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Abstract: In some situations, sellers of certain commodities usually provide price discounts for large
orders according to a decreasing unit price function. Buyers of such commodities can cooperate
and form purchasing groups to benefit from these price discounts. A natural way to allocate the
corresponding cost reductions is the equal price rule. We analyze this situation as a cooperative game.
We show that when the decreasing unit price function is linear, the equal price rule coincides with
the Shapley value and the nucleolus of the cooperative game. However, some buyers may argue
that the equal price rule is not acceptable because it favors those who buy just a few units of the
product. This can be more problematic when the decreasing unit price function is nonlinear: In that
case, the equal price rule loses some of its good properties and it no longer matches the Shapley
value or the nucleolus. Unlike the linear case, in this nonlinear case, the Shapley value and nucleolus
do not assign the same price to all agents, so there are different price rules. However, they have
a computability problem, as both are very laborious to calculate for a large number of agents. To
find a suitable alternative, we first study the properties that a different price rule should have in this
situation. Second, we propose a family of different price rules that hold those properties and are
easy to calculate for a large number of agents. This family of different price rules provides buyers
(companies, institutions, consumers, etc.) with an easy-to-implement method which ensures stability
in cooperative purchasing.

Keywords: cooperative purchasing; price discounts; equal price rule; different price rules; game theory
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1. Introduction

Since time immemorial, trade has offered buyers the opportunity to pay a lower price
for the purchase of large quantities of a product. Today, consumers encounter all kinds
of quantity discounts at every turn in both retail shops and online platforms. Beyond
consumers, quantity discounts can be seen to permeate business-to-business transactions.
Most companies receive a quantity discount on some of their purchases and extend a
quantity discount to some of their customers. Mobile operators in Europe receive volume
discounts from telecommunications operators based on the number of international calls
made [1]. More generally, large retailers and manufacturers such as Lidl and Ikea demand
discounts from their suppliers based on a large volume of products purchased. At the
same time, many large manufacturers and retailers have programs in place to offer volume
discounts to external companies, schools and non-profit organizations. One example of
such a program is Apple’s Volume Purchase Program, which offers customized volume
discounts for purchases.
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The omnipresence of quantity discounts for buyers highlights the importance of
addressing questions such as how many units should be ordered when dealing with a
quantity discount schedule? Should buyers join a group-purchasing organization to try
to lower purchase prices? Since the 1950s, quantity discounting has been an important
research topic, which has also appeared in economics and operations research literature.
In operations, much of the core work for determining optimal order sizes for buyers and
for using quantity discounts to coordinate lot sizes in supply chains was carried out by
the end of the last century. Several literature review papers address much of this work in
various ways. Since the turn of the century, a steady flow of papers has continued to appear.
The research area remains vibrant, with quality publications appearing every year in the
operations-management field alone. A comprehensive overview of quantity discounts
by [2] covers many of the papers published in the last 25 years.

Here, we focus on the questions raised above and demonstrate that it is beneficial for
buyers to join a large purchasing group to obtain lower purchase prices and, thus, a signifi-
cant reduction in their costs. We assume that the buyers (retailers or producers) already
know how many units of the product they are going to buy. They may be finished products
or raw materials to produce a certain product. That is, they initially know how many units
of a commodity they are going to order when they deal with a quantity-discount schedule.
Cooperative purchasing initiatives such as purchasing groups, purchasing consortia, and
buying offices are becoming increasingly popular due to advances in information technol-
ogy and the development of online markets. Purchasing groups generate multiple benefits
for its participants: buyers can obtain better prices by increasing their purchasing power
and reduce costs by consolidating their operations.

In purchasing literature, cooperative purchasing is referred to using many terms.
There are certain patterns in those terms, but the terminology is not yet fully stabilized [3].
We define cooperative purchasing as the sharing and/or bundling of purchasing-related
information, processes, resources, and/or volumes by two or more organizations in a
purchasing group in order to improve their performances [4]. A purchasing group consists
of two or more dependent or independent organizations that purchase together, either
formally or informally, or through a third party [5]. Cooperative purchasing is a type of
cooperative arrangement, often among businesses, to agree to add up demand so as to
obtain lower prices from selected suppliers. Retailers’ cooperatives are a form of cooperative
purchasing. Cooperatives are often used by government agencies to reduce procurement
costs [6] and they are also gaining popularity in the private sector [5].

Research on cooperative purchasing has received relatively little attention in the field
of operations research. It has so far focused mainly on inductive explanations of practices
and deductive qualitative reasoning. There has been little use of game-theory reasoning,
to date. One specific issue which has received particularly little research attention is the
allocation of costs resulting from purchasing price savings achieved through cooperative
purchasing using the so-called equal price (EP) allocation method. This EP method is
commonly used, and is defined as all agents paying the same price per item [7]. EP is
practically and intuitively appealing, but it may lead to unfair outcomes under certain
circumstances. This has been reported previously by [7] and analyzed systematically by [4].
The latter focuses specifically on allocating the total gains resulting from cooperation and
formally analyzes how and under what conditions unfairness arises when EP is used.
These two issues are important to all types of purchasing groups as they all have to make
decisions on how to allocate their gains. They provide an analytical analysis of unfair
outcomes of EP, provide recommendations for purchasing groups as to how to deal with
them, and contribute to increased awareness and understanding of EP-related problems.

In this paper, we study situations in which a seller of a certain commodity provides
price discounts for large orders according to a decreasing unit-price function. Buyers of
this commodity can cooperate and form purchasing groups to benefit from these price
discounts. It is provided in [8] an analytical and empirical basis for a general quantity-
discount function (QDF) which can be used to describe the underlying function of almost
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all types of quantity discount. They show that this QDF fits very well with 66 discount
schedules found in practice. It is proposed in [8] a QDF with an explicit formula depending
on certain parameters, but we propose a general price function which measures the quantity
discount buyers encounter when cooperating in purchasing and satisfies properties such as
continuity, decreasingness, convexity, and limited growth rate.

On the other hand, as mentioned, it is focused in [4] on allocating the total gains
from cooperation by means of a benefit game, and analyze the unfairness resulting from
using the commonly used EP method for allocating such gains. They demonstrate that this
unfairness is caused by neglecting a particular component of the added value of individual
group members. They discuss measures that a purchasing group might consider to mitigate
the perception of unfairness, but they do not study in depth the class of cooperative
games that they have at hand or propose an alternative to the EP rule. Unlike [4], we
analyze these cooperative purchasing situations as cooperative cost games and study them
comprehensively. We go beyond the EP rule and other well-known but difficult-to-calculate
distributions such as the Shapley value or the compromise value [9]. In particular, we
show that when the decreasing unit price function is linear, the EP rule coincides with the
Shapley value and the nucleolus. However, some buyers may argue that the EP rule is not
acceptable because it favors those who buy just a few units of the product. This can be
more problematic when the decreasing unit-price function is nonlinear: In that case, EP
loses some of its good properties and no longer matches the Shapley value or the nucleolus.
By contrast to the linear case, in this nonlinear case, the Shapley value and nucleolus do
not assign the same price to all agents, so they are different price (DP) rules. However,
they have a computability problem in that both are very laborious to calculate for a large
number of agents. To find an adequate alternative, we first study the properties that a DP
rule should have in this situation. Second, we propose a family of DP rules that hold those
properties and are easy to calculate for a large number of agents.

Our paper, thus, contributes to the literature on cooperative purchasing models in the
following way: First, we extend the study of such models with general discount functions
and introduce a new class of cooperative-purchasing cost games with general discounts.
Second, we comprehensively analyze cooperative-purchasing cost games with linear dis-
counts and show that the EP rule coincides with the Shapley value and the nucleolus. This
equality does not hold for cooperative-purchasing cost games with nonlinear discounts,
so we then study such cost games with nonlinear discounts and propose a family of DP
rules that are acceptable to all agents and easier to compute than the Shapley value and the
nucleolus. They are called a-proportional rules. To make our family of a-proportional rules
acceptable to all agents, we distinguish between major agents (who buy large quantities)
and non-major agents (who buy small quantities). To the best of our knowledge, there is
no formal definition of such agents in the cooperative-purchasing-games literature. The
beauty of our a-proportional rules is that, with the proportionality factor «, they reduce the
cost of major agents and increase the cost of non-major agents. Fortunately, there is always
an « threshold above which any a-proportional rule is acceptable for all agents.

