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a b s t r a c t 

There are multiple situations in which bilateral interaction between agents results in considerable cost 

reductions. The cost reduction that an agent obtains depends on the effort made by other agents. We 

model this situation as a bi-form game with two states. In the first stage, agents decide how much effort 

to exert. We model this first stage as a non-cooperative game, in which these effort s will reduce the 

cost of their partners in the second stage. This second stage is modeled as a cooperative game in which 

agents reduce each other’s costs as a result of cooperation, so that the total reduction in the cost of each 

agent in a coalition is the sum of the reductions generated by the rest of the members of that coalition. 

The proposed cost allocation for the cooperative game in the second stage determines the payoff function 

of the non-cooperative game in the first stage. Based on this model, we explore the costs, benefits, and 

challenges associated with setting up a pairwise effort situation. We identify a family of cost allocations 

with weighted pairwise reductions which are always feasible in the cooperative game and contain the 

Shapley value. We also identify the cost allocation with weighted pairwise reductions that generate an 

efficient equilibrium effort level. 
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. Introduction 

The search for greater efficiency, access to new markets and 

reater competitiveness are some of the main factors that result in 

nter-organization or inter-corporate cooperation structures. There 

re different forms of cooperation depending on the degree of in- 

egration or interdependence of partners and on the intended goals 

f agreements. These forms have been widely studied in economic 

iterature (see e.g. Todeva and Knoke [1] for a survey). There is 

ne specific type of cooperation whose properties and character- 

stics differentiate it from the rest. It can occur between agents 

hat share, for example, resources, knowledge or infrastructure. The 

ommon purpose is to obtain individual advantages such as reduc- 

ng their respective individual costs. The particularity of this form 
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f cooperation lies in the fact that the cost reduction is based on 

ilateral interactions. 

We consider that form of cooperation here in which, given any 

air of cooperating agents, one agent reduces the cost of the other 

y a certain amount which is independent of cooperation with 

ther agents. This means that if there are more agents in the coali- 

ion the amount of the cost reduction does not change. This pair- 

ise cost reduction is independent of the coalition to which the 

air of agents may belong. Therefore, for any agent, the total cost 

eduction in any coalition can easily be calculated as the sum of 

he reductions obtained from each bilateral interaction with the 

ther members of the coalition. 

There are several situations where this kind of cooperation with 

airwise cost reduction occurs and is profitable, e.g. strategic col- 

aboration agreements between firms to reduce logistical opera- 

ional costs. The need to increase market share requires logistics 

rms to expand their radius of action as far as possible. This means 

ajor investments in expensive infrastructures at new sites, which 

ncrease operational costs. Agreements are established between 

ompanies to reduce those costs while maintaining control of their 
under the CC BY-NC-ND license 
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espective markets and hindering access by new competitors. They 

ffer the resources held by each firm in its respective area of in- 

uence under advantageous conditions. This enables them to ex- 

and their operating ranges with significant cost savings. Interac- 

ions occur bilaterally, with each company using the resources of 

he other. These cost reductions are independent of any cost re- 

uctions that can also be obtained by interacting with other agents 

n larger coalitions. 

The second situation is that of bilateral free trade agreements 

etween countries. In a globalized economy, free trade agreements 

re quite common. They facilitate trade in goods and services be- 

ween countries, reducing trade barriers and consequently the cost 

f trade. These cost reductions are specific to each pair of coun- 

ries, and are independent of any other agreements that either may 

ecide to establish with other countries. 

A third situation is the sharing of market data. Currently, in- 

ormation on customers and their purchase patterns is vitally im- 

ortant for firms. It enables them to maximize returns on adver- 

ising costs and focus on their ideal target markets. Cooperation 

etween firms (usually from complementary sectors) consists of 

haring information about their respective customers. This reduces 

he costs of each of the firms involved. The information that a par- 

icular firm provides is specific to it, so the value of the informa- 

ion that it receives from another specific firm is independent of 

nformation from other firms. Even if two firms provide informa- 

ion about the same customer, the information itself is different 

ecause it describes the purchase of a different good or service. 

his can increase the value of that particular customer as a target, 

hich again boosts the value of this particular kind of cooperation. 

The last situation presented here is that of inter-firm coopera- 

ion agreements to reduce costs by increasing the range of firms’ 

espective telecommunication networks. In eminently competitive 

ectors such as mobile telephony and online services, cooperation 

etween operators has become quite common. For example, they 

ay share the locations of their respective antennas, which en- 

bles them to expand the reach of their networks. This means 

reater benefits thanks to the offering of a broader service, while 

voiding the costs that would be entailed by each company in- 

talling its own structures. Here again, cost reduction is bilateral 

hen two agents decide to share and use each other’s antennas. 

hese cost savings are independent of any collaboration agree- 

ents that each firm may have with other agents to share anten- 

as in larger coalitions. 

In this kind of cooperation, the cost reduction between agents 

ay be highly asymmetric when they cooperate in pairs. For ex- 

mple, if two agents A and B decide to cooperate, agent A could 

rovide a major reduction for agent B, while the reduction pro- 

ided in the opposite direction could be more modest. These asym- 

etries can induce imbalances or discriminations that could jeop- 

rdize cooperation. A fair distribution mechanism for the costs 

enerated by cooperation is undoubtedly needed to ensure the sta- 

ility of any strategic partnership, as Thomson [2] points out. 

In addition, it is quite common for this kind of cooperation to 

equire the agents involved to make a set level of effort. It is nat- 

ral to think that the amount by which one agent can reduce the 

osts of the other (if they decide to cooperate) could depend on 

he effort that the agent exerts. For example, if one country can ob- 

ain information relevant to another (e.g. information on tax eva- 

ion and the flight of capital involving its citizens), the amount 

nd quality of the specific information may depend on the effort 

xerted by the first country in gathering it. This extends the situ- 

tion beyond a cooperative model. For this reason, we model the 

equence of decisions as a bi-form game ( [3] ). In the first stage of

he bi-form game, agents decide how much (costly) effort they are 

illing to exert. This has a direct impact on their pairwise cost re- 

uctions. This first stage is modeled as a non-cooperative game in 
2 
hich agents determine the level of pairwise effort to reduce the 

osts of their partners. In the second stage, agents engage in bi- 

ateral interactions with multiple independent partners where the 

ost reduction brought by each agent to another agent is indepen- 

ent of any possible coalition. We study this bilateral cooperation 

n the second stage as a cooperative game in which cooperation 

eads agents to reduce their respective costs, so that the total re- 

uction in costs for each agent in a coalition is the sum of the 

eductions generated by the rest of the members of that coalition. 

n the non-cooperative game of the first stage, the agents antici- 

ate the cost allocation that will result from the cooperative game 

n the second stage by incorporating the effect of the effort made 

nto their cost functions. Based on this model, we explore costs, 

enefits, and challenges associated with setting up a pairwise ef- 

ort situation. 

We investigate the impact of pairwise effort s on cost reduc- 

ions and the resulting cost structure for this framework. In par- 

icular, we explore the design of a cost-allocation mechanism that 

fficiently allocates the gains from pairwise effort to all parties. 

o that end, we first compute the optimal level of cost reduction, 

aking into account the pairwise cost reductions collectively ac- 

rued by all agents. An ideal allocation scheme should encourage 

gents to participate in it and, at the same time, establish proper 

ncentives to make efforts prior to cooperation. Specifically, we first 

how that it is profitable for all agents to participate in a pairwise 

ffort situation. Then we study how the total reduction in costs 

hould be allocated to the participants in such a situation. We do 

his by modeling the pairwise cost reduction between agents that 

akes place in the second stage as a cooperative game, which we 

efer to as the pairwise effort game or ”PE-game”. 

We prove that the marginal contribution of an agent diminishes 

s a coalition grows in PE-games (i.e. they are concave games) and 

hus all-included cooperation is feasible, in the sense that there are 

ossible cost reductions that make all agents better off or, at least, 

ot worse off (i.e. PE-games are balanced, which means that the 

ore is not empty). This all-included cooperation is also consistent 

i.e. PE-games are totally balanced, which means the core of ev- 

ry subgame is non-empty). We identify various allocation mech- 

nisms that enable all-included cooperation to be feasible (i.e. al- 

ocation mechanisms that belong to the core of PE-games). In par- 

icular, we discuss a family of cost allocations with weighted pair- 

ise reduction which is always a subset of the core of PE-games. 

his is a broad family of core-allocations which includes the Shap- 

ey value, which is obtained when all the weights work out to a 

alf. We provide a highly intuitive, simple expression for the Shap- 

ey value, which matches the Nucleolus in our model. To select one 

f these core-allocations in the second stage, we take into account 

he incentives that it generates in the effort s made by agents, and 

onsequently in the aggregate cost of a coalition. We show that the 

hapley value can induce inefficient effort strategies in equilibrium 

n the non-cooperative model. However, it is always possible to 

nd core-allocations with weighted pairwise reductions that cre- 

te appropriate incentives for agents to make optimal efforts that 

inimize aggregate costs, i.e. core-allocations that generate an ef- 

cient level of effort in equilibrium. 

This paper contributes to the literature by presenting a doubly 

obust cost sharing mechanism. That mechanism not only has good 

roperties regarding the cooperative game in the second stage but 

lso creates appropriate incentives in the non-cooperative game in 

he first stage that enable efficiency to be achieved. 

Cooperative game theory has developed a substantial mathe- 

atical framework for identifying and providing suitable cost shar- 

ng allocations (see, e.g., [4–6] for a survey). Multiple solutions 

ave been proposed from a wide range of approaches (see, e.g., 

7–16] ). The Shapley value ( [17] ) is considered one of the most 

utstanding of them, and a suitable solution concept (see, e.g., 
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1 A scalar field is said to be class C 2 at [0 , 1] n −1 if its 2-partial derivatives exist at 

all points of [0 , 1] n −1 and are continuous. 
2 This last assumption implies that the Hessian matrix is a diagonal matrix. In 

addition, note that, given our assumptions about c i , w.l.o.g. we could consider that 

c i (e i ) = 

∑ 

j∈ N\{ i } c i j (e i j ) where c i j (. ) : [0 , 1] → R + . We omit it from the paper so as 

not to introduce more notation into the model. 
3 ∂r ji (e i j ) /δe i j > 0 (increasing) and ∂ 2 r ji (e i j ) /δe 2 < 0 (concave). 
18,19] for a survey). As an allocation rule it has very good prop- 

rties, such as efficiency, proportionality, and individual and coali- 

ional rationality. However, it has the disadvantage of posing com- 

utational difficulties, which increase as the number of players in- 

reases. Nonetheless, there is a large body of literature in which 

he Shapley value is proposed as a simple, easy-to-apply solution 

n different economic scenarios (see, e.g., [20–25] ). These papers 

ive simplified solutions for different classes of games. They take 

he cost structure as given and do not consider the system ex- 

ernalities that arise when agents make efforts to give and re- 

eive cost reductions. Our paper here incorporates both the non- 

ooperative aspects of making efficient efforts (by modeling deci- 

ions related to pairwise cost reductions) and the cooperative na- 

ure of giving and receiving cost reductions in pairwise effort situ- 

tions. 

As in principal-agent literature, we refer to action by agents as 

effort”. In this setting, the concept of ”effort” is widely used in an- 

lyzing different kinds of problem. One of the first was the moral 

azard problems: See for example [26] . Other examples are Holm- 

trom [27] and Dewatripont et al. [28] , who identify conditions un- 

er which more information can induce an agent to make less ef- 

ort. The approach in our model is quite different, in that we do 

ot consider any kind of principal. As far as we know, our model 

s novel in that it analyzes the incentive for agents to make effort s

n a bi-form game: A non-cooperative stage where agents choose 

ow much effort to make and a cooperative second stage. As men- 

ioned, we show that the solution of the cooperative game deter- 

ines the incentives of agents to make an effort in the first stage, 

nd consequently the efficiency of the final outcome. 

