) − ãn̄+1 p − (1 − p) + (1 − ã)n̄+1(1 − p)

)
− ã < 0

⇔ −(1 − (1 − ã)n̄+1)(1 − p) − ãn̄+1 p + ã < 0

⇔ (1 − (1 − ã)n̄+1)(1 − p) + ãn̄+1 p − ã > 0

⇔
(
1 − (1 − ã)n̄+1

)
(1 − p) + ãn̄+1 p − ã(p + (1 − p)) > 0

⇔ ã − ãn̄+1

(1 − ã) − (1 − ã)n̄+1 <
(1 − p)

p

[using Eq. (14)]

⇔ ã − ãn̄+1

(1 − ã) − (1 − ã)n̄+1 <
(1 − p)

p
= ã − ãn̄

(1 − ã) − (1 − ã)n̄

⇔
(

ã − ãn̄+1

(1 − ã) − (1 − ã)n̄+1 <
ã − ãn̄

(1 − ã) − (1 − ã)n̄

)

⇔
(

ã
(
1 − ãn̄

)

(1 − ã)
(
1 − (1 − ã)n̄

) <
ã

(
1 − ãn̄−1

)

(1 − ã)
(
1 − (1 − ã)n̄−1

)

)

⇔
(

1 − ãn̄

1 − (1 − ã)n̄
<

1 − ãn̄−1

1 − (1 − ã)n̄−1

)

The rest of the proof is analogous to that of Proposition 4 and is omitted. 
�
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A.6 Proof of Proposition 3

The proof is analogous to the proof of Proposition 3 and is omitted (we use expression
14 instead of 13). 
�
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