The paper is organized as follows. We begin with a Related Literature section, which
describes the literature most closely related to our paper. Next, in Section 3, we develop
a formal model of cooperative-purchasing cost with a general discount (CPGD model)
and prove that all the buyers included (grand coalition) can obtain significant reductions
in costs. The equal price (EP) rule turns out to be an efficient and (coalitionally) stable
method for allocating the reduced costs generated by the CPGD model. Then, Section 4
looks at cooperative-purchasing models with decreasing and linear unit-price functions.
We demonstrate that the linear nature of the discount price function provides additional
information about the corresponding cooperative-purchasing game with linear discount
(CPL-game): The marginal contribution of an agent diminishes as a coalition grows. More-
over, the EP rule matches the Shapley value and the nucleolus. In Section 5, we propose
a family of allocation rules for cooperative-purchasing games with non-linear discount
(CPNL-games). We focus on the different price (DP) method and propose a family of
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allocation rules with different prices that are acceptable for all agents: BDP rules. Section 6
focuses on an alternative approach to obtain DP rules for CPNL-games. This consists of
allocating the cost of the grand coalition proportionally, with a proportionality factor which
combines individual costs and the EP rule. We obtain a highly suitable parametric family
of proportional rules, named a-proportional rules, which, notably, is related to the family
of BDP rules. Specifically, Section 7 proves that there is always an « threshold above which
any a-proportional rule is a BDP rule. Finally, we illustrate our model with a couple of
examples in Section 8. Finally, Section 9 draws conclusions and points out further research
for scholars in the field.

2. Related Literature

As mentioned above, the use of game theory to study cooperative-purchasing models
has so far been limited. However, there are works that have approached the subject from
various perspectives. Here, we describe the literature from the past 15 years most closely
related to our paper.

It is discussed in [10] the problem that arises when a small buying organization uses
a contract negotiated by a large buying organization. They show that a relatively small
organization would benefit from joining a specific purchasing group, but the inclusion of
such an organization might decrease the profits of the bigger organizations in this exchange.
In [11], it is noted that it is important to avoid the kind of imbalance of incentives for and
contributions by organizations in a purchasing group that can be caused by EP. Finally,
reasoning from an equity-theory perspective [12], it can be observed that individuals who
feel under-rewarded will try to restore equity. As in purchasing groups, EP may lead to
under-rewarded organizations in a group. This may lead to lower commitment on the part
of those organizations or result in them leaving the group [13].

In [14], it is considered a distribution system consisting of a set of retailers who face a
single-period price-dependent demand for a single product. By taking advantage of the
risk-pooling effect and the quantity /volume discount provided by suppliers or third-party
carriers, the retailers may place joint orders and keep inventory at central warehouses before
demand realization, and allocate inventory among themselves after demand realization to
reduce their operating costs. Under certain assumptions, the author shows that there is a
stable allocation of profits among the retailers and also shows how to compute it.

In [15], it is introduced a new class of cooperative-purchasing situations: maximum
cooperative purchasing (MCP) situations. The allocation of possible cost savings in MCP
situations, in which the unit price depends on the quantity of the largest order within a
group of players, is analyzed by defining corresponding cooperative MCP-games. The
authors show that a decreasing unit price is a sufficient condition for a non-empty core:
There is a set of marginal vectors that belong to the core. The nucleolus of an MCP-
game can be derived in polynomial time from one of these marginal vectors. Using the
decomposition of an MCP-game into unanimity games, they also find an explicit expression
for the Shapley value.

It is studied in [16] mechanisms for managing group purchasing by a set of buyers of
a given product with a concave purchase-cost function. Cost-sensitive buyers are willing
to buy a range of product quantities at different prices. They investigate two types of
mechanism that can be used by a group-purchasing organization: ordering and bidding
mechanisms. Under the choice of appropriate cost-sharing rules, they introduce a sequential
joint-ordering mechanism and a family of ordering strategies under which some buyers’
strategic deviations never leave other buyers worse off.

Inventory cost games with discounts are a particular type of cooperative-purchasing
model. In an inventory cost game [17] a group of firms dealing with the ordering of a certain
commodity decide to cooperate and place their orders jointly. To coordinate the ordering
policy of the firms, some revelation of information is needed: the amount of information
revealed by each firm to the rest is kept as low as possible, since they may be competitors in
the consumer market. In [17], it is focused on proportional division mechanisms for sharing
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the joint cost, and introduce and characterize the SOC rule (share the prdering costs). Later,
it is analyzed in [18] the class of inventory games that arises from inventory problems
with special sale prices. A group of firms trying to minimize their joint inventory costs by
cooperating may receive a special discount on set-up cost just by ordering. Reasons for
such price reductions range from competitive price wars to attempted inventory reduction
by the supplier. This cooperative situation generates the class of inventory games with
non-discriminatory temporary discounts. The modified SOC rule, a kind of proportional
rule, is proposed as a stable (core-allocation), consistent allocation. More recently, in [19],
it is extended inventory-cost games to the situation where the manufacturer provides the
retailers with a price discount on purchases in excess of a certain order quantity. The
authors define the corresponding inventory game with quantity discount, and show that
there is a stable allocation of the total cost, which they call the demand-proportionality rule
and which they characterize. At the same time, it is considered in [20] an inventory-cost
game involving a single supplier that offers quantity discounts and allows retailers to
delay payments. The retailers are tempted to form coalitions in order to minimize their
costs. They propose a solution approach which generates stable coalition structures for the
retailers taking into account the delay in payments and the amount of the discount offered
by the supplier. The approach proposed includes a decision rule that generates preferred
coalitions for each retailer and considerably reduces the number of coalition structures
explored in order to determine stable solutions.

In [21], it is proposed and studied the family of a-serial cost-sharing rules for cost-
sharing problems. Each rule in this family is a parametric combination of the serial cost-
sharing rule [22] and the dual serial cost-sharing rule [23]. The parameter « determines how
this combination is obtained. The a-serial cost-sharing rule allocates the total production
cost, in a cost-sharing problem, in such a way that agents with low demands have to pay
cost increments associated with low outputs and cost increments associated with high
outputs (0 < & < 1). If only one type of cost increase is taken into account, e.g., agents with
low demands only have to pay cost increments associated with low outputs, we obtain the
serial cost- sharing rule (x = 1). On the contrary, if agents with low demands only have to
pay cost increments associated with high outputs, we obtain the dual serial cost-sharing
rule (x = 0). Albizuri’s approach and the context are different from ours in this paper.
While her «a-serial cost-sharing rule is proposed for general cost-sharing problems, our
alpha-proportional rule is a very appropriate allocation rule for cooperative-purchasing
models with a general discount. It distributes the cost of the grand coalition proportionally,
with a proportional factor that combines the maximum cost that each agent has to pay
individually (its own individual cost) with the minimum cost that can be achieved through
cooperation (the EP rule). The a-proportional rule is natural and intuitive and much easier
to calculate than the a-serial cost-sharing rule.

Finally, the book [24] shows that the Shapley value is highly valued by many researchers
as a useful and relevant model to analyze, both from a theoretical and applied perspective,
allocation problems in the most general sense. It is structured in three parts. They first present
some of its very well-known mathematical expressions, starting with those introduced by
Lloyd Shapley in 1953. Secondly, they present some of its most important characterizations
as an indication of the large number of appealing and interesting properties that this value
satisfies. Finally, they select a sample of the Shapley-value extensions to a large number of
contexts and their applications to very different fields and sceneries. For a recent survey of
Shapley value, nucleolus and other solution concepts in operation management, see [25].