In [29] , it is also used a bi-form model to analyze the role of

rocess improvement in a decentralized assembly system in which 

n assembler lays in components from several suppliers. The as- 

embler faces a deterministic demand and suppliers incur variable 

nventory costs and fixed production setup costs. In the first stage 

f the game suppliers invest in process improvement activities to 

educe their fixed production costs. Upon establishing a relation- 

hip with suppliers, the assembler sets up a knowledge sharing 

etwork which is modeled as a cooperative game between sup- 

liers in which all suppliers obtain reductions in their fixed costs. 

hey compare two classes of allocation mechanism: Altruistic al- 

ocation enables non-efficient suppliers to keep the full benefits of 

he cost reductions achieved due to learning from the efficient sup- 

lier. The Tute allocation mechanism benefits a supplier by trans- 

erring the incremental benefit generated by including an efficient 

upplier in the network. They find that the system-optimal level of 

ost reduction is achieved under the Tute allocation rule. Our bi- 

orm game is novel in terms of incentive for efforts by agents and 

s also richer in results: We find the allocation rule that generates 

he unique efficient effort in equilibrium in cooperation with pair- 

ise cost reduction. 

The paper is organized as follows. Section 2 presents the bi- 

orm game and describes in detail the two stages in which the 

odel is developed. Section 3 is devoted to analyzing the second 

tage which is a cooperative game. In this cooperative game, agents 

educe each other’s costs as a result of cooperation, so that the to- 

al reduction in the cost of each agent in a coalition is the sum 

f the reductions generated by the rest of the members of that 

oalition. In Section 4 the first stage is studied, that is the non- 

ooperative game that precedes the cooperative game in the sec- 

nd stage. Here, the agents anticipate the cost allocation that re- 

ults from the cooperative game in the second stage by incorpo- 

ating the effect of the effort exerted into their cost functions. We 

onsider a family of cost allocation rules (in the second state) with 

airwise reductions weighted separately (WPR family) and obtain 

he corresponding effort equilibria in the first state. Then, we de- 

elop a general and complete analysis of the efficient effort equi- 
3 
ibria. Finally, in this section, we found the core-allocation rule in 

his WPR family that generates the unique efficient effort equilib- 

ia. Section 5 focuses on a subfamily of the WPR family in which 

airwise reductions are not weighted separately, but are weighted 

s aggregated reduction, this is the WPAR family. We find out that 

he level of efficiency is lower than that attained when the pair- 

ise reductions are weighted separately for each agent. Then, we 

ound the rule, within this WPAR family, that generates the equi- 

ibrium effort s closest to the efficient ones. Finally, Section 6 com- 

letes the study of our model by comparing the two families of 

ore-allocation analyzed. We complete the paper with a section of 

onclusions and four appendices containing the proofs of the re- 

ults and tables of summaries (notation and optimization prob- 

ems). 

. Model 

We consider a model with a finite set of agents N = { 1 , 2 , .n } ,
here each agent has a good (for example resources, knowledge 

r infrastructure) and has to perform a certain activity. The total 

ost of an agent’s activity can be reduced if it cooperates with an- 

ther agent, which means that the two agents share their goods. 

hese cost reductions obtained by sharing goods in pairs depend 

n the effort made previously by each agent. Our model consists 

f two different stages. In the first stage, agents choose their effort 

evels as in a non-cooperative game. In the second stage, agents co- 

perate to reduce their costs, and allocate the minimum cost they 

chieve by pairwise cost reductions as in a cooperative game. The 

roposed cost allocation for the cooperative game in the second 

tage determines the payoff function of the non-cooperative game 

n the first stage. Therefore, we model the sequence of decisions as 

 bi-form game ( [3] ). The two stages of the model are described in

etail below. 

First Stage (non-cooperative game) : Each agent i ∈ N chooses 

n this state an effort level e i = (e i 1 , . . . , e i ( i −1 ) , e i ( i +1 ) , . . . e in ) ∈
0 , 1] n −1 , where e i j ∈ [0 , 1] stands for the level of effort by agent i

o reduce the cost of agent j if they cooperate in the second stage. 

hese efforts have a cost c i (e i ) ∈ R + for any i ∈ N. We assume that

 i (. ) : [0 , 1] n −1 → R + is a scalar field of class C 2 ([0 , 1] n −1 ) . 1 More-

ver, for all e i j ∈ [0 , 1] with j ∈ N\{ i } , it is assumed that 
∂c i (e i ) 

∂e i j 
> 0 ,

∂ 2 c i (e i ) 

∂e 2 
i j 

> 0 , and 

∂ 2 c i (e i ) 

∂ e i j ∂ e ih 
= 0 for all h � = i, j, which implies that the

arginal cost 
∂c i (e i ) 

∂e i j 
is independent of the effort that i exerts with 

gents other than j. 2 

Second Stage (cooperative game) : Given the effort made in the 

rst stage, agents cooperate, so for any pair of cooperating agents 

, j ∈ N and a given effort e i j , agent i reduces the total cost of

gent j by an amount r ji (e i j ) ∈ R + , and vice versa. These partic-

lar reductions between agents i, j ∈ N are independent of cooper- 

tion with other agents. We also assume for all j ∈ N\{ i } that func-

ion r i j (. ) : [0 , 1] → R + is class C 2 , increasing and concave 3 at [0,1].

hus, these agents participate in bilateral interactions with multi- 

le independent partners whose cost reductions are coalitionally 

ndependent, i.e. the cost reduction given by each agent to another 

gent is independent of any possible coalition. This means that the 

otal reduction in cost for each agent in a coalition S ⊂ N is the 

um of the pairwise cost reductions given to that agent by the rest 
i j 
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f the members of the coalition, i.e. for agent i , it is 
∑ 

j∈ S\{ i } r i j (e ji ) .

e assume perfect information regarding agents’ costs and cost re- 

uctions depending on effort s. 

Given an effort profile e = (e 1 , e 2 , . . . , e n ) ∈ [0 , 1] n (n −1) in the

rst stage, the second stage can be seen as a cooperative game, 

ore specifically a transferable utility cost game (N, e, c) , where N

s the finite set of players, and c : 2 N → R is the so-called charac-

eristic function of the game, which assigns to each subset S ⊆ N

he cost c(S) that is incurred if agents in S cooperate. By con- 

ention, c(∅ ) = 0 . The cost of agent i in coalition S ⊆ N is given

y c S (i ) := c i (e i ) −
∑ 

j∈ S\{ i } r i j (e ji ) . This cost can be interpreted as

he reduced cost of agent i in coalition S. Note that the larger 

he coalition, the greater the cost reduction it achieves, i.e. for all 

 ∈ S ⊆ T ⊆ N, c T ({ i } ) ≤ c S ({ i } ) . The total reduced cost for coalition

is given by 

(S) := 

∑ 

i ∈ S 
c S ({ i } ) = 

∑ 

i ∈ S 
[ c i (e i ) −

∑ 

j∈ S\{ i } 
r i j (e ji )] . (1)

When all agents cooperate, they form what is called the grand 

oalition, which is denoted by N . Thus, c(N ) is the aggregate 

ost of the grand coalition. The allocation of the grand coalition 

ost achieved through cooperation, in the second stage, assigns 

 reduced final cost to each agent, that is, ψ i (e ) , for all i ∈ N,

here ψ i : E → R with E := 

∏ 

i ∈ N E i and E i := [0 , 1] n −1 . Then, we

efine the cost allocation rule ψ : E → R n s.t. ψ(e ) = ( ψ i (e ) ) i ∈ N 
nd 

∑ 

i ∈ N ψ i (e ) = c(N) . 

The non-cooperative cost game in the first stage is defined 

hrough that cost allocation rule ψ by (N, { E i } i ∈ N , { ψ i } i ∈ N ) , where

 i is the strategy space of agent i ∈ N (its effort level space), and

 i is the payoff function of agent i , but in this case is a cost func-

ion. Hence, for an effort profile e ∈ E, the corresponding cost func- 

ion is ψ(e ) . That effort is made in anticipation of the result of

he cooperative cost game that follows in the second stage. There- 

ore, we first analyze the second stage (see Section 3 ), and focus 

n different ways of allocating the grand coalition cost. We de- 

ermine cost allocation rules with good computability properties 

nd coalitional stability for this cooperative cost game. Notice that 

 given cost allocation rule will generate precise incentives in the 

rst state and consequently particular equilibrium effort strategies 4 

n turn, these particular effort strategies will have an associate cost 

f the grand coalition. At this point, a question about efficiency 

rises. The lower the cost of the grand coalition generated in equi- 

ibrium is, the more efficient the equilibrium effort strategies and 

he allocation rule considered will be. 

Therefore, there are two dimensions to be considered. First, 

he cost allocation rule for the cooperative game should have 

ood properties (computability and coalitional stability). Second, 

he allocation rule must induce the right incentives in the non- 

ooperative game to obtain the lowest cost of the grand coalition. 

his interesting, relevant question is analyzed in Section 4 and 5 . 

Throughout the paper, we consider the following assumptions: 

(CA) Cost assumptions: c i ∈ C 2 , and 

∂c i (e i ) 

∂e i j 
> 0 (increasing), 

∂ 2 c i (e i ) 

∂e 2 
i j 

> 0 (convex), and 

∂ 2 c i (e i ) 

∂ e i j ∂ e iK 
= 0 , if k � = j (additively separable). 

(RA) Reduction assumptions : r ji ∈ C 2 , and ∂r ji (e i j ) /δe i j > 0

increasing), ∂ 2 r ji (e i j ) /δe 2 
i j 

< 0 (concave). 

A summary of the notation and the main optimization prob- 

ems ( Tables 1 and 2 ) can be found in Appendix D. 
4 An effort strategy profile is said to be in equilibrium when each agent has noth- 

ng to gain by changing only their own effort strategy given the strategies of all the 

ther agents (Nash equilibrium). 

c

i

c

c

g

4 
. Cooperation with pairwise cost reduction 

This section presents the analysis of cooperation with pairwise 

ost reduction in the second stage. Agents make their efforts in 

airwise sharing in the first stage, and initiate cooperation with ef- 

orts e = (e 1 , . . . , e i , . . . , e n ) . We model the PE-game as a multiple-

gent cooperative game where each agent i incurs an initial cost 

f c i (e i ) . All agents in a pairwise effort group (coalition) give cost

eductions to and receive such reductions from other agents. As a 

esult, all agents in the coalition reduce their initial costs to levels 

hat depend on the effort s made in the first stage by the others. 

o agent outside the pairwise effort situation benefits from this 

airwise cost reduction opportunity. We introduce all the game- 

heoretic concepts used in this paper, but readers are referred to 

30] for more details on cooperative and non-cooperative games. 

We refer to the pairwise effort situation as a PE-situation and 

enote it by the tuple (N, e, { c i (e i ) , { r ji (e i j ) } j∈ N\{ i } } i ∈ N ) . We asso-

iate a cost game (N, e, c) with each PE-situation as defined by (1) .

The class of PE-games has some similarities with the class of 

inear cost games introduced in [31] . They define the concept of 

ost-coalitional vectors as a collection of certain a priori informa- 

ion, available in the cooperative model, represented by the costs 

f the agents in all possible coalitions to which they could belong. 

he cost of a coalition in their study is thus the sum of the costs

f all agents in that coalition. However, the PE-games considered 

ere are significantly different from their linear cost games. Linear 

ost games focus on the role played by benefactors (giving) and 

eneficiaries (receiving) as two groups of disjoint agents, but PE- 

ames consider that all agents could be dual benefactors, in the 

ense that they be benefactors and beneficiaries at the same time. 

n addition, PE-games are based on a bilateral cooperation between 

gents that enables both to reduce their costs but is coalitionally 

ndependent. 