3. Model

We consider a finite set of agents N = {1,2,...,n}, who want to buy a certain service
or good. Each agenti € N wants to buy a quantity g; > 0 units of the product at a cost
P(g;)qi, where P(g;) > 0 represents variable costs with discount per unit, i.e., the price that
agent i pays for quantity g;. It is, however, independent of player i. Throughout the paper
and with no loss of generality, we rank agents according to how much they buy. In other
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words, we assume that g1 < g2 < ... < ¢g,. We consider a general discount price function
P : (0, 4+00) — R, with the following properties:

Properties of P

1. Class C? at (0, +-00): there exists P” () at all points of (0, +oc0) and it is
continuous.

2. Decreasing: for allg > 0, P'(g) < 0.
3. Convex: forallg > 0,P"(q) > 0.

4. Limited growth rate: forallg > 0, |P'(g)| < @

Notice that property 2 means that agents who buy large quantities will obtain greater
discounts—per unit of product—than agents that buy small quantities. Property 3 means
that the biggest discounts occur at the start of the deal. The last property indicates that the
cost P(q)q is increasing in g, as the opposite makes no economic sense. This means that the
average cost per unit is greater than the marginal cost (this property comes from the fact
thatx >y = P(x)x > P(y)y is equivalent to P/ (x) > —@).

We refer to our model as a cooperative-purchasing model with general discount
(N, g, P) (henceforth, CPGD-model), where N is the total number of agents in a purchasing
group (i.e., the grand coalition); g is the vector of quantities that each agent i € N wants to
buy, i.e., § = (g;)ien; and P is a discount function satisfying properties 1-4.

Given a CPGD-model (N, g, P), we define the corresponding cooperative purchasing
cost game with general discount (N, ¢). For any coalition of agents S C N, the cost function
c(S) is defined as the total cost that the coalition has to pay on buying the product together:

c(S) = P(qs)qs, with gs = Y g;. From now on, we refer to this as a CPGD-game.
i€S
The first question that comes to mind is whether it is profitable for the agents in N

to form the grand coalition to obtain a significant reduction in costs. The answer is yes
because CPGD-games are always subadditive. A cost game (N, ¢) is said to be subadditive
ifSNT = @,s0c(SUT) < ¢(S)+¢(T), for all S,T C N. The subadditivity property
reveals that the cost of the grand coalition is always less than the sum of the costs of any
partition of N in two coalitions S and N\S; that is, ¢(N) < ¢(S) +¢(N\S) forall S C N.
Consequently, agents have incentives to form the grand coalition in CPGD situations.

The following proposition shows this property for CPGD-games.

Proposition 1. Every CPGD-game (N, c) is subadditive.
Proof. Take S, T C Ns.t. SNT = @. Then

c(SUT) = P(qsur)gsur = P(qsur)qs + P(qsur)qr < P(qs)qs + P(qr)qr = c(S) +¢(T),
considering that P(qsur) < P(gs), and P(qsur) < P(q7). O

We have, thus, proved that the grand coalition can obtain significant reductions in
costs. In that case, the reduced total cost is given by ¢(N) = Y. P(qn)q;, where P(qy) is
iEN

the minimum price with discount per unit that coalition N can obtain.

The second question is whether a method can be found for allocating the costs gen-
erated by the CPGD model that is efficient, coalitionally stable and easy to compute. The
answer is again yes, but it is not as straightforward as the previous answer. More elaborate
work is required, as set out in the following sections.

We start by defining an allocation rule for CPGD-games. This is a map ¢ which assigns
a vector P(c) € R" to every (N, c), satisfying efficiency, that is, Y ;(c) = ¢(N). Each

ieN

component ;(c) indicates the cost allocated to i € N, so an allocation rule for CPGD-
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games is a method for allocating the reduced total cost among the agents in N when they
cooperate.

A very natural, commonly used method is the equal price (EP) rule. Given a CPGD-
game (N, c), the EP rule is given by e(c) = (€;(c));c With €;(c) = P(qn)g;. Each agent
i € N obtains the quantity g; at the minimum cost P(qy), and pays P(qx)g;. The EP rule
has good properties for CPGD-games, at least with respect to computability (it is easily
computable) and coalitional stability, in the sense of the core. The core of a cost game (N, ¢)
is defined as follows:

C(c) := {x €R"/ Y xi=c(N),)_ xi <c(S),VS C N}.
iEN i€es
Coalitional stable allocations in the core sense are called core-allocations. A game
(N, ¢) is balanced if and only if C(c) # @. We interpret a non-empty core for cost games as
indicating a setting where all included cooperation is feasible, in the sense that there are
possible cost reductions that leave all agents better off (or, at least, not worse off).

Proposition 2. Every CPGD-game (N, c) is balanced.

Proof. The idea is to prove that €(c) is a core allocation. Thatis, } €;(c) < ¢(S) for every

i€S
SCN.
Take a coalition S € N. Thus,

Y eilc) =) Pan)gi < ) P(qs)q: = c(S).

i€s i€S i€s
Hence, C(c) # @ and (N, ¢) is balanced. [

As shown in Section 4, when P is linear, the corresponding cooperative-purchasing
game with linear discount (henceforth, CPL-game) is concave and the EP rule matches
the Shapley value and the nucleolus. In such cases, there is no better way to allocate the
reduced total cost. However, some agents may argue that the EP is questionable because
it favors those agents who buy just few units of the product. Note that these agents pay
the same price as the major buyers. The concerns of these agents can be really problematic
when P is not linear. In that case, the equal price rule loses some of its good properties and
no longer matches the Shapley value or the nucleolus.

In addition, the EP rule takes only two elements into account for a particular agent
i € N: the quantity demanded by this agent (g;) and the aggregate of all quantities
(N = Lien 9i)- It does not take into account the distribution of the individual quantities
demanded by agents, i.e., g; for all j € N\ {i}. This can also be a problem when there are
large asymmetries between large and small buyers.

To solve this problem, Section 5 proposes a family of allocation rules for cooperative-
purchasing games with non-linear discount (henceforth, CPNL-games). We focus there
on the different price (DP) method and propose a family of allocation rules with different
prices that are acceptable for all agents.

4. Equal Price Rule for CPL-Games

We begin by studying CPL-games. The linear nature of the discount price function
provides additional information about these games: The marginal contribution of an agent
diminishes as a coalition grows. This is well-known as the snowball effect or concavity
property. Cooperative game theory provides allocation rules for concave games with good
properties (coalitional stability and acceptability). We highlight the Shapley value, first
introduced in [26], and the nucleolus, presented in [27].

Here we prove that CPL-games with linear discounts are always concave and the EP
rule matches the Shapley value and the nucleolus.
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Let (N, c) be a CPL-game with P being a linear discount function. Thatis, P : Ry, —
R, such that, forall g € Ry, P(q) := a — bg, with b > 0 and a large enough thata — bg > 0,
forall0 < g < £. Thus, forall S C N, c(S) = ags — bg?.

The next proposition shows that a CPL-game is always concave, in the sense that
foralli € Nand all S,T C NsuchthatS C T C Nwithi € S, ¢(S) —c¢(S\ {i}) >

o(T) = e(T\ {i}).
Proposition 3. Every CPL-game is concave.

Proof. We first show that an agent’s marginal contribution to any coalition is always
smaller than its individual cost. We denote by M;c(S) the marginal contribution of player
i € S C N;thatis, Mjc(S) = c(S) —c(S\ {i}) foralli € S C N. Thus,

Mic(S) = aqs — b — aqs, iy + bas, y = aq; — b(ﬁ% - qé\{i})
=aq; — b(qs + ’75\{1‘}) (qs - ’75\{1‘}) = aq; — bg? —2bgiqs (1)
= c({i}) — 2bqiqs\ (- M

Finally, takei € Nand S C T C N withi € S; thus
M;c(S) = c(i) — 2bgigs\ (3 > c(i) — 2bqiqr\ 1y = Mic(T),

where qq\(;y < g7\ O

Now we focus on the Shapley value and the nucleolus. The Shapley value assigns a
unique allocation (among the agents) of the total surplus generated by the grand coalition.
It measures how important each agent is to overall cooperation, and what cost it can
reasonably expect. The Shapley value of a concave game is the center of gravity of its core
(see [28]. This allocation is, in general, hard to compute when the number of agents is large.
Given a CPL-game (N, ¢), we denote by ¢(c) the Shapley value, where for each agenti € N,
the corresponding cost allocation is

— Ot =1)
oty =y U D ) o (i) it | T = 1 @
i€TCN :

The nucleolus maximizes the “welfare” of the worst treated coalitions, i.e. those with
the smallest excess. We denote by v(c) the nucleolus of the CPL-game (N, c). First, we
define the excess of coalition S in (N, c) with respect to allocation x € R" as e(S,x) =
¢(S) — Yies x;. This number can be considered as an index of the “welfare” of coalition S at
x: The greater e(S, x), the better coalition S is at x. Let e*(q) be the vector of the 2" excesses
arranged in (weakly) increasing order, i.e., ¢/ (x) < ¢j(x) for alli < j. Second, we define
the lexicographical order ;. For any x,y € R", x >; y if and only if there exists an index k
such that for any i < k, x; = y; and x; > yk. The nucleolus of the CPL-game (N, c) is the set

v(c)={xe X:e"(x) = e"(y) forally € X}

with X = {x € R" : Y ;cny x; = ¢(N), x; > ¢({i}) foralli € N}.