We now consider a PE-situation 

N, e, { c i (e i ) , { r i j (e i j ) } j∈ N\{ i } } i ∈ N ) and consider whether it is prof-

table for the agents in N to form the grand coalition to obtain 

 significant reduction in costs. We find that the answer is yes, 

nd show that the associated PE-game ( N, e, c ) is concave, in the 

ense that for all i ∈ N and all S, T ⊆ N such that S ⊆ T ⊂ N with

 ∈ S, so c( S ) − c(S \ { i } ) ≥ c(T ) − c(T \ { i } ) . This concavity property

rovides additional information about the game: the marginal 

ontribution of an agent diminishes as a coalition grows. This is 

ell-known and is called the ”snowball effect”. 

The first result in this section shows that PE-games are always 

oncave. This means that the grand coalition can obtain a signifi- 

ant reduction in costs. In that case, the reduced total cost is given 

y c(N) = 

∑ 

i ∈ N 
c i (e i ) − R (N ) , where R (N ) = 

∑ 

i ∈ N 

∑ 

j∈ N\{ i } 
r i j (e ji ) is the to-

al reduction produced by bilateral reductions between all agents 

n the situation, which turns out to be the total cost savings for 

ll agents. The proof of Proposition 1 , together with all our other 

roofs for this section, is shown in Appendix A. 

roposition 1. Every PE-game is concave. 

An allocation rule for PE-games is a map ψ which assigns a 

ector ψ ( e ) ∈ R n to every ( N, e, c ) , satisfying efficiency, that is, ∑ 

 ∈ N 
ψ i ( e ) = c(N) . Each component ψ i ( e ) indicates the cost allocated 

o i ∈ N, so an allocation rule for PE-games is a procedure for al-

ocating the reduced total to all the agents in N when they coop- 

rate. It is a well-known result in cooperative game theory that 

oncave games are totally balanced: The core of a concave game 

s non-empty, and since any subgame of a concave game is con- 

ave, the core of any subgame is also non-empty. That means that 

oalitionally stable allocation rules can always be found for PE- 

ames. We interpret a non-empty core for PE-games as indicating a 
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etting where all included cooperation is feasible, in the sense that 

here are possible cost reductions that make all agents better off

or, at least, not worse off). The totally balanced property suggests 

hat this all-included cooperation is consistent, i.e. for every group 

f agents whole-group cooperation is also feasible. 

A highly natural allocation rule for PE-games is ϕ i ( e ) = 

 

N ({ i } ) = c i (e i ) − R i (N) , for all i ∈ N, with R i (N) = 

∑ 

j∈ N\{ i } 
r i j (e ji )

eing the total reduction received by agent i ∈ N from the rest of 

he agents j ∈ N\{ i } . It has good properties at least with respect

o computability and coalitional stability in the sense of the core. 

ormally, the core of a PE-game ( N, c ) is defined as follows 

ore ( N, c ) = { x ∈ R 

n / 
∑ 

i ∈ N 
x i = c(N) , 

∑ 

i ∈ S 
x i ≤ c(S) ∀ S ⊆ N} . (2)

Notice that ϕ ( e ) ∈ Core ( N, c ) . Indeed, 
∑ 

i ∈ N 
ϕ i ( e ) ≤ c(N) and for 

very S ⊆ N, 
∑ 

i ∈ S 
ϕ i ( e ) = 

∑ 

i ∈ S 
c N (i ) ≤ ∑ 

i ∈ S 
c S (i ) = c(S) . Nevertheless, the

gents could argue that this allocation does not provide sufficient 

ompensation for their dual role of giving and receiving. Note that 

he allocation only considers their role as receivers. 

PE-games are concave, so cooperative game theory provides al- 

ocation rules for them with good properties, at least with respect 

o coalitional stability and acceptability of items. We highlight the 

hapley value (see [17] ), which assigns a unique allocation (among 

he agents) of a total surplus generated by the grand coalition. 

t measures how important each agent is to the overall coopera- 

ion, and what cost can it reasonably expect. The Shapley value of 

 concave game is the center of gravity of its core (see [32] ). In

eneral, this allocation becomes harder to compute as the number 

f agents increases. We present a simple expression here for the 

hapley value of PE-games that takes into account all bilateral re- 

ations between agents and compensates them for their dual role 

f giving and receiving. 

Given a general cost game (N, c) , we denote the Shapley value 

y φ(c) , where the corresponding cost allocation for each agent 

 ∈ N, is 

i (c) = 

∑ 

i ∈ T ⊆N 

(n − t)!(t − 1)! 

n ! 
[ (c(T ) − c(T \{ i } ) ] , with | T | = t. 

(3) 

The Shapley value has many desirable properties, and it is also 

he only allocation rule that satisfies a certain subset of those 

roperties (see [33] ). For example, it is the only allocation rule that 

atisfies the four properties of Efficiency, Equal treatment of equals, 

inearity and Null player ( [17] ). 

Given a PE-game (N, e, c) , we denote by φ(e ) the Shapley value

f the cost game. The following Theorem shows that the Shap- 

ey value provides an acceptable allocation for PE-games. Indeed, 

t reduces the individual cost of an agent by the average of the to- 

al reduction that it obtains from the others ( R i (N) ) plus half of

he total reduction that it provides to the rest of the agents, i.e. 

 i (N) = 

∑ 

j∈ N\{ i } r ji (e i j ) . 

heorem 1. Let (N, e, c) be a PE-game. For each agent k ∈ N, φk (e ) =
 k (e k ) − 1 

2 [ R k (N) + G k (N)] . 

From Theorem 1 it can be derived that the Shapley value, φ(e ) ,

onsiders the dual role of giving and receiving of all agents, and 

he final effect on those agents depends on which role is stronger. 

s mentioned above, if an allocation does not compensate them for 

heir dual role of giving and receiving, and it only considers their 

ole as receivers, as the individual cost in the grand coalition, ϕ(e ) ,

oes, the cooperation would not be desirable for those dual agents. 

his non-acceptability can be avoided by using the Shapley value, 

hich also coincides with the Nucleolus ( [34] ) for PE-games. 
5 
The nucleolus selects the allocation in which the coalition 

ith the smallest excess (the worst treated) has the high- 

st possible excess. The nucleolus maximizes the ”welfare” of 

he worst treated coalitions. Denote by ν(e ) ∈ R n the Nucle- 

lus of the PE-game (N, e, c) , associated with a PE-situation 

N, e, { c i (e i ) , { r i j (e i j ) } j∈ N\{ i } } i ∈ N ) . First, we define the excess of

oalition S in (N, e, c) with respect to allocation x as d ( S, x ) = 

(S) − ∑ 

i ∈ S x i . This excess can be considered as an index of the 

welfare” of coalition S at x : The greater d ( S, x ) , the better coali- 

ion S is at x . Let d ∗(x ) be the vector of the 2 n excesses arranged

n (weakly) increasing order, i.e., d ∗
i 
(x ) ≤ d ∗

j 
(x ) for all i < j. Second,

e define the lexicographical order �l . For any x, y ∈ R n , x �l y if

nd only if there is an index k such that for any i < k , x i = y i and

 k > y k . The nucleolus of the PE-game (N, e, c) is the set 

(e ) = { x ∈ X : d ∗(x ) �l d 
∗(y ) for all y ∈ X } (4)

ith X = { x ∈ R n : 
∑ 

i ∈ N x i = c(N) , x i ≥ c({ i } ) for all i ∈ N} . 
It is well known that the Nucleolus is a singleton for balanced 

ames and that it is always a core-allocation. 

The Proposition 2 proves that for PE-games the Shapley value 

atches the Nucleolus. This is a very good property that few cost 

ames satisfy. 

roposition 2. Let (N, e, c) be a PE-game. For each agent k ∈ N,

k (e ) = φk (e ) . 

Therefore, given an effort profile, the Shapley value is a very 

uitable way of allocating the reduced cost due to cooperation. 

ote that, the cost reduction as a result of cooperation between 

ny pair of agents i, j ∈ N is r i j (e ji ) + r ji (e i j ) , and the Shapley value

ssigns one half of this amount to i and the other half to j. This

eems a reasonable way to split this aggregate cost reduction. 

owever, if agents knew before choosing their levels of efforts that 

he cost reductions resulting from their effort s were going to be 

llocated according to the Shapley value, the incentives created 

ould generate inefficiencies. Some agents could find it optimal to 

xert too little effort and in some situations this could be ineffi- 

ient. 

For example, consider a PE-situation in which one agent has the 

bility to produce a substantial reduction in costs for other agents 

ith a low effort cost and the rest of the agents have almost no 

bility to reduce costs for others even with a high effort cost. If the 

hapley value is used as the allocation rule for this game, agents 

ay not have incentives to make any level of effort. Note that 

n the first step agents have to decide how much effort to make. 

owever, if the Shapley value is modified to give a greater portion 

f the pairwise cost reduction to the especially productive agent, 

t might make more effort and thus produce a greater reduction in 

ost for other agents. This change in the Shapley value generates 

ew allocation rules, which can reduce the cost of the grand coali- 

ion regarding the Shapley allocation. The following example with 

hree agents illustrates these ideas. 

xample 1. Consider a pairwise inter-organizational situation 

ith three firms, i.e. N = { 1 , 2 , 3 } . For any effort profile e ∈
0 , 1] 6 , the PE-situation is given by the following initial costs, 

c 1 (e 12 , e 13 ) = 100 + 100 e 12 + 4 e 2 12 + 100 e 13 + 4 e 2 13 

c 2 (e 21 , e 23 ) = 100 + 100 e 21 + 4 e 2 
21 

+ 100 e 23 + 4 e 2 
23 

c 3 (e 31 , e 32 ) = 100 + 100 e 31 + 4 e 2 31 + 100 e 32 + 4 e 2 32 

nd the following pairwise reduced costs, all of them in thousands 

f Euros, 

r i 1 (e 1 i ) = 2 + 200 e 1 i − 3 e 2 
1 i 

with i = 2 , 3 

r i 2 (e 2 i ) = 2 + 3 e 2 i − e 2 
2 i 

with i = 1 , 3 

r i 3 (e 3 i ) = 2 + 3 e 3 i − e 2 
3 i 

with i = 1 , 2 
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6 Note that the second derivative in e is equal to ∂ 2 c i (e i ) − ∂ 2 r ji (e i j ) , which is al- 
If the allocation rule in the second stage is the Shapley value, 

he firms choose their levels of effort according to this cost al- 

ocation function. It is straight forward to show that in this case 

he unique effort equilibrium e ∗, is one in which the three firms 

ake no effort, i.e. e ∗
i j 

= 0 for i, j ∈ N. 5 Thus, the Shapley value dis-

ributes the cost of the grand coalition c ∗(N) = 288 equally, i.e. for

ach firm i = 1 , 2 , 3 , φi (e ∗) = c i (e ∗
i 
) − 1 

2 

∑ 

j∈ N\{ i } [ r ij (e ∗
ji 
) + r ji (e ∗

ij 
)] =

00 − 1 
2 ((2 + 2) + (2 + 2)) = 96 . 

Note that, for example, in the relationship between firm 1 and 

, the pairwise cost reduction is r 12 (e 21 ) + r 21 (e 12 ) , and the Shap-

ey value gives 1 
2 of this amount to firm 1 and the other 1 

2 to firm

. However, if the proportion that firm 1 obtains is increased, e.g. 

rom 

1 
2 to 3 

4 , and the part for firm 2 is thus reduced to 1 
4 , the

ncentive of firm 1 to make an effort can be increased. The same 

oes for firms 1 and 3 so that the incentive of firm 1 to make an

ffort f or firm 3 is also increased. These changes in the Shapley 

alue lead to a new allocation rule which we denote by �(e ) =
�1 (e ) , �2 (e ) , �3 (e )) for any effort profile e ∈ [0 , 1] 6 . With this

ew allocation rule, the equilibrium effort s are zero for firms 2 

nd 3, and one for firm 1. That is, e ∗∗
1 j 

= 1 , for j = 2 , 3 , e ∗∗
2 j 

= 0 , for

j = 1 , 3 , and e ∗∗
3 j 

= 0 , for j = 1 , 2 . In this case, the grand coalition

ost c ∗∗(N) = 102 is allocated equally between firms 2 and 3, and

he rest to firm 1. That is, �i (e ∗∗) = 100 − 1 
4 [(2 + 200 − 3) + 2] −

1 
2 (2 + 2) = 47 , 75 for i = 2 , 3 , and �1 (e ∗∗) = 100 + 100 + 4 + 100 +
 − 3 

4 [(2 + (2 + 200 − 3)) + (2 + (2 + 200 − 3))] = 6 , 5 . 

Hence, the new allocation rule �(e ∗∗) greatly reduces the grand 

oalition cost (by 136.0 0 0 Euros) as well as the costs of each firm;

.e. a reduction of 89.500 Euros for firm 1 and 23.250 Euros for 

rms 2 and 3. In relative terms, with the Shapley value each com- 

any pays 33.33% of the total cost. However, with the modified 

hapley value agent 1 only pays 4.4% of the total cost, while agents 

 and 3 pay 47.8% each. Therefore, the modified Shapley value gen- 

rates a more efficient outcome in the sense that it creates more 

ppropriate incentives for firms. 

To reach efficient effort strategies in equilibrium (henceforth 

EE) in the first stage, we consider a new family of allocation rules, 

or PE-games (second stage), based on the Shapley value. This fam- 

ly consists of the rules �(e ) ∈ R n , where for all i ∈ N, 

i (e ) = c i (e i ) −
∑ 

j∈ N\{ i } 
[ ω 

i 
i j r i j (e ji ) + ω 

i 
ji r ji (e i j )] , 

ith ω 

i 
i j 
, ω 

i 
ji 

∈ [0 , 1] , for all j ∈ N\{ i } , such that ω 

i 
i j 

= 1 − ω 

j 
i j 

and

 

i 
ji 

= 1 − ω 

j 
ji 

. The Shapley value is a particular case of this family

f rules in which ω 

i 
i j 

= ω 

i 
ji 

= 

1 
2 , for all i ∈ N and all j ∈ N\{ i } . This

amily of cost allocation for PE-games is referred to as cost alloca- 

ion with weighted pairwise reduction . 

The Theorem below shows that the family of cost allocations 

ith weighted pairwise reduction is always a subset of the core of 

E-games. This property identifies a wide subset of the large core 

f PE-games, including the Shapley value (and thus the Nucleolus). 

heorem 2. Let (N, e, c) be a PE-game. For every family of weights 

 

i 
i j 
, ω 

i 
ji 

∈ [0 , 1] , i , j ∈ N, i � = j, such that ω 

i 
i j 

= 1 − ω 

j 
i j 

and ω 

i 
ji 

= 1 −
 

j 
ji 

, �(e ) belongs to the core of (N, e, c) . 

Now a complete analysis of the EEE for cooperation in pairwise 

ost reduction can be conducted. 
5 Theorem 3 , in Section 4 , shows the effort s of equilibrium in the non-cooperative 

ame in the general case. 

w

c

6 
. Efficiency, equilibrium strategies, and optimal rule 

We first define an efficient effort profile as the effort profile 

hat minimizes the cost of the grand coalition, c(N) = 

∑ 

i ∈ N [ c i (e i ) −
 

j∈ N\{ i } r i j (e ji )] . 

efinition 1. An effort profile ˜ e = ( ̃  e 1 , . . . , ̃  e i , . . . , ̃  e n ) with 

˜  i = ( ̃  e i 1 , . . . , ̃  e i ( i −1 ) , ̃  e i ( i +1 ) , . . . ̃  e in ) ∈ [0 , 1] n −1 is efficient if ˜ e = arg

min 
 ∈ [0 , 1] n (n −1) 

∑ 

i ∈ N [ c i (e i ) −
∑ 

j∈ N\{ i } r i j (e ji )] 

An efficient effort profile ˜ e is well defined because c(N) as a 

unction of e is strictly convex in e i j for all i , j ∈ N, i � = j. 6 

The following proposition shows that the effort e i j is efficient if 

he marginal cost of that effort equals the marginal reduction that 

his effort generates; otherwise, the effort is zero or one. The proof 

f Proposition 3 appears in Appendix B, together with those of all 

he other proofs in this section. 

roposition 3. There exists a unique efficient effort profile 

˜  = ( ̃  e 1 , . . . , ̃  e i , . . . , ̃  e n ) with ˜ e i = ( ̃  e i 1 , . . . , ̃  e i ( i −1 ) , ̃  e i ( i +1 ) , . . . ̃  e in ) ∈
0 , 1] n −1 , such that 

• ˜ e i j = 0 if 
∂c i (e i ) 

∂e i j 
> 

∂r ji (e i j ) 

∂e i j 
for all e i j ∈ [0 , 1] , 

• ˜ e i j = 1 if 
∂c i (e i ) 

∂e i j 
< 

∂r ji (e i j ) 

∂e i j 
for all e i j ∈ [0 , 1] , 

• ˜ e i j ∈ (0 , 1) is the unique solution of 
∂c i (e i ) 

∂e i j 

∣∣∣
e i j = ̃ e i j 

= 

∂r ji (e i j ) 

∂e i j 

∣∣∣
e i j = ̃ e i j 

, 

otherwise. 

We now focus on the non-cooperative effort game that arises 

nder the family of cost allocation with weighted pairwise reduction 

henceforth, WPR family). Then we analyze efficiency in equilib- 

ium. 

Consider the WPR family, i.e., �i (e ) = c i (e i ) −
 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] for all i ∈ N with ω 

i 
i j 
, ω 

i 
ji 

∈ [0 , 1] ,

 , j ∈ N, i � = j, such that ω 

i 
i j 

= 1 − ω 

j 
i j 

and ω 

i 
ji 

= 1 − ω 

j 
ji 

. For each

pecification of these weights, a particular allocation rule can be 

btained that induces a certain equilibrium effort strategy in the 

rst stage, which in turn generates the associated cost allocation 

n equilibrium. The aim of this section is twofold. First, we identify 

he efficient allocation rule within the WPR family, i.e., that which 

esults in the lowest cost of the grand coalition. Second, we show 

hat the effort profile induced in equilibrium by this allocation 

ule coincides with the efficient effort profile of Proposition 3 . 

The non-cooperative cost game associated with � = ( �i ) i ∈ N in 

he first stage is defined by (N, { E i } i ∈ N , { �i } i ∈ N ) , where for every

gent i ∈ N, E i := [0 , 1] n −1 is the players’ i strategy set, and for all

ffort profiles e ∈ E := 

∏ 

i ∈ N E i , and �i is the cost function for agent

 ∈ N. We call this an effort game. 

In this game, we use the following definition of equilibrium. 

efinition 2. The effort profile e ∗ = (e ∗
1 
, . . . , e ∗n ) ∈ E is an equilib-

ium for the game (N, { E i } i ∈ N , { �i } i ∈ N ) if e ∗i is the optimal effort for

gent i ∈ N given the strategies of all the other agents j ∈ N\{ i } . 
First, note that the optimal effort for agent i ∈ N given the 

trategies of all the other agents j ∈ N\{ i } is the effort e i that min-

mizes �i (e i , e −i ) . Note that the function �i (e i , e −i ) is strictly con-

ex in the effort e i j that agent i exerts for any j ∈ N\{ i } . 7 This

eans that for agent i there is a unique optimal level of effort ˆ e i j 
i j ∂e 2 
i j 

∂e 2 
i j 

ays positive because ∂ 2 c i (e i ) 
∂e 2 

i j 

> 0 and 
∂ 2 r ji (e i j ) 

∂e 2 
i j 

< 0 . 

7 Note that ∂�i (e ) 
∂e i j 

= 

∂c i (e i ) 
∂e i j 

− ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
and 

∂ 2 
i 
�(e ) 

∂e 2 
i j 

= 

∂ 2 c i (e i ) 
∂e 2 

i j 

− ω 

i 
ji 

∂ 2 r ji (e i j ) 

∂e 2 
i j 

> 0 be- 

ause, as assumed above, ∂ 2 c i (e i ) 
∂e 2 

i j 

> 0 and 
∂ 2 r ji (e i j ) 

∂e 2 
i j 

< 0 
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or each j ∈ N\{ i } . That optimal level ˆ e i j depends on the parame-

er ω 

i 
ji 

, on the marginal cost of agent i in regard to effort ˆ e i j (i.e.

∂c i (e i ) 

∂e i j 
), and on the marginal cost-reduction for agent j in regard to 

ffort ˆ e i j , (i.e. 
∂r ji (e i j ) 

∂e i j 
). Consequently, although the cost function of 

gent i depends on other agents’ efforts ( e ji for all j ∈ N\{ i } ), the

ptimal effort does not. 

To obtain the optimal effort, we analyze the derivative of the 

onvex function �i (e ) with respect to e i j , for any j ∈ N\{ i } . It must

e noted that 
∂�ii (e ) 

∂e i j 
≥ 0 ⇐⇒ 

∂c i (e i ) 

∂e i j 
≥ ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
for all e i j ∈ [0 , 1] . 

he following result characterizes the optimal effort level for agent 

 ∈ N in the first stage of the game. 

emma 1. Let (N, { E i } i ∈ N , { �i } i ∈ N ) be an effort game and ˆ e i j be the

ptimal level of effort that agent i exerts to reduce the costs of agent 

j. Thus, 

• ˆ e i j = 0 if and only if 
∂c i (e i ) 

∂e i j 
> ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
, for all e i j ∈ [0 , 1] , 

• ˆ e i j = 1 if and only if 
∂c i (e i ) 

∂e i j 
< ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
, for all e i j ∈ [0 , 1] , 

• ˆ e i j ∈ (0 , 1) that holds 
∂c i (e i ) 

∂e i j 

∣∣∣
e i j = ̂ e i j 

= ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 

∣∣∣
e i j = ̂ e i j 

, otherwise. 

The following theorem shows the unique allocation rule of the 

PR family that induces an efficient effort profile in equilibrium. 

his allocation rule gives all the reductions to the agent that gen- 

rates them. Formally, let H(e ) := (H i (e )) i ∈ N be the allocation rule

n the WPR family with ω 

i 
ji 

= 1 for i , j ∈ N, i � = j, that is H i (e ) =
 i (e i ) −

∑ 

j∈ N\{ i } r ji (e i j ) for i ∈ N. We consider an allocation rule as

fficient if it induces an efficient effort profile in equilibrium. 

heorem 3. Consider the effort game (N, { E i } i ∈ N , { H i } i ∈ N ) . Let e ∗
i j 

be

he level of effort that an agent i exerts to reduce the costs of agent j

n the unique equilibrium with i , j ∈ N, i � = j. Thus, 

• e ∗
i j 

= 0 if and only if 
∂c i (e i ) 

∂e i j 

∣∣∣
e i j =0 

> 

∂r ji (e i j ) 

∂e i j 

∣∣∣
e i j =0 

• e ∗
i j 

= 1 if and only if 
∂c i (e i ) 

∂e i j 

∣∣∣
e i j =1 

< 

∂r ji (e i j ) 

∂e i j 

∣∣∣
e i j =1 

• e ∗
i j 

∈ (0 , 1) that holds 
∂c i (e i ) 

∂e i j 

∣∣∣
e i j = e ∗i j 

= 

∂r ji (e i j ) 

∂e i j 

∣∣∣
e i j = e ∗i j 

, otherwise. 

In addition, e ∗
i j 

= ˜ e i j for i , j ∈ N, i � = j and H i (e ) is the only allo-

ation rule of the WPR family that always induces an efficient effort 

rofile in equilibrium. 

The next Corollary shows that the allocation rule H is not only 

he only efficient one within the WPR family, but that it induces 

he lowest possible grand coalition cost for any possible allocation 

ule. 

orollary 1. Let 
 be the set of all allocation rules for PE-games. 

here is no ψ ∈ 
 such that the effort equilibrium profile induced in 

he non cooperative game (N, { E i } i ∈ N , { ψ i } i ∈ N ) generates a lower cost

f the grand coalition than allocation rule H. 