It is well-known that the nucleolus is a singleton for balanced games and that it is
always a core allocation.

This last Proposition shows that the EP coincides with the Shapley value and the
nucleolus for CPL-games.

Proposition 4. Let (N, c) be a CPL-game. Thus, e(c) = ¢(c) = v(c).

Proof. To prove this, we first need to describe the class of PS-games introduced by [29].
Thus, a cost game (N, c) satisfies the PS property if for all i € N, there exists k; € R such
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that M;c(SU{i}) + M;c(N\ S) = k;, foralli € Nand S C N\ {i}. In[29], it is shown that
for PS games, the Shapley value coincides with the nucleolus; that is, ¢;(c) = v;(c) = %,
foralli € N.

Take a CPL-game (N, c), and take i € N. First we prove that it is a PS-game with

ki = 2€(c). Take S C N\ {i}. By (1), it holds that

Mic(SU{i}) + Mic(N\ S) = c({i}) — 2bgigs + c({i}) — 2bqiqn\s)\ (i}
= 2c({i}) — 2bqiqs — 2bqi(qn\s) — 9:)
= 2aq; — 2bqiqs — 2bq(n\s) = 2aq; — 2bqiqn
= 2aq;P(qn) = 2¢;(c)-

Second, we know that ¢;(c) = v;(c) = %, and thus ¢;(c) = vi(c) = €;(c), for all
ieN. O

It can be concluded that, for CPL-games, the EP rule is an appropriate way to allocate
the reduced total cost.

5. Balanced Different Price Rule for CPNL-Games
This section studies CPNL-games, where P function is not linear. We focus on DP rules,
where a DP rule is defined as DP(c) = (DP;(c));cn With %(C) # &'(C) for all g; # g; with

i,j € N. Note that q( <) s the price that agent i will pay per unit under this DP rule. We
analyze the properties that a different price allocation rule (DP rule) should have in order
to be acceptable to all agents.

As mentioned above, the agents could argue that the equal price rule is not acceptable
because it favors those agents who buy just few units of the product. This becomes more
problematic when the discount function is non-linear. In that case, the equal price rule
loses some of its good properties. Unlike the linear case, other acceptable rules, such as the
Shapley value and the nucleolus, do not assign the same price to all agents, i.e., they are
DP rules but they have a computability problem in that both are very laborious to calculate
for a large number of agents.

Therefore, those who buy large quantities of the product (major agents) may not accept
the EP rule and they would prefer to pay a lower price than the EP. An easily computable
DP rule should be proposed in which the price depends on the quantity demanded (with
this new rule, the benefits of cooperation are not distributed as uniformly as in the equal
price rule). First, we need to define “major agents”. We propose the following approach:
ranking agents according to how much they buy (g1 < g2 < ... < gy), the major agents are
alli € N such that } ;e P(q:)q; < Ljen P(4)q;, i-e., if all agents pay the individual price
of agent i, the total cost is smaller than if agents pay their individual costs. Thus, the set of
agents can be split into two subsets: the major agents

Am={i €N, Pgi)g; < Y P(qj)q;} 3)
jeEN jeEN

and the non-major agents

Am={i €N, Y P( > Y P(qj)q;}- 4)

jEN jEN

The DP rule should assign a price lower than the EP to the major agents, and one
higher than or equal to the EP to the non-major agents. Therefore, each agent i € N should
pay the price o(g;,q_;)P(qn) for the profile of quantities ¢ = (91,42, .,4i,..,qn) € R, where
o : [0,+00) x [0,+00)" 1 — R, is a function which determines the different prices.
Thus, the price 0(g;, ;) P(qn) not only depends of the quantity demanded by agent 7, but
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possibly also on the quantities demanded by other agents and their distribution. This is
another significant difference with regard to the equal price rule.

We consider that if for agents i,j € N g; < g, then the function takes a smaller/equal
value, i.e., 0(q;,9-;) > c(q;,q—;); thus, the different price is greater/equal for agent i. We
also consider that this property of ¢ is limited. This means that the larger one’s purchase is,
the higher one’s cost; i.e., if g; < g fori,j € N, then o (g;,9_;)P(qn)q9; < 0(q;,9-;)P(qn)q;
which is equivalent to ¢(q;,9—;)q; < (q;,9—;)q;- Both are quite reasonable assumptions.

We also assume that the major agents will pay a price lower than P(qy) and the non-
major agents a price of P(qy) or higher. We name this property major agent acceptability
(henceforth, MA). Formally, foralli € Ay, 0(q;,q—;) < 1and foralli € Aup, 0(qi,9-;) > 1.

To make the allocation rule also acceptable to the non-major agents, we assume
an upper bound for the price that they have to pay. Thus, the price payable by any
i € Aum is assumed to be greater than or equal to the price that all non-major agents
can obtain together, i.e., 0(q;,9-;)P(qn) < P(qa,,) With 4a4,,, = Yica,, qi, Where this
condition is equivalent to c(q1,9-1)P(9n) < P(qa4,,) because 0(q1,9-1) > o(g,q-;) for
any j € N\{1}. This means that the ¢ function sets an upper bound for the different price

of the non-major agents: 0(q1,9-1) < %
acceptability (henceforth, NMA).

Another desirable property for the DP rule is efficiency, that is, } ;e (i, 9—i) P(qN) i
= Lien P(qn)qi- This is equivalent to Y e n 0(qi,9—1)qi = Lien 9i < Lien(0(qi,9-i) — 1)4i
=0 & Yiea,, (@(i,q9-i) =1)qi = Yiea, (1 —0(4i,9-i))q;: (Note that N = Ay U A,
o(qi,9-i) < 1ifi € Ay, and 0(g;,q-;) > 1if i € Ayy). Thus, a different price rule
is efficient if and only if Y ;c 4 (1 —0(49i,9-i))qi = Lica,, (0(gi,9—i) — 1)g;. This means
that the function ¢ weighs the quantities of the major and non-major agents in such a
way that the sets A;;, and A, are balanced. We call this property balanced weighting
(henceforth, BW).

Finally, we consider that there is a limit to how much the function ¢ can decrease if
P4y );
p (QZ;Z,'
in the following way. Let ¢ = (g;,9—;) and q' = (q,,q_;), if ; > g}, then, ¢(q;,9_;) >
P(gn)a; P )d;

Pgn)gi P(gn)gi
price €;(c) = P(qn)q; is increasing in g;. Therefore,

. We call this property non-major agent

the quantity demanded by one agent i € N increases. This limit is set by the ratio

o(qi,q—;). First, note that the ratio < 1 (in (11), it is shown that the equal

Pl )q;
Plgn )i
at least greater than a portion of o'(q/,q_;), that is iggzgg’ o(q;,q-i).

We thus define a balanced different price rule (BDP rule) as B(c) = (Bi(c));
Bi(c) = o(qi,9_;)P(gn)qg; for alli € N, and the function ¢ : [0, +o0) x [0, +00)" 1 — R, |
satisfying the following properties:

< 1). Thus, 0(g;,q—;) has to be

1. Monotonically decreasing through players (MDP). Given a g € R}, if g; < g;, then
o(qi,9-i) > o(qj,q9-;) foralli,j € N.