As mentioned, the effort e i j is efficient when its marginal cost 

atches the marginal reduction that it generates; otherwise, the 

ffort is zero or one. Allocation rule H(e ) aligns the incentives of 

gents in the first stage game with this idea. It gives all the reduc- 

ion to the agent that generates it. In that case, the best response 

f any agent is to make its marginal cost equal to the marginal 

eduction that its effort generates; otherwise, this agent exerts 

he minimal or maximal effort depending on which is higher: the 

arginal cost or the marginal reduction. 
7 
We illustrate this analysis with the 3-firm case given in 

xample 2 in Section 6 . 

In this section we work out the allocation rule (in the second 

tage) within the WPR family that generates the unique efficient 

ffort equilibrium (in the first stage). However, there are situations 

n which pairwise reductions cannot be weighted separately, i.e. it 

s not possible to assign different weights to what an agent gives 

nd what the same agent receives in a pairwise interaction. For 

xample, there may be situations in which there is a unique cost 

eduction for any pair of agents that depends on the effort exerted 

y both agents, i.e. an aggregate reduction. In that case they have 

o decide how to split the whole cost reduction. Such cases require 

 weight to be assigned to the pairwise aggregate reduction. 

The question that arises in this new scenario is whether the 

evel of efficiency maintained is the same as that attained when 

he pairwise reductions are weighted separately for each agent. 

nfortunately, the answer is no: the level of efficiency decreases 

n this new scenario. The next section focuses on measuring the 

evel of efficiency of effort s in equilibrium for a particular family 

f weighted pairwise aggregate reductions. 

. Measuring efficiency for pairwise aggregate reduction 

Consider the family of cost allocation with weighted pairwise 

ggregate reduction A (e ) ∈ R n defined as follows: 

 i (e ) = c i (e i ) −
∑ 

j∈ N\{ i } 
αi j [ r i j (e ji ) + r ji (e i j )] , (5)

ith αi j ∈ [0 , 1] . The interaction between agents i and j generates 

n aggregate cost reduction which is r i j (e ji ) + r ji (e i j ) . The parame-

er αi j measures the proportions in which this reduction is shared 

etween agents i and j, i.e. αi j is the proportion for agent i and 

ji = 1 − αi j for agent j. 

Note that A (e ) is a subfamily of the WPR family �(e ) , where

ow ω 

i 
i j 

= ω 

j 
i j 

= αi j , for all i, j ∈ N. From now on we refer to this

ubfamily as the WPAR family. It is important to note that the 

hapley value and the Nucleolus belong to the WPAR family with 

i j = 

1 
2 for all i , j ∈ N, i � = j. We consider whether the allocation

ule H(e ) , which generates the efficient effort in equilibrium, is 

pplicable in this situation. Unfortunately, H(e ) does not fit the 

cheme of pairwise aggregate reduction. 

This section analyzes the non-cooperative effort game that 

rises in the first stage when cost allocations in the WPAR family 

re considered. 

Our goal is to find out, within the WPAR family, a core- 

llocation in the cooperative game of the second stage that induce 

he effort equilibrium level in the first stage closest to the efficient 

ne. We consider that an effort profile e 
′ ∈ E is more efficient than 

 profile e 
′′ ∈ E if the aggregate cost generated in the second stage 

y e 
′ 

is lower than that generated by e 
′′ 

. 

We therefore first study the non-cooperative effort game 

hat arises under this new cost allocation A (e ) , that is 

N, { E i } i ∈ N , { A i } i ∈ N ) . 
To simplify notation and analysis, we consider that for all i ∈ N

nd j ∈ N\{ i } , c ′ 
i 
(e i j ) := 

∂c i (e i ) 

∂e i j 
, c ′′ 

i 
(e i j ) := 

∂ 2 c i (e i ) 

∂e 2 
i j 

, r ′ 
ji 
(e i j ) := 

∂r ji (e i j ) 

∂e i j 

nd r ′′ 
ji 
(e i j ) := 

∂ 2 r ji (e i j ) 

∂e 2 
i j 

. Note that, as the WPAR family is a subfam-

ly of WPR, the properties of the latter apply to the former. 

Before analyzing the EEE of the above non-cooperative effort 

ame, we define thresholds of alpha parameters that enable them 

o be reached. 
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8 In principle, this problem could be considered a bilevel optimization problem 

( [40] ). The main characteristic of a bilevel programing problem is a kind of hierar- 

chy, because its constraints are defined, in part, by a second optimization problem. 

In our case, the second level (lower level or follower’ level) will be the problem 

min 
e i ∈ [0 , 1] (n −1) 

A i (e ) with solution e ∗ = (e ∗
i 
) i ∈ N where e ∗ depends on α. The first level (up- 

per level or leader’s problem) will be min 
α∈ [0 , 1] n (n −1) 

∑ 

i ∈ N A i (e ∗) . Thus, we can rewrite the 

problem as follows: 

min 
α,e 

∑ 

i ∈ N A i (α, e ) 

s.t. (α, e ) ∈ [0 , 1] n (n −1) × [0 , 1] n (n −1) 

e i ∈ G i (α) for all i ∈ N 
with e = (e i ) i ∈ N 

where G i (α) = arg min 
e i 

A i (α, e ) 

s.t. e i ∈ [0 , 1] (n −1) , α ∈ [0 , 1] n (n −1) 

However, it is difficult to see this problem as a Stakelberg game, as described for 

example in [41] , because α is not a strategy profile but a parameter of the reduc- 

tion cost functions. We believe that our setting better fits a bi-form game that was 

introduced by [3] . 
9 Note that α ji < ᾱ ji and αi j < ᾱi j . 

10 The function L ∗
i j 

is a piecewise function, and although it is continuous in αi j ∈ 
[0 , 1] it is not differentiable at all points in its domain. Since it is defined over inter- 

vals, it is generally non-differentiable at the endpoints of these intervals. Therefore, 

to compute the minimum, it is also necessary to evaluate the function at the inter- 

val endpoints. In addition, due to its convexity, the minimum can also be an interior 

point within any of the intervals. However, each interval entails a distinct deriva- 

tive function, thereby contributing to the complexity of the computation process. 

The introduction of Theorem 5 streamlines the evaluation procedure by reducing 

the number of points to be assessed, presenting them in a case-by-case framework. 
efinition 3. Given an effort game (N, { E i } i ∈ N , { A i } i ∈ N ) , we define

he following lower and upper thresholds for each pair of agents i 

nd j, 

αij := 

c ′ 
i 
(0) 

r ′ 
ji 
(0) 

, ᾱi j := 

c ′ 
i 
(1) 

r ′ 
ji 
(1) 

, α ji := 

c ′ 
j 
(0) 

r ′ 
i j 
(0) 

, and ᾱ ji := 

c ′ 
j 
(1) 

r ′ 
i j 
(1) 

. 

It is clear that 0 < αi j < ᾱi j because c ′ 
i 

is an increasing function 

nd r ′ 
ji 

decreasing one. Analogously, 0 < α ji < ᾱ ji . 

The first Theorem in this section characterizes all possible types 

f effort equilibrium according to the value of the parameter αi j , 

or all i, j ∈ N, i � = j. The proof of Theorem 4 appears in Appendix C,

ogether with all the other proofs in this section. 

heorem 4. Let (N, { E i } i ∈ N , { A i } i ∈ N ) be an effort game. The pairwise

fforts in any unique equilibrium (e ∗
i j 
, e ∗

ji 
) are given by 

e ∗
ij 

= 

⎧ ⎨ 

⎩ 

0 if and only if αij ≤ αij 

e I if and only if αij < αij < αij 

1 if and only if αij ≥ αij 

 

∗
ji 

= 

⎧ ⎨ 

⎩ 

0 if and only if αi j ≥ 1 − α ji 

e J if and only if 1 − ᾱ ji < αi j < 1 − α ji 

1 if and only if αi j ≤ 1 − α ji 

where e I ∈ (0 , 1) is the unique solution of c ′ 
i 
(e i ) − αi j r 

′ 
ji 
(e i j ) = 0

nd e J ∈ (0 , 1) is the unique solution of c ′ 
j 
(e j ) − (1 − αi j ) r 

′ 
i j 
(e ji ) = 0 .

It is demonstrated in Appendix C that e I increases with αi j 

hile e J decreases, see Corollary 2 . The findings of Corollary 2 are 

aluable when the objective is to incentivize agents i, j ∈ N to in- 

rease their pairwise effort e i j by adjusting the parameter αi j . 

owever, our aim is to go beyond this and achieve optimal effi- 

iency within the WPAR family. In other words, we seek to de- 

ermine the optimal values of α∗
i j 

, for all i, j ∈ N, which minimizes

he aggregate cost function 

∑ 

i ∈ N A i (e ∗) at equilibrium, where both 

 i and the effort equilibrium e ∗ depend on αi j . 

The search for alpha parameters which will lead to the EEE 

an be simplified by taking into account the bilateral indepen- 

ent interactions of agents. Note first that any pair of agents have 

 particular αi j , and second that the optimal effort made by any 

gent i ∈ N in regard to any agent j ∈ N\{ i } is independent of the

ptimal effort that agent i exerts in regard to any other agent 

 ∈ N\{ i, j} . Thus, minimizing 
∑ 

i ∈ N A i (e ∗) in terms of αi j is equiv-

lent to minimizing A i (e ∗) + A j (e ∗) , since each particular αi j only

ppears in A i (e ∗) and A j (e ∗) . Fortunately, the problem can be fur-

her simplified: Note that, A i (e ∗) and A j (e ∗) are the sums of dif-

erent terms, but αi j only appears in those terms related to the 

nteraction between i and j (see (5) ). These terms are c i (e ∗
i 
) −

i j (r i j (e ∗
ji 
) + r ji (e ∗

i j 
)) from A i (e ∗) , and c j (e ∗

j 
) − (1 − αi j )(r ji (e ∗

i j 
) +

 i j (e ∗
ji 
)) from A j (e ∗) . Thus, a new function A 

∗
i 
(αi j ) := c i (e ∗

i 
) −

i j (r i j (e ∗
ji 
) + r ji (e ∗

i j 
)) can be considered, and analogously A 

∗
j 
(1 −

i j ) . Note that 
∂ x (A i (e ∗)) 

∂αx 
i j 

= 

∂ x (A ∗
i 
(αi j )) 

∂αx 
i j 

and 

∂ x (A j (e ∗)) 

∂αx 
i j 

= 

∂ x (A ∗
j 
(1 −αi j )) 

∂αx 
i j 

or x = 1 , 2 , . . . . Therefore, for each pair i and j, it is possible to de-

ne the function L ∗
i j 
(αi j ) := A 

∗
i 
(αi j ) + A 

∗
j 
(1 − αi j ) . Hence, minimiz-

ng 
∑ 

i ∈ N A i (e ∗) is equivalent to minimizing L ∗
i j 
(αi j ) , with 

 

∗
i j (αi j ) = c i (e ∗i ) + c j (e ∗j ) 

−
[
αi j (r i j (e ∗ji ) + r ji (e ∗i j )) + (1 − αi j )(r ji (e ∗i j ) + r i j (e ∗ji )) 

]
= c i (e ∗i ) + c j (e ∗j ) − (r i j (e ∗ji ) + r ji (e ∗i j )) (6) 

The function L ∗
i j 
(αi j ) depends on αi j through the equilibrium 

ffort s e ∗
i j 

and e ∗
ji 

because they depend on αi j . We now focus on

nding the αi j that minimizes function L ∗
i j 
(αi j ) , and provide a pro- 

edure for finding the EEE for pairwise aggregate reduction. 
8 
We can summarize this reasoning as follows. 8 Let α = (αi ) i ∈ N 
nd αi = (αi j ) j∈ N\{ i } , then α∗ = arg min 

α∈ [0 , 1] n (n −1) 

∑ 

i ∈ N A i (e ∗) ⇔ α∗
ij 

= 

rg min 
αij ∈ [0 , 1] 

A i (e ∗) + A j (e ∗) for all i ∈ N ⇐⇒ α∗
i j 

= arg min 
αi j ∈ [0 , 1] 

c i (e ∗
i 
) −

i j (r i j (e ∗
ji 
) + r ji (e ∗

i j 
)) + c j (e ∗

j 
) − (1 − αi j )(r ji (e ∗

i j 
) + r i j (e ∗

ji 
)) for all

, j ∈ N, i � = j ⇔ α∗
ij 

= arg min 
αij ∈ [0 , 1] 

c i (e ∗
i 
) + c j (e ∗

j 
) − (r ji (e ∗

ij 
) + r ij (e ∗

ji 
)) for

ll i , j ∈ N, i � = j. As L ∗
i j 
(αi j ) = c i (e ∗

i 
) + c j (e ∗

j 
) − (r i j (e ∗

ji 
) + r ji (e ∗

i j 
)) ,

hen α∗
ij 

= arg min 
αij ∈ [0 , 1] 

L ∗
i j 
(αi j ) for all i j ∈ N, i � = j. 

For any effort game considered here, there are only six possi- 

le distributions of the lower and upper thresholds of the alpha 

arameter. 9 These cases are 

ase A αij < αij < 1 − αji < 1 − αji 

ase B αij < 1 − αji < αij < 1 − αji 

Case C αij < 1 − αji < 1 − αji < αij 

ase D 1 − αji < αij < αij < 1 − αji 

Case E 1 − αji < αij < 1 − αji < αij 

Case F 1 − αji < 1 − αji < αij < αij 

(7) 

The last theorem characterizes the optimal α∗
i j 

in cases A-F. 

hus, Theorem 5 provides the α∗
i j 

that incentivizes an efficient ef- 

ort equilibrium for WPAR. 10 In Theorem 5 we use the following 

otation: 

1. α̌[ a,b] 
i j 

∈ [ a, b] with 0 ≤ a < b ≤ 1 is: 

α̌[ a,b] 
ij 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

a if 
∂(L ∗

ij 
(αij )) 

∂αij 
> 0 for all αij ∈ [ a, b] 

b if 
∂(L ∗

ij 
(αij )) 

∂αij 
< 0 for all αij ∈ [ a, b] 

Solution of 
∂(L ∗

ij 
(αij )) 

∂αij 
= 0 otherwise 

2. �(α) = 

{ 

0 if α < 0 

α if α ∈ ( 0 , 1 ) 
1 if α > 1 

heorem 5. Let (N, { E i } i ∈ N , { A i } i ∈ N ) be an effort game, and

 

∗
i j 
(αi j ) = c i (e ∗

i 
) + c j (e ∗

j 
) − (r i j (e ∗

ji 
) + r ji (e ∗

i j 
)) . The optimal solution

∗
i j 

= arg min 
αi j ∈ [0 , 1] 

L ∗
i j 
(αi j ) is in each case, 

Case A α∗
i j 

is any element of [ ̄αi j , 1 − ᾱ ji ] . 
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11 In WPAR, for each pair of agents i, j ∈ N, i � = j, the weight αi j is not always 1, 

because ∂A i (e ) 
∂e i j 

= 

∂c i (e i ) 
∂e i j 

− αi j 
∂r ji (e i j ) 

∂e i j 
and 

∂A j (e ) 

∂e ji 
= 

∂c j (e j ) 

∂e ji 
− α ji 

∂r i j (e ji ) 

∂e ji 
but αi j = 1 − α ji . 

Note that if αi j = 1 , then α ji = 0 and the derivative conditions for efficiency in 

Proposition 3 would be violated. Bear in mind that the weights ω 

i 
ji 

that appear 

in each derivative ∂�i (e ) 
∂e i j 

for i, j ∈ N, i � = j are independent of one another. However, 

the weights αi j that appear in the each derivative ∂A i (e ) 
∂e i j 

for i, j ∈ N, i � = j are not, 

because αi j = 1 − α ji . In addition, it is known that ω 

i 
i j 

= ω 

i 
ji 

= αi j in WPAR for all 

i, j ∈ N, i � = j, where ω 

i 
i j 

= 1 − ω 

j 
i j 

and ω 

i 
ji 

= 1 − ω 

j 
ji 
. The fact that pairwise cost re- 

duction is aggregated by αi j in the subfamily WPAR means that it is not possible to 

apply the efficient argument used for the WPR family. 
Case B α∗
i j 

= α̌
[1 −ᾱ ji , ̄αi j ] 

i j 

Case C 

α∗
i j 

= 

{
any element of [ ̄αi j , 1] if αC = �( ̄αi j ) and �( ̄αi j ) < 1 

αC otherwise 

where 

αC = arg min { L ∗
i j 
( ̌α

[ 1 −ᾱ ji , 1 −α ji ] 
i j 

) , L ∗
i j 
(�( ̄αi j )) } . 

Case D 

α∗
i j 

= 

{ 

any element of [0 , 1 − ᾱ ji ] if α
D = �(1 − ᾱ ji ) and �(1 − ᾱ ji ) > 

αD otherwise 

where 

αD = arg min { L ∗
i j 
(�(1 − ᾱ ji )) , L 

∗
i j 
( ̌α

[ αi j , ̄αi j ] 
i j 

) } . 
Case E 

α∗
i j 

= 

{ 

any element of [0 , 1 − ᾱ ji ] if α
E = �(1 − ᾱ ji ) and �(1 − ᾱ ji ) > 0

any element of [ ̄αi j , 1] if αE = �( ̄αi j ) and �( ̄αi j ) < 1 
αE otherwise 

where 

αE = arg min { L ∗
i j 
(�(1 − ᾱ ji )) , α̌

[ αi j , 1 −α ji ] 
i j 

, L ∗
i j 
(�( ̄αi j )) } . 

Case F 

α∗
i j 

= 

{ 

any element of [0 , 1 − ᾱ ji ] if α
F = �(1 − ᾱ ji ) and �(1 − ᾱ ji ) > 0

any element of [ ̄αi j , 1] if αF = �( ̄αi j ) and �( ̄αi j ) < 1 
αF otherwise 

where 

αF = arg min { L ∗
i j 
(�(1 − ᾱ ji )) , L 

∗
i j 
(�( ̄αi j )) } . 

To conclude the section, we describe a procedure for finding an 

fficient effort in equilibrium induced by the WPAR family. 

EEE PROCEDURE 

Given an effort game (N, { E i } i ∈ N , { A i } i ∈ N ) 
1. we first calculate the lower and upper thresholds of the bilat- 

eral interaction between any pair of agents by using Definition 

; 

2. we then focus on the list (7) and determine which case (A-F) 

applies; 

3. Theorem 5 provides an optimal α∗
i j 

for all i, j ∈ N to minimize 

the centralized (aggregate) cost allocation 

∑ 

i ∈ N A i (e ∗) ; 
4. with this α∗

i j 
Theorem 4 gives the associated efficient effort 

equilibrium (e ∗
i j 
, e ∗

ji 
) for every pair of agents, and thus an ef-

ficient effort equilibrium e ∗ for the game; 

5. at this point the optimal cost allocation that incentivizes agents 

i, j ∈ N to make an efficient effort equilibrium e ∗
i j 

and e ∗
ji 

is 

known, i.e. 

A 

∗
i ( e 

∗) = c i 
(
e ∗i 

)
−

∑ 

j∈ N\ { i } 
α∗

ij 

[
r ij 

(
e ∗ji 

)
+ r ji 

(
e ∗ij 

)]
. 

We illustrate this procedure with the 3-firm case given in 

Example 2 in Section 6 . 

. Comparison of WPR and WPAR families 

We complete the study of our model of cooperation with 

airwise cost reduction by comparing the two families of core- 

llocations analyzed. We find that there is a loss of efficiency when 

ooperation is restricted to a pairwise aggregate cost reduction. 

hat loss of efficiency can be measured. In addition, we show that 

hose agents who receive less than the total reduction generated 

nd bear the total cost of this effort always exert less effort than 

he efficient agent. 

As mentioned above, the allocation rule H(e ) induces an equi- 

ibrium effort e ∗H that matches the efficient effort of Proposition 3 , 

.e. e ∗H = ˜ e . This means that there is no rule that generates a lower

ost of the grand coalition, see Corollary 1 . However, as also men- 

ioned above, WPAR is a subfamily of WPR, but H(e ) is not in

PAR, so e ∗A is not always equal to e ∗H . 

Let A 

∗(e ) be the allocation rule in WPAR that induces the effort

rofile e ∗A ∗ that minimizes the cost of the grand coalition, i.e. the 
9 
fficient allocation in this subfamily. The difference, in terms of ef- 

ciency, between the cost of the grand coalition with e ∗A ∗ and ẽ 

an be measured. Note that for any particular functions c i (e i ) and 

 i j (e ji ) for i , j ∈ N, i � = j, the associated e ∗A ∗ and ˜ e can be obtained.

et 
 be this difference or loss of efficiency, where 

= 

∑ 

i ∈ N 
[ c i (e ∗A ∗

i ) −
∑ 

j∈ N\{ i } 
r i j (e ∗A ∗

ji )] −
∑ 

i ∈ N 
[ c i ( ̃  e i ) −

∑ 

j∈ N\{ i } 
r i j ( ̃  e ji )] . 

(8) 

The following proposition shows the relation between effort s 

 

∗A ∗ and ˜ e . The proof of Proposition appears in Appendix B. 

roposition 4. Let e ∗A ∗
i j 

for i , j ∈ N, i � = j be the equilibrium efforts

f A 

∗(e ) , that minimize the cost of the grand coalition in the family

PAR. Thus, the efficient effort ˜ e i j ≥ e ∗A ∗
i j 

for all i , j ∈ N, i � = j. 

As mentioned above, when an agent receives less than the total 

eduction that it generates and bears the total cost of that effort, 

hen that agent always exerts less effort than the efficient one 

Finally, readers may think that the rationale behind the efficient 

ule, H(e ) , in the WPR family, could also apply to the WPAR family.

owever, this is not the case. To reach an efficient effort equilib- 

ium in the WPR family, for each pair of agents i, j ∈ N, i � = j, the

eight ω 

i 
ji 

must be 1, because 
∂�i (e ) 

∂e i j 
= 

∂c i (e i ) 

∂e i j 
− ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
, and ω 

j 
i j 

ust also be 1, because 
∂� j (e ) 

∂e ji 
= 

∂c j (e j ) 

∂e ji 
− ω 

j 
i j 

∂r i j (e ji ) 

∂e ji 
. However, this 

s no longer true for the WPAR family. 11 

The following example with three agents illustrates the compar- 

son of the two core allocation families and completes the paper. 

xample 2. Consider a pairwise inter-organizational situation 

ith three firms, i.e. N = { 1 , 2 , 3 } . For any effort profile e ∈
0 , 1] 6 , the PE-situation is given by the following initial costs, 

c 1 (e 12 , e 13 ) = 100 + 100 e 12 + 4 e 2 
12 

+ 100 e 13 + 4 e 2 
13 

c 2 (e 21 , e 23 ) = 100 + 100 e 21 + 4 e 2 
21 

+ 100 e 23 + 4 e 2 
23 

c 3 (e 31 , e 32 ) = 100 + 100 e 31 + 4 e 2 31 + 100 e 32 + 4 e 2 32 

nd the following pairwise reduced costs, all of them in thousands 

f Euros, 

r i 1 (e 1 i ) = 2 + 110 e 1 i − 2 e 2 
1 i 

with i = 2 , 3 

r i 2 (e 2 i ) = 2 + 105 e 2 i − 3 e 2 
2 i 

with i = 1 , 3 

r i 3 (e 3 i ) = 2 + 105 e 3 i − 3 e 2 
3 i 

with i = 1 , 2 

By Definition 3 , the pair of firms { 1 , 2 } has the thresholds α12 =
 . 91 , ᾱ12 = 1 . 02 , α21 = 0 . 95 , and ᾱ21 = 1 . 09 , which correspond to

ase F in the Table 7 . By using Theorem 5 , it can easily be checked

hat αF = �( ̄α12 ) < 1 and α∗
12 

= 1 . Thus, by Theorem 4 , e ∗
12 

=
 . 833 , e ∗21 = 0 . As firms 2 and 3 are identical, α∗

13 = 1 , e ∗13 = 0 . 833

nd e ∗
31 

= 0 . Finally, for the pair { 2 , 3 } , α23 = 0 . 95 , ᾱ23 = 1 . 09 ,

32 = 0 . 95 , and ᾱ32 = 1 . 09 . This is again Case F. Note that in case F,
F = arg min { L ∗23 (�(1 − ᾱ32 )) , L 

∗
23 (�( ̄α23 )) } , where in this partic-

lar case L ∗
23 

(�(1 − ᾱ32 )) = L ∗
23 

(�( ̄α23 )) with �(1 − ᾱ32 ) = 0 and
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( ̄α23 ) = 1 Thus, two solutions emerge: (i) e ∗23 = 0 . 357 , e ∗32 = 0 ,

nd α∗
23 = 1 , and (ii) e ∗23 = 0 , e ∗32 = 0 . 357 , and α∗

23 = 0 . Therefore,

here are two EEE in WPAR. 