2. Limited decrease through players (LDP). Givenaq € R, ifg; < g;, thenc(q;,9—;)q; <
o(qj,9-j)q; foralli,j € N.

3. Major-agents acceptability (MA). Foralli € Ay, 0(q;,9_;) < 1,and foralli € Ay,

o (i g-i) > 1.
4. Balanced weighting (BW). Lic ,,(1 = 0(gi,9-i))4i = Lica,, (¢(qi,9-i) — 1)gi-
Non-major agents acceptability (NMA). 0(g1,9-1) < P(IJZ%.

Limited decrease in a player quantity (LDQ). Let (N, q,P) and (N, g, P) be two
CPGD-models with g = (g;,q9—;) and ¢’ = (q,9—_;). If g; > ¢/, then

Pq)d!
o(qi,q-i) = pEZZ;Zj‘T(%Q—i)-

Note that a BDP rule always satisfies the following desirable properties:

1.  Symmetry (SYM). If two agents i and j in a group are interchanged in the sense that
c(SU{i}) = c(SU{j}) forevery S C N\{i, j}, then B;(c) = B;(c). It means that equal
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Y o(qi,9-1)P(gn)gi =

ie€S

agents in a group should pay equal costs. Indeed, c(SU {i}) = c(SU {j}) & q; = g;.
Thus, o(9;,9-i)P(qn)q; = o(q;,9-7)P(an)g;-

2. Player motononicity (PMON). For all i,j € N s.t. q; < g, it holds that B;(c) < B;(c).
This holds by property 2 of function ¢.

3. Cost monotonicity (CMON). For alli € N s.t. q; > ¢, it holds that B;(c) > Bi(c’),
with (N, ¢), (N, ¢’) being the CPGD-games corresponding to CPGD-models (N, g, P)
and (N, g, P) where q = (9_;,¢;) and ' = (4_;,q}). Satisfying this property means
that if the number of units of the product to be purchased by one agent in a purchasing
group remains the same or increases in comparison to a previous situation, then that
agent should pay an equal or higher cost.

This holds by property 6 of function ¢.

4.  Fair ranking added cost (FRAQC). If for two agents i and j in a group ¢(N) — ¢(N \
{i}) = ¢(N) —c(N\ {j}), then B;(c) > Bj(c). Satisfying this FRAC property means
that an agent with an equal or larger added cost (this is also called marginal costs)
should pay an equal or larger cost.

Indeed, c(N) —c¢(N\ {i}) = ¢(N) —c(N\{j}) & P(qn ip)an iy < PAn(1)an gy
and by property 4 (limited growth rate) of function P, g\ iy < gn\(j} < 4i = 4j-
Thus, by property 2 of function ¢, FRAC holds.

The Dummy player property (DUM) is meaningless in this context. For a dummy
player to exist, the function P must be constant, and in that case, all players are dummies.

The following proposition shows that the BDP rule is always efficient and coalitionally
stable. In cooperative game theory, efficiency and coalition stability is equivalent to being a
core allocation. This means that no coalition has incentives to break the grand coalition to
obtain a lower cost.

Theorem 1. Every BDP rule for CPNL-games is efficient and coalitionally stable.

Proof. Let (N,c) be a CPNL-game. Take a BDP rule B(c) = (¢(qi,9—i)P(qn)qi);cn With the
function ¢ satisfying 1-6. First, the BDP rule is efficient if Y ;- 0(q;,9—i)P(qn)g; = ¢(N),
which, as mentioned above, is equivalent to property 4 (BW) of the function ¢. Second,
for it to be coalitionally stable it must be proved that Y ;s 0(q;,9—;) P(qn)g; < ¢(S), for all
S C N. Three cases can be distinguished.

(1) S C Ay Here, foralli € S, 0(g,9-;) < 1 and so Y,;c50(q;,9-))P(qn)q; <
Yies P(qs)qi = c(S).
(2) S C Aum. We now prove that Y;cs(c(g;,9-i)P(gn) — P(g5))q; < 0. By P5 (NMA)

we know that Vi € Ay, 0(q;,q9-i) < PI(DZ;‘:]”)’) . Then, 0(qi,9-i)P(qn) < P(qa,, ) Take

into account that P(q4,,) < P(qs), forall S C Ay, itis found that o(q;,9—;)P(qn) —
P(gs) <Oforanyi € S C Apm. Hence, Y ic5(0(g;,9-i1)P(qn) — P(gs))q; <0
3) SNAum #S. By an argument similar to that above

Y. o(qi,q-0)Pan)gi+ Y, o(qu9-)Pn)gi < Y, Pan)gi+ Y, Plan)gi

i€ESNA, i€SNAum i€ESNA, i€SNAum

Hence, by the subadditive property,
Y. Pln)gi+ ), Plan)ai <} Plan)g: =c(S),

i€ESNAy i€SNAum i€eS
and so, Yics 0(qi,9-i)P(qn)gi < c(S). O

Summarizing, any BDP rule always satisfies the properties SYM, PMON, CMON,
FRAC, efficiency and coalitional stability. Moreover, it is acceptable for both major and
non-major agents. It can be concluded that a BDP rule is a good DP rule for CPNL-games.
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Below, we focus on an alternative approach for obtaining DP rules for CPNL-games.
This consists of allocating the cost of the grand coalition proportionally, with a proportion-
ality factor that combines the individual costs (faced when each agent buys the product on
its own) and the EP rule (available when agents face cooperative purchasing). We obtain
a highly suitable parametric family of proportional rules which, notably, is related to the
family of BDP rules.

6. The Family of a-Proportional Rules

Consider a CPNL-game (N, ¢) and a parameter 0 < a < 1. We define an a-proportional
rule as O(c, ) = (©;(c, a));en Where

O;(c,a) := 0;(x)P(qN)gn foralli € N, (5)

with
t 6i() == aP(qn)qi + (1~ @)P(q:)qi
l Yien[aP(qn)q; + (1 — ) P(q)q;]

Note that 0;(«) is a convex combination of the EP rule P(qy)gq; and the individual
cost P(g;)q;, which is normalized to one. Hence, 0 < 6;(a) < 1and Y ;cn 6;(«) = 1. Thus,
©;(c, a) allocates the cost of the grand coalition P(gy)qn proportionally to 6;(«).

Note first the 1-proportional rule matches the EP rule, that is, foralli € N

(6)

Oi(c,1) = 6()P(IN)aN = £ st Plan)an = s Plan)ay = Plan)ai = €i(c)-

@i(C, 0)

P(q:)qi _ _Plaiqn —
T Lien P(ﬂj)qu(qN)qN T Lien P(ﬂj)ﬂjp(qN)ql ~ Yjen P(gj)g; !

Yijen P(an P(qn)an
The O-proportional rule is the rule proportional to the individual cost, and it is related
to the EP rule: foralli € N
PN o (o) = _PliIN .
() = g Play, (o)

Therefore, ©;(c,0) is greater or less than ©;(c, 1) depending on the ratio Plaa

Yjen P(q))g;
greater or less than 1. We assume w.l.o.g. that g1 < g < --- < g,. If at least one of these

is

; g i : P(q1)qn P(gn)an : :
inequalities is strict, clearly, Toon P07, > 1and Toon P4,)7; < 1. As P is a continuously

decreasing discount function, there is a unique threshold § € (41,4 ), such that,

leﬁp(mzw

7
Yien P(q;)9; qN @)

This threshold § makes it possible to define two sets of agents that are independent of
the parameter a: those who buy small quantities S = {i € N, g; < 4}, and those who buy
large quantities L = {i € N,q; > {}.

The agents i € S, who buy small quantities, are harmed by the 0-proportional rule in

comparison to the EP because m > 1 for all g; < ¢, which implies that ®;(c,0) >
Yjen P(‘7/)‘7]

O;(c,1) = €;(c). However, the agents in i € L who buy large quantities benefit because

_Plaan gy : . . '
Tien D)1, < 1, forall g; > §. If there is an agent i € such that g; = g, that agent is neutral

to the rule, i.e., ©;(c,0) = ©;(c, 1). That agent will pay the equal price for any a € (0, 1).