(i) e ∗
12 

= e ∗
13 

= 0 . 833 , e ∗
21 

= 0 , e ∗
23 

= 0 . 357 , e ∗
31 

= e ∗
32 

= 0 

(ii) e ∗12 = e ∗13 = 0 . 833 , e ∗21 = e ∗23 = 0 , e ∗31 = 0 , e ∗32 = 0 . 357 

We now calculate the efficient effort s in this example by 

roposition 3 . They are the solutions of c ′ 
i 
(e i j ) − r ′ 

ji 
(e i j ) = 0 , thus,

˜  12 = ˜ e 13 = 0 . 833 , and ˜ e 21 = ˜ e 23 = ˜ e 31 = ˜ e 32 = 0 . 357 . Note that by

heorem 3 these effort s are also the effort equilibrium obtained 

y the allocation rule H(e ) . 

This example is a particular subcase of Case F. This implies that 
∗
i j 

is zero or one, which in turn implies that one of the agents 

akes no effort and the other makes the efficient value. However, 

hey are never able to make the efficient effort simultaneously un- 

er WPAR. The loss of efficiency in WPAR with regard to WPR can 

e calculated with the help of (8) . 

= 

∑ 

i ∈ N [ c i (e ∗A ∗
i 

) − ∑ 

j∈ N\{ i } r ij (e ∗A ∗
ji 

)] − ∑ 

i ∈ N [ c i ( ̃  e i ) −
 

j∈ N\{ i } r ij ( ̃  e ji )] = 278 . 776 − 276 . 104 = 2 . 67 . 

. Conclusions and future research 

This paper presents a model of cooperation with pairwise cost 

eduction. The direct impact of pairwise effort on cost reductions 

s investigated by means of a bi-form game. First, the agents deter- 

ine the level of pairwise effort to be made to reduce the costs 

f their partners. Second, they participate in a bilateral interac- 

ion with multiple independent partners where the cost reduction 

hat each agent gives to another agent is independent of any possi- 

le coalition. As a result of cooperation, agents reduce each other’s 

osts. In the non-cooperative game that precedes cooperation, the 

gents anticipate the cost allocation that will result from the co- 

perative game by incorporating the effect of the effort made into 

heir cost functions. We show that all-included cooperation is fea- 

ible, in the sense that there are possible cost reductions that make 

ll agents better off (or, at least, not worse off), and consistent. We 

hen identify a family of feasible cost allocations with weighted 

airwise reduction. One of these cost allocations is selected by tak- 

ng into account the incentives generated in the effort s that agents 

ake, and consequently in the total cost of coalitions. Surprisingly, 

e find that the Shapley value, which coincides with the Nucleolus 

n this model, can induce inefficient effort strategies in equilibrium 

n the non-cooperative model. However, it is always possible to se- 

ect a core-allocation with appropriate pairwise weights that can 

enerate an efficient effort. 

Future research could take any of several directions. First, this 

aper assumes that the individual effort cost function c i (e i ) is in- 

ependent of the effort of other agents, and that the marginal cost 
∂c i (e i ) 

∂e i j 
is independent of the effort that i makes in regard to agents 

ther than j, i.e. 
∂c 2 

i 
(e i ) 

∂ e i j ∂ e ih 
= 0 . We make a similar assumption with 

he cost reduction function r i j (e ∗
ji 
) . There is some degree of in-

ependence between effort s. This is a reasonable assumption in 

any contexts, but in some settings different assum ptions might 

e needed. For example, there are situations with strategic com- 

lementarity in which the efforts of agents reinforce each other. In 

uch cases the cost function is supermodular. In other cases there 

s strategic substitutability, so that efforts offset each other and the 

unction is submodular. Focusing on the effort cost function of one 

gent, if 
∂c 2 

i 
(e i ) 

∂ e i j ∂ e ih 
> 0 then there is complementarity between the 

ffort s, and if 
∂c 2 

i 
(e i ) 

∂e i j ∂e ih 
< 0 , then there is substitutability. This is a 

ery interesting future extension. It could also be worth consider- 

ng this complementarity/substitutability not only between the dif- 

erent effort s that one agent makes in regard to other agents but 

lso between the effort s made by different agents. This assump- 
10 
ion can be made on both the effort cost functions and the cost 

eduction function. Obviously, complementarity on the effort cost 

unction has the opposite effect to that on the cost reduction func- 

ion. 

The second direction is close to the first. The pairwise total 

ost reduction could be considered as a general function which 

s increasing in the effort s e i j and e ji , that is R i j (e i j , e ji ) . In

ur model, this function is additively separable, i.e. R i j (e i j , e ji ) =
 i j (e ji ) + r ji (e i j ) . However, as mentioned above, there could be sit-

ations with strategic complementarity or substitutability in which 

he effort s of agent s reinf orce or offset each other. In that case, the

unction R i j (e i j , e ji ) would not be separable. This is also an inter-

sting question for analysis. 

Another direction is related to the assumption of bilateral inter- 

ction between agents. This has the advantage of being analytically 

ore tractable and is widely applied in practice (e.g., [35–37] ), but 

verall interaction between agents, dependent on groups, is an im- 

ortant factor that we believe does not affect the success of coop- 

ration. One possible future extension would be to investigate the 

ooperative model with multiple cost reduction and the impact of 

he effort s made on those cost reductions. 

Finally, we identify a large family of core-allocations with 

eighted pairwise reduction which contains the Shapley value and 

he Nucleolus and always provides a level of efficient effort in 

quilibrium. This family is very rich in itself, as a set solution con- 

ept for our cooperative model. Research into this core-allocation 

amily can be furthered through an in-depth analysis of its struc- 

ure and its geometric relationship to the core. 
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ppendix A 

Proposition 1 , in Section 3 , shows that PE-games are always 

oncave. To prove this, the class of unanimity games must be de- 

cribed. In [39] , it is proved that the family of unanimity games 
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e

 (N, u T ) , T ⊆ N} forms a basis of the vector space of all games with

et of players N, where (N, u T ) is defined for each S ⊆ N as follows:

 T (S) = 

{
1 , T ⊆ S 
0 , otherwise 

Hence, for each cost game (N, c) there are unique real coeffi- 

ients (αT ) T ⊆N such that c = 

∑ 

T ⊆N αT u T . Many different classes of 

ames, including airport games ( [24] ) and sequencing games ( [38] ), 

an be characterized through constraints on these coefficients. 

Proof of Proposition 1 

roof. Let (N, e, { c i (e i ) , { r ji (e i j ) } j∈ N\{ i } } i ∈ N ) be a PE-situation and

N, e, c) the associated PE-game. First, we prove that this game can 

e rewritten as a weighted sum of unanimity games u { i } and u { i, j} 
or all i, j ∈ N as follows: 

 = 

∑ 

i ∈ N 
c i (e i ) u { i } −

∑ 

i, j∈ N;i � = j 
r i j (e ji ) u { i, j} . (9) 

Indeed, for all S ⊆ N, 

(S) = 

∑ 

i ∈ N 
c i (e i ) u { i } (S) −

∑ 

i, j∈ N;i � = j 
r i j (e ji ) u { i, j} (S) 

= 

∑ 

i ∈ S 
c i (e i ) −

∑ 

i, j∈ S;i � = j 
r i j (e ji ) = 

∑ 

i ∈ S 
c i (e i ) −

∑ 

i ∈ S 

∑ 

j∈ S\{ i } 
r i j (e ji ) . 

It is easily shown that the additive game 
∑ 

i ∈ N c i (e i ) u { i } 
s concave and that u { i, j} is convex. Thus, the game ∑ 

i, j∈ N;i � = j r i j (e ji ) u { i, j} is concave because of r i j (e ji ) > 0 for

ll i, j ∈ N. Finally, the concavity of (N, e, c) follows from the fact

hat game c is the sum of two concave games. �

The Theorem 1 , in Section 3 , shows that the Shapley value 

educes the individual cost of an agent by half the total reduc- 

ion that it obtains from the others ( R i (N) ) plus a half of the to-

al reduction that it provides to the rest of the agents, which is 

 i (N) = 

∑ 

j∈ N\{ i } r ji (e i j ) . 

The Shapley value is the only allocation rule that satisfies the 

our properties of Efficiency, Equal treatment of equals, Linearity 

nd Null player. Next, we describe all of these properties of the 

hapley value, which are useful in demonstrating the Theorem 1 . 

(EFF) Efficiency . The sum of the Shapley values of all agents 

equals the value of the grand coalition, so all the gain is al- 

located to the agents: ∑ 

i ∈ N 
φi ( c ) = c(N) . (10) 

(ETE) Equal treatment of equals . If i and j are two agents who 

are equivalent in the sense that c(S ∪ { i } ) = c(S ∪ { j} ) for ev-

ery coalition S of N which contains neither i nor j, then 

φi (c) = φ j (c) . 

(LIN) Linearity . If two cost games c and c ∗ are combined, then 

the cost allocation should correspond to the costs derived 

from c and the costs derived from c ∗: 

φi (c + c ∗) = φi (c) + φi (c ∗) , ∀ i ∈ N. (11)

Also, for any real number a , 

φi (ac) = aφi (c) , ∀ i ∈ N. (12) 

(NUP) Null Player . The Shapley value φi (c) of a null player i in

a game c is zero. A player i is null in c if c(S ∪ { i } ) = c(S) for

all coalitions S that do not contain i. 

roof of the Theorem 1. Consider the PE-game (N, e, c) rewritten 

s a weighted sum of unanimity games given by (9) , i.e. 

 = 

∑ 

i ∈ N 
c i (e i ) u { i } −

∑ 

i, j∈ N;i � = j 
r i j (e ji ) u { i, j} . 
11 
Take an agent k ∈ N. By the (LIN) property of the Shapley value,

k (e ) , it follows that 

k (e ) = φk 

(∑ 

i ∈ N 
c i (e i ) u { i } 

)
− φk 

( ∑ 

i, j∈ N;i � = j 
r i j (e ji ) 

(
u { i, j} 

))
= 

∑ 

i ∈ N 
c i (e i ) φk 

(
u { i } 

)
− ∑ 

i ∈ N 

∑ 

j∈ N\{ i } 
r i j (e ji ) φk 

(
u { i, j} 

)
. 