The proposition below summarizes the above reasoning by relating the a-proportional
rules O(c, «) to the EP rule e(c). It also shows the increasing or decreasing character of the
a-proportional rule with respect to the parameter a.

Proposition 5. Let (N, c) be a CPNL-game. The a-proportional allocation rule holds:

1. Fora =1, all agents pay the equal price: ®;(c,1) = €;(c), foralli € N .
2. Foranya <1,

(@)  Forallie L, ®;(c,a) < €;(c) and ©;(c, a) decreases in a.

(b)  Foralli €S, O;(c,a) > ¢;(c) and O;(c, a) increases in a.

(c)  Ifthereisi & LUS, then ©;(c,a) = €;(c).
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Proof. It is straightforward to prove point 1, i.e., ©;(c,1) = €;(c) foralli € N.

To prove point 2, it is necessary to assess the derivative of function ®;(c,a) with
respect to a.

Indeed, d(%gf’“)) = d(eglg‘“)) P(qn)gn- We now calculate d(%‘)‘)) by writing it as a func-
tion of €;(c) = P(qn)g; and ¢({i}) = P(g;)g;. Thus,

ae;(c)+(1-a)c({i})
d(6;(0)) _ “\ Senle@+0-a)e({p]
_ %;ew(ei(C)—C({i}))[ﬂngzC)Jr(l—a)C({j})]—Z,'eN(véei(C)+(1—v¢)6({i}))[€j(6)—C({J'})}
(Zjen e (©)+(1-w)e({))])”
_ Ljen(ei(e)—c({i}))[ae;(e)+(1—a)c({j})] —(aei(c) +(1—a)e({i}))[ej(c) —e({j})]
(Zenlae(e)+(1-a)e({})])”

_ Yjeneilee{jh)—ej(e)e({i})

(Srenloej(€)+(1-w)e({jD])"

Note that the sign of W depends only on the sign of }_jc  €i(c)c({j}) —€;(c)c({i}).
Let us look at the latter:

Yienei(c)e({j}) —ej(c)e({i}) = eilc) Lien c({j}) — c({i}) Ljen €j(c)

= P(qn)qi Ljen P(97)q; — P(9i)9i Ljen P(qn)4;

= P(qn)qi Ljen P(q1)q; — P(9:)9:P(qn)qn

= P(qn)a:(Zjen P(a))aj — P(a)an )-

Clearly, Y e €i(c)e({/}) —ej(e)e({i}) <0 < Yien P(4j)q; — P(4i)qn < 0. The last
inequality holds if and only if q; > 7 (see expression (7)). Hence, if i € L, then ©;(c, ) <
€;i(c) and ©;(c, &) decreases in «.

On the other hand, }c €i(c)c({j}) — €j(c)c({i}) > 0 < Yjen P(g;)q; — P(9:)qn = 0.
This last inequality holds if and only if q; < § (see expression (7)). Hence, if i € S, then
O;(c,a) > €;(c) and O;(c, &) increases in a.

Finally, if there isi € LU S, then q; = 7, s0 ©;(c,0) = ©;(c,1) = €;(c). As O;(c, a) is
continuous in &, ©;(c, ) = €;(c) foralla € [0,1]. O

Proposition 5 shows that for « = 1 all agents pay as per the EP rule. As a decreases,
those agents who buy large quantities (L) start to pay less than under the EP rule and
those who buy small quantities (S) pay more. These differences with respect to the EP rule
increase with a and peak when a = 0. Therefore, the parameter « quantifies how different
the prices are. Thus, for « = 1, there are no different prices and for « = 0 the difference in
prices is maximum.

The next question is whether there is any link between the a-proportional rules and
BDP rules. In other words, is any a-proportional rule a BDP rule? The following section
shows that there is always an a threshold above which any a-proportional rule is a BDP rule.

7. Condition for an a-Proportional Rule to be a BDP Rule

To compare the a-proportional rule and the BDP rule, it is first necessary to rewrite
the former for any agent i € N as follows:

4 — 0(a _ aP(gn)gi + (1 —a)P(qi)qi _
@l(C,lX) - 61( )P(QN)‘?N - Z]GN[“P(qN)% ¥ (1 — a)P(q])q]]P(QN)QN =

aP(qn) + (1 —a)P(q;) |
TN aP(an)g; + (1 a)P(gg) NN

Denote ) «P(qn) + (1 —a)P(q;)
ST Yien[aP(gn)a; + (1 — a)P(g))q;

thus, ©;(c,«) = 0w (qi,9—i) P(qN)1i-

] 4N, (8)
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First, note that the function ¢, depends on the distribution of the agents” quantities
(491,92, - qis -, qn) unlike the equal price rule. This dependence is reflected in the second
term of the denominator, which is the sum of the individual cost without cooperation, i.e.,

. ac(N)+(1—a)P(q;
Yjen P(q;)g;. Note that (8) is equal to ac(N()+)(1£a)Z)jez(\1q12(qu)qj'

Remember that a BDP rule B(c) is defined as B;(c) = 0(q;,9—i)P(qn)qi, for alli € N,
with the function ¢ satisfying properties 1-6. The question is whether o, (g;, ;) satisfies
these six properties for any g € R’} and all « € [0, 1]. Although it does not, we show that a
threshold & < 1 can be always found above which o, (g;,9—;) does so.

Returning to the major and non-major agents, note that here major agents are those
who buy large quantities, i.e., Ay, = L. This follows comparing the definitions of Ay, Land
expression (7). Analogously, it can be shown that A, is equal to set S plus any i € N such
that g; = g (if any), i.e, Apm = SU (LU S)C.

The following theorem states an « threshold above which any a-proportional rule is a
BDP rule.

Theorem 2. For any CPNL-game, there is always an o* < 1, such that for any « € [a*,1) any
a-proportional rule is a BDP rule.

Proof. Let (N, c) be a CPNL-game and ©(c, ) be an a-proportional rule for that game,
with 0, (g;,9—;) given by (8). To prove that ©(c, «) is a BDP rule, it must be shown that
ox(qi,9—i) satisfies properties 1-6 of function ¢.

1.  (MDP)Takei,j € Ns.t. q; < g; then, by property 2 (Decreasingness) of function P, it
follows that P(g;) > P(q;), and so 0(qi,9—i) > 0u(q,9—;)-

2. (LDP) Takei,j € N s.t. q; < gj. It can be shown that oy (q;,9—;)q; < 0u(q,9-)4;-
Indeed, by property 4 (limited growth rate) of function P, it emerges that aP(qy)q; +
(1= a)P(gi)g; < aP(qn)qj + (1 - a)P (27]))61] (HeTC(e )

aP ; aP(qn)+ P(g;

S P (o B N0 < S Tarnta T2 P N

3. (MA) We now prove that for a < 1,04(g;,q—;) < 1,foralli € Ay, and 04(q;,9-;) > 1,
foralli € Ayu.
Indeed, as mentioned above, A, = L and A, = SU(LUS). Thus, if & < 1, from
point 2.a. of Proposition 5, we know that, for alli € A, ®;(c,a) < €(c), which is
equivalent to 0 (q;,q—;)P(qn)g9; < P(qn)qi < 0x(qi,9—i) < 1. Analogously, from
point 2.b. and 2.c. of Proposition 5, it can be shown that, foralli € Ay, 0a(g:,9-i) > 1.
Finally, note that if & = 1, then ®;(c, 1) = €(c) and 04 (g;,9—;) = 1 foralli € N.

4. (BW) It is straightforward to prove that
Yica, (1= 0u(9i,9-1))qi = [Ciea,, (1 — 0u(i,9-1))i]-
Indeed,
Yica, (1 —0u(qi - = |21€Anm — 0w (i, q-1) ‘71| <

Yien(ow(qiq-i) — )‘% =04 Yien0u(9i,9-1)9i = Lien i &
& Yien 0a(9i,9-i)9i = N © Lien ngN'E‘fIS(%qf (1)a()q'zq])q/] gN |9i = qN
aP(qn)+(1-a)P(q;) L Yien[aP(qn)qi+(1—a)P(q:)qi] _
< Z’€N<Z;eN[D¢P(qN)q, +(1-a)P (q])q]])ql =l YjenlaP(gn)g;+(1-a)P(q;)q;] — L.
5. (NMA) We show that there is always an a* < 1 such that for any &« € [a*,1),

ox(g1,9-1) < % Note that, as shown above, A, = SU (LU S)

We first prove that for all i € Ay, 04(q;,q—;) is decreasing in a. Indeed, as ©;(c,a) =
ox(gi,9-1)P(qn)qi, thus d(G)él(C’“)) = d(g“(zgq*i))P(qN)qi. Therefore, 7(‘7"‘(‘7’ D) < 0if

o

and only if % < 0, since P(qn)g; > 0. The sign of the last derlvatlve always

holds for all i € S (see point 2.b of Proposition 5). In addition, if there exists any
i ¢ LU S then, by point 2.c of Proposition 5, d(%ﬂ =0.
(qAnm )

Now note that 0, (q1,9-1) < o)

is equivalent to
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aP(q)+(1-2)P(g1) P(2.1m)
e a1 P IN S “Plan) ©)
o . _ P(gn) _ 1 < Pam)
This last inequality always holds for « = 1. Indeed, Yoon Plan)g; IN =1< Plan)

because of q4,, < qn. Thus, 0,=1(q1,9-1) = 1 and 04(q1,9-1) is decreasing in a.
Thus, only two different situations can occur: First, there is a root & € (0,1) such

that 0z(q1,9-1) = gz:"””)l) , i.e., (9) holds with equality, thus, 04 (g1,9-1) < %

forall « € (&,1). Second, there is no such & that 03(q1,9-1) = %. In that case,
P

ou(q1,9-1) < 1(;12:]”)’), foralla € (0,1).

Assume that a* = & if & € (0,1) and a* = 0 otherwise. We conclude that there is

always an a* < 1, such that for any « € [a*,1, 04 (q1,9-1) < %.

(LDQ) Take (N, g, P) and (N, 4, P) two CPGD-models with g = (g;,9-;), 9" = (9.,9-:),
and q; > q.. It must be shown that 0, (q;, 7)) P(qn)q: > 0w (g}, 9—i) P(q)y)q.- In fact, it

must be proven that the function 0, (g;, 9—;) P(qn)g; is increasing in g, i.e.

0w(9i,9-)P(aN)ai) -
oq; -
To simplify the proof, 04 (qi,9—i)P(qn)q; can be rewritten as a function of €;(c) =
P(qn)gi, c({i}) = P(qi)g; and ¢(N) = P(qn)gqn- In addition, to simplify the notation,
we do not explicitly indicate that all the following derivatives are in regard to gq;; we
denote them by €/(c), ¢’({i}), and ¢/(N).

First we rewrite the functlon ou(qi,9—i)P(qn)q; as follows:
aP(q)q;+(1-a)P (?3 ) (aej(c)+(1=a)c({i}))c(N)
i

i) —

(i 4-0)P AN = 5 Taplga TT-wpla ] L INAN = ety () by el D)
Denote by f(g:) = (a€i(c) + (1 —a)e({i}))e(N) and g(g;) = ac(N) + (1 — &)
Yjen c({j}), thus

02 (qi,9-)P(qn)gi = fEZ:% and (%(‘1&‘75:‘721’(41\/)%) _ f'ag ((g)(q’{)(ﬂh)g @) with

AN > 0 & f/(4:)3(4:) ~ F40)8' (40) >

In addition, it is known that

£1(a1) = (aej(e) + (1= w)e’ ({i}))e(N) + (aei(e) + (1~ a)e({i}))e'(N)
§/(q1) = ac'(N) + (1~ ) e ¢ (17))

After some calculations, it can be shown that

f(a)8(qi) — f(q:)8' (qi) > 0
=
(wef(e) + (1 =)' ({7}))e(N) (ae(N) + (1 = &) Ejew e({i}))

>

(aei(e) + (1 = @)e({i}) (1 = a) (c(N)'({i}) = /() Ejen e({j}))

Clearly, ( ¢(N) + (1 —a) Djen c({j )) > aei(c) + (1 — a)e({i})(1 — ), because
).

}
c(N) > ej(c) and Ljen c({j}) > c({i}
To end the proof, we prove that

(aei(c) + (1 —a)c'({i}))c(N) > (1 —a) (C(N)C’({i}) —d(N) ), C({f})> (10)

JEN

It is straightforward to show that (10) is equivalent to
aei(c)e(N) > —(1—a)c'(N) Ejen c({j}),
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which always holds because €/(c) > 0 and ¢/(N) > 0. Note that, by property 4
(limited growth rate) of function P, it is straightforward to prove that ¢’(N) > 0. Next,
we show that €](c) > 0,

€;(c) = P'(qn)qi + P(qn) > P'(qn)qn + P(gn) = ¢'(N) > 0, (11)

because of q; < qn, P'(qn) < 0 (by property 2 (decreasingness) of function P) and
P(qn) > 0 (by definition). This completes the proof of property 6 (LDQ)

We thus conclude that there is always an a* < 1, such that for any a € [a*,1), the
function o, (g;,q—;) satisfies properties 1-6 of function ¢. Hence, for all « € [a*,1), any
a-proportional rule is a BDP rule. [

It can be seen from the above demonstration that the function o, (g;,q—;) satisfies
property 3 (MA) for « < 1, property 5 (NMA) for & > a*. However, the other four
properties are satisfied for any « € [0, 1].

Summarizing, the 1-proportional rule is the EP rule. If major agents do not find this
allocation rule acceptable, the parameter « may decrease (to the threshold a*) and the
allocation rule thus becomes a BDP rule. It will be then acceptable to major agents. The
smaller the parameter « is, the greater the price differences are in regard to the quantity
demanded. Moreover, the lower the major-agent prices are, the higher the non-major-agent
prices are. For this reason, a threshold for parameter « is needed. Beyond that threshold,
non-major agents do not find the a-proportional rule acceptable, so it becomes coalitionally
instable, i.e., it is no longer a core allocation.

Finally, if «* = 0, the a-proportional rule is always a BDP rule, for all « € [0,1). The
following corollary shows a necessary and sufficient condition on the price function P for
this to happen.

Corollary 1. The a-proportional rule is always a BDP rule for all « € [0,1) if and only if

P(gy)
Yjen P(aj)aj 2 50 U5 P(an)n-

Proof. The threshold a* is obtained in the proof of Theorem 2 from the inequality

oa(q,,9,) < %. As 0x(q,,9_,) is decreasing in a, if the above inequality holds

for &« = 0, it also holds for all « € [0,1). Thus,

P(qAnm> P(q ) P(qAnm)
%e=0(®91) < 0" © TPl IN S P
P
& Lien[Pa))g] 2 5525 Py O

8. Numerical Illustration

In this section, we give a numerical illustration. We use a discount price function
P(g;) which has the properties 1-4 described in the Model section. As we mentioned,
it is provided in [8] an analytical and empirical basis for a general quantity-discount
function (QDF). They show that this QDF fits very well with 66 discount schedules found
in practice. They propose a QDF with an explicit formula depending on certain parameter:
P(q) = pm + q%, where py, is the theoretical minimum price, S scales the function P(g) for
quantity g, and 7 represent the steepness of a quantity-discount function. As it is carried
out in [4], we also assume that # = 0.5 because, as they show in [8], the schedules with a
positive steepness have a mean steepness of 0.58. In the first example, Table 1 shows the

price and cost for each agent in three cases for P(g;) = 80 + L\/%?.
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Table 1. Example 1 with a* > 0.
P(q;) =80+ 772
No-Cooperate Cooperate
Agent qi Individual Equal Price BDP(a-Proportional)|,_ - ¢ 35

Price Cost Price Cost Price Cost oy
1 50 10699 53,4975 1927 9633.4 4489  22,446.6 2.330
2 60 983.7  59,021.8 1927  11,560.1 4162 24,9709 2.160
3 70 916.7 64,1662 1927 134868 390.7  27,350.9 2.028
4 80 862.6 69,0099 1927 154135 3702  29,616.8 1.921
5 100 780.0 78,0000 1927 19,2669 3388  33,883.8 1.759
6 500 393.0 196,524.8 192.7 96,3345 1919  95955.5 0.996
7 600 365.8 2194643 1927 1156014 181.6  108,932.6 0.942
8 700 3446  241,202.6 192.7 1348683 1735  121453.6 0.901
9 800 3275  261,989.9 1927  154,1352 167.0  133,6134 0.867
10 900 3133  282,000.0 192.7 1734021 161.6  145,478.2 0.839

First, there is no cooperation and each agent buys individually; thus, the price of
agent i is P(g;) and its cost P(g;)q;. Second, agents cooperate with an equal price allocation
rule. In this case, the price is P(qy) and the cost P(qn)g;. Third, agents cooperate but
with a BDP allocation rule. In particular, we consider an a-proportional rule, where the
parameter a considered is the threshold a* given by Theorem 2. The price is, in this case,
0w+ (qi,9—i) P(qn) and the cost 0+ (g, 9 ;) P(qNn)q;- In this third case, we also show the value
_ 2" Pqn)+(1—a*)P(q;)
T Yjenla*P(qn)g;+(1—a*)P(q;)
always greater than one for all non-major agents and less than one for major agents. Thus,
in this case, the non-major agents are players 1-5 and 6-10 the major ones.

It is also known that the a-proportional rule is a BDP rule for all « € [a*,1), so as &
increases the price and cost of non-major agents will decrease and those of major agents will
increase. Hence, agents 1-5 will prefer the highest possible &, and agents 6-10 the lowest.
Note that, in the limit case, that is & = 1, the value of ¢4 (g;,q_;) is one for all agents and the
price matches the equal price, which is the most favorable situation for non-major agents.
The opposite situation is a* = 0.368, which is the most favorable situation possible for
major agents. If « were strictly lower than 0.368, this would not be acceptable to non-major
agents, and in that case, the a-proportional rule would not be a BDP rule.

Notice that, here, the threshold between major and non-major agents is § = 493,75.
This can be easily obtained from Equation (7). Indeed,

of function o,+, i.e., 0+ (q;,9—;) 1IN Note that function o is
]

2
7.000 [ 7000 \* [ 7.000
- \395,02—-80,/)  \315,02

2
q= ) = 493,75.

Yienc(i) 80
qN
Although, in the first example, a* > 0, it could be zero if the condition from Corollary 1

P(q1)
P(qAn,,,)P(qN)qN' In

holds, i.e., if the discount-price function holds that }_;cn P(g;)q; >

that case, the a-proportional rule is a BDP rule for all w € [0, 1).
Table 2 shows a second example with P(g;) = 10 + % where a* = 0, since

Yien P(gj)q) = 1.254.586 > 1.249.760,2 = (35555 )473.622 = ﬁgggP(qw)qw- We present the

a-proportional for « = 0. Notice that the former is acceptable to all agents for all « € [0,1)
2
and again § = 493,75 = (ﬁ%) .
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Table 2. Example 2 with a* = 0.

) — 7000
P(q,)—lO—Fﬁ

No-Cooperate Cooperate
Agent qi Individual Equal Price BDP(a-Proportional)|,_,._,
Price Cost Price Cost Price Cost oy
1 50 999.9 49,997.5 122.7 6133.4 377.4 18,868.5 3.076
2 60 913.7  54,821.8 122.7 7360.1 344.8 20,689.2 2.811
3 70 846.7  59,266.2 122.7 8586.8 319.5 22,366.5 2.605
4 80 792.6 63,409.9 122.7 9813.5 299.1 23,930.3 2.438
5 100 710.0 71,000.0 122.7 12,266.9 267.9 26,7947 2184
6 500 323.0 161,524.8 122.7 61,3345 121.9 60,957.8 0.994
7 600 295.8 1774643  122.7 73,601.4 111.6 66,973.2 0.910
8 700 274.6 192,202.6  122.7  85,868.3 103.6 72,535.3 0.845
9 800 2575 2059899 122.7  98,135.2 97.2 77,738.5 0.792
10 900 243.3 219,000.0 122.7 110,402.1  91.8 82,648.4 0.749

9. Conclusions, Limitations and Implications

We study situations in which a seller provides general price discounts for large orders
according to a decreasing unit-price function. In these situations, buyers can cooperate
and form purchasing groups to benefit from these price discounts. In this paper, we
analyze these cooperative-purchasing situations as cooperative cost games and call them
CPGD-games. We prove that the grand coalition can obtain significant reductions in costs
(i.e., CPGD-games are subadditive). Then, we show that CPGD-games are balanced; that is,
there is always a method for allocating the reduced costs generated by the CPGD model
that is efficient and (coalitionally) stable: the equal erice (EP) rule.

Next, we focus on cooperative-purchasing models with decreasing and linear unit-
price functions. We demonstrate that the linear nature of the discount-price function
provides additional information about the corresponding cooperative purchasing game
with linear discount (CPL-game): the marginal contribution of an agent diminishes as a
coalition grows. This is well-known as the snowball effect or concavity property. We also
prove that the EP rule matches the Shapley value and the nucleolus. In such cases, it seems
that there is no better way to allocate the reduced total cost. However, some agents may
argue that the EP is questionable because it favors those agents who produce and sell just a
few units of the product. Note that these agents pay the same price as major buyers. These
agent concerns can be really problematic when the unit price function is not linear. To solve
this problem, we propose a family of allocation rules for cooperative purchasing games
with non-linear discount (CPNL-games). We focus on the different price (DP) method and
propose a family of allocation rules with different prices that are acceptable to all agents:
balanced different price rules (BDP rules).

Finally, we concentrate on an alternative approach to obtain DP rules for CPNL-
games. This consists of allocating the cost of the grand coalition proportionally, with a
proportionality factor that combines the individual costs (faced when each agent buys the
product on its own) and the EP rule (available when agents face cooperative purchasing).
We obtain a highly suitable parametric family of proportional rules, named a-proportional
rules which, notably, are related to the family of BDP rules. Specifically, we prove that there
is always an « threshold above which any a-proportional rule is a BDP rule. There is, thus,
a range of acceptable alpha parameters for all agents, both major (agents who buy large
quantities) and non-major (agents who buy small quantities).

This family of a-proportional rules provides a cost-sharing method, for the cooperative-
purchasing model with general discount, that is easy to calculate, and guarantees stability
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in the cooperation because it is acceptable to both major and non-major buyers. All of them
are fully satisfied with this cost-sharing method. We believe that our rule can be a useful
tool for cooperative-purchasing organizations with any kind of buyers (firms, institutions,
consumers, etc.).

Future research can look first for real situations in which our model could be applied
and, based on the properties required in each situation, determine what alpha parameter(s)
within the interval would be most suitable, i.e., which a-proportional rule is most suitable
for each situation (an a-proportional rule that favors majors or one that is more favorable to
non-majors). Secondly, researchers could look for certain properties of the a-proportional
rules that are only satisfied by the family of a-proportional rules with a view to obtaining a
characterization of the family of a-proportional rules. Third, the analysis can be extended to
two-stage situations in which the quantity demanded by agents can be chosen strategically
in the first stage, i.e., two-stage models where agents play a non-cooperative game in the
first stage to choose the quantity demanded and play our GPGD-game (as a cooperative
game) in the second stage. It is, therefore, of great interest to study the characteristics
of the equilibrium profile of quantities demanded by agents induced by our family of
a-proportional rules.
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Abbreviations

The following abbreviations are used in this manuscript:

EP Equal price

QDF Quantity-discount function

Dr Different price

CPGD-model Cooperative-purchasing model with general discount
CPGD-game Cooperative-purchasing cost game with general discount
CPL-game Cooperative-purchasing game with linear discount
CPNL-game Cooperative-purchasing game with non-linear discount
MCP-situations Maximum cooperative-purchasing situations
MCP-games Maximum cooperative-purchasing games

MDP Monotonically decreasing through players

LDP Limited decrease through players

MA Major-agents’ acceptability

BW Balanced weighting

NMA Non-major agents” acceptability

LDQ Limited decrease in a player quantity

SYM Symmetry

PMON Player motononicity

CMON Cost monotonicity

FRAC Fair ranking added cost
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