(13) 

In addition, it is known from the (NUP) property that 

k 

(
u { i } 

)
= 

{
1 , i = k 
0 , otherwise 

(14) 

nd from (ETE) and (NUP), that 

k 

(
u { i, j} 

)
= 

{
1 / 2 , i = k, j = k, i � = j 
0 , otherwise 

(15) 

Consequently, by substituting the values (14) and (15) in 

q. (13) , the following is obtained: 

k (e ) = c k (e k ) −
∑ 

j∈ N\{ k } 
r k j (e jk ) φk 

(
u { k, j} 

)
−

∑ 

j∈ N\{ k } 
r jk (e k j ) φk 

(
u { j,k } 

)
= c k (e k ) −

1 

2 

∑ 

j∈ N\{ k } 
[ r k j (e jk ) + r jk (e k j )] . 

Finally, it can be concluded that, for each agent k ∈ N, 

k (e ) = c k (e k ) −
1 

2 

[ R k (N) + G k (N)] . 

�

roof of Proposition 2. To prove that the Shapley value coincides 

ith the Nucleolus for PE-games, it is first necessary to describe 

he class of PS-games introduced by [39] . 

Denote by M i c(T ) the marginal contribution of player i ∈ T , that

s M i c(T ) = c(T ) − c(T \ { i } ) , for all i ∈ T ⊆ N. A cost game (N, c)

atisfies the PS property if for all i ∈ N there exists k i ∈ R such that

 i c(T ∪ { i } ) + M i c(N \ T ) = k i , for all i ∈ N and all T ⊆ N \ { i } . Kar

t al. [39] show that for PS games, the Shapley value coincides 

ith the Nucleolus, i.e. φi (c) = νi (c) = 

k i 
2 , for all i ∈ N. 

Therefore, it only remains to show that (N, e, c) is a PS-game 

ith k i = [ c i (e i ) − R i (N)] + [ c i (e i ) − G i (N)] , for all i ∈ N. 

First, it is straightforward to prove that M i c(T ) = 

 i (e i ) −
∑ 

j∈ T \{ i } [ r ji (e i j ) + r i j (e ji )] for all i ∈ T ⊆ N. Second,

e show that M i c(T ∪ { i } ) + M i c(N \ T ) = [ c i (e i ) − R i (N)] +
 c i (e i ) − G i (N)] for all i ∈ N and T ⊆ N \ { i } . Indeed, take

 coalition T ⊆ N and an agent i ∈ T . It is shown that 

 i c(T ∪ { i } ) = c i (e i ) −
∑ 

j∈ T 
(
r ji (e i j ) + r i j (e ji ) 

)
, and M i c(N \ T ) =

 i (e i ) −
∑ 

j∈ N\ (T ∪{ i } ) 
(
r ji (e i j ) + r i j (e ji ) 

)
. Therefore, 

M i c(T ∪ { i } ) + M i c(N \ T ) = 2 c i (e i ) −
∑ 

j∈ N\{ i } 
(
r ji (e i j ) + r i j (e ji ) 

)
=[

c i (e i ) −
∑ 

j∈ N\{ i } r i j (e ji ) 
]

+ 

[
c i (e i ) −

∑ 

j∈ N\{ i } r ji (e i j ) 
]
. 

Hence, M i c(T ∪ { i } ) + M i c(N \ T ) = [ c i (e i ) − R i (N)] + [ c i (e i ) −
 i (N)] = k i ) , and so (N, e, c) is a PS game. �

roof of Theorem 2. Consider the PE-game (N, e, c) associated 

ith the PE-situation (N, e, { c i (e i ) , { r i j (e i j ) } j∈ N\{ i } } i ∈ N ) . Take a fam-

ly of weights ω 

i 
i j 
, ω 

i 
ji 

∈ [0 , 1] , for all j ∈ N\{ i } , such that ω 

i 
i j 

=
 − ω 

j 
i j 

and ω 

i 
ji 

= 1 − ω 

j 
ji 

, and �(e ) the corresponding cost al-

ocation with weighted pairwise reduction with �i (e ) = c i (e i ) −
 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] , for all i ∈ N. To prove that �(e )

elongs to the core of (N, e, c) it must be checked that (1)
 

i ∈ N �i (e ) = c(N) , (2) 
∑ 

i ∈ S �i (e ) ≤ c(S) , for all S ⊂ N. 

We start by checking (1). Notice that 
∑ 

i ∈ N �i (e ) = c(N) is 

quivalent to ∑ 

i ∈ N 
∑ 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] = 

∑ 

i ∈ N 
∑ 

j∈ N\{ i } r i j (e ji ) . 

Indeed, 
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12 This occurs because A i (e ) is an increasing function in e i j and the minimum 

value is obtained for ˆ e i j = 0 , which is the optimal effort for agent i. 
∑ 

i ∈ N 
∑ 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] = 

∑ 

i ∈ N 
∑ 

j∈ N\{ i } (ω 

i 
i j 

+ 

 

j 
i j 
) r i j (e ji ) = 

∑ 

i ∈ N 
∑ 

j∈ N\{ i } r i j (e ji ) , where the last equality is due

o ω 

i 
i j 

+ ω 

j 
i j 

= 1 for all i, j ∈ N. 

Next we check (2). Take S ⊂ N. Notice now that 
∑ 

i ∈ S �i (e ) ≤
(S) is equivalent to ∑ 

i ∈ S 
∑ 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] − ∑ 

i ∈ S 
∑ 

j∈ S\{ i } r i j (e ji ) ≥ 0 . 

Indeed, an argument similar to that used in (1) leads to ∑ 

i ∈ S 
∑ 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] − ∑ 

i ∈ S 
∑ 

j∈ S\{ i } r i j (e ji ) = ∑ 

i ∈ S 
∑ 

j∈ S\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] + 

 

i ∈ S 
∑ 

j∈ N\ S∪{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] − ∑ 

i ∈ S 
∑ 

j∈ S\{ i } r i j (e ji ) = ∑ 

i ∈ S 
∑ 

j∈ S\{ i } r i j (e ji ) + 

∑ 

i ∈ S 
∑ 

j∈ N\ S∪{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] −
 

i ∈ S 
∑ 

j∈ S\{ i } r i j (e ji ) = ∑ 

i ∈ S 
∑ 

j∈ N\ S∪{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] ≥ 0 . �

ppendix B 

Proof of Proposition 3 

To prove this result it is necessary to analyze c(N) as a func- 

ion of e . First, It is easy to prove that c(N) is strictly convex in e i j 

or all i , j ∈ N, i � = j. Indeed, ∂ 2 c(N) 

∂e 2 
i j 

= 

∂ 2 c i (e i ) 

∂e 2 
i j 

− ∂ 2 r ji (e i j ) 

∂e 2 
i j 

> 0 , because

∂ 2 c i (e i ) 

∂e 2 
i j 

> 0 and 

∂ 2 r ji (e i j ) 

∂e 2 
i j 

< 0 . Thus, there is a unique effort profile ẽ

hat minimizes c(N) . 

Second, we focus on finding this efficient effort profile ˜ e . Note 

hat the derivative ∂c(N) 
∂e i j 

= 

∂c i (e i ) 

∂e i j 
− ∂r ji (e i j ) 

∂e i j 
only depends on e i j be- 

ause 
∂c 2 

i 
(e i ) 

∂ e i j ∂ e ih 
= 0 for all h � = i, j. Therefore, if 

∂c i (e i ) 

∂e i j 
> 

∂r ji (e i j ) 

∂e i j 
for all

 i j ∈ [0 , 1] , then the function c(N) is increasing in e i j , which im-

lies that ˜ e i j = 0 . Analogously, if 
∂c i (e i ) 

∂e i j 
> 

∂r ji (e i j ) 

∂e i j 
for all e i j ∈ [0 , 1] ,

hen ˜ e i j = 1 . Finally, if there is a solution of 
∂c i (e i ) 

∂e i j 
= 

∂r ji (e i j ) 

∂e i j 
, that

olution is ˜ e i j . �
Proof of Lemma 1 

Consider the non-cooperative game (N, { E i } i ∈ N , { �i } i ∈ N ) . To

earn the optimal level of effort ˆ e i j that agent i must exert to re- 

uce the costs of agent j in this game, it is necessary to analyze 

he function �i (e ) = c i (e i ) −
∑ 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] for all

 ∈ N with ω 

i 
i j 
, ω 

i 
ji 

∈ [0 , 1] , i , j ∈ N, i � = j, such that ω 

i 
i j 

= 1 − ω 

j 
i j 

and

 

i 
ji 

= 1 − ω 

j 
ji 

. 

As above, we also prove that the function �i (e ) is strictly 

onvex in e i j . Indeed, 
∂ 2 

i 
�(e ) 

∂e 2 
i j 

= 

∂ 2 c i (e i ) 

∂e 2 
i j 

− ω 

i 
ji 

∂ 2 r ji (e i j ) 

∂e 2 
i j 

> 0 because 

∂ 2 c i (e i ) 

∂e 2 
i j 

> 0 and 

∂ 2 r ji (e i j ) 

∂e 2 
i j 

< 0 . Hence, there is a unique optimal level 

f effort ˆ e . 

Again, we focus on finding this optimal level of effort ˆ e . We 

now that 
∂�i (e ) 

∂e i j 
= 

∂c i (e i ) 

∂e i j 
− ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
, but 

∂c i (e i ) 

∂e i j 
only depends on 

 i j , because 
∂c 2 

i 
(e i ) 

∂ e i j ∂ e ih 
= 0 for all h � = i, j. Moreover, for all e i j ∈ [0 , 1] ,

∂�ii (e ) 

∂e i j 
≥ 0 ⇐⇒ 

∂c i (e i ) 

∂e i j 
≥ ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
. 

Therefore, if 
∂c i (e i ) 

∂e i j 
> ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
for all e i j ∈ [0 , 1] , then ˆ e i j = 0 . If

∂c i (e i ) 

∂e i j 
< ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
for all e i j ∈ [0 , 1] , then ˆ e i j = 1 . Finally, if there is

 solution of 
∂c i (e i ) 

∂e i j 
= ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
, that solution is ˆ e i j and is unique. 

ence, there is a unique optimal level of effort. �
Proof of Theorem 3 

Now consider the non-cooperative game (N, { E i } i ∈ N , { H i } i ∈ N ) .
ote that, both derivative functions 

∂c i (e i ) 

∂e i j 
and 

∂r ji (e i j ) 

∂e i j 
only de- 

end on e i j . Thus, by Lemma, the optimal level of effort of a par-
12 
icular agent i ∈ N with another particular agent j ∈ N\{ i } , i.e. ˆ e i j ,

s independent of any other effort made by i or by any other agent.

hus, the equilibrium is also characterized by Lemma with ω 

i 
ji 

= 1 

or i , j ∈ N, i � = j. Comparing Lemma 1 with Proposition, it follows

irectly that the equilibrium must also be efficient. �
Proof of Corollary 1 

This is straightforward from the proof of Theorem 3 �
Proof of Proposition 4 

Take A 

∗(e ) the allocation rule in WPAR with α∗
i j 

for all i, j ∈ N

hich induces the effort profile e ∗A ∗ that minimizes the cost of the 

rand coalition. Since WPAR is a subfamily of WPR in which ω 

i 
i j 

= 

 

j 
i j 

= αi j ∈ [0 , 1] for all i, j ∈ N, by Lemma 1 the optimal level of

ffort f or A 

∗(e ) can be also characterized. 

Thus, the efforts are optimal in equilibrium and so e ∗A ∗ must 

old that 

e ∗A ∗
i j 

= 0 if and only if 
∂c i (e i ) 

∂e i j 
> α∗

i j 

∂r ji (e i j ) 

∂e i j 
, for all e i j ∈ [0 , 1] , 

e ∗A ∗
i j 

= 1 if and only if 
∂c i (e i ) 

∂e i j 
< α∗

i j 

∂r ji (e i j ) 

∂e i j 
, for all e i j ∈ [0 , 1] , 

Otherwise, e ∗A ∗
i j 

∈ (0 , 1) so 
∂c i (e i ) 

∂e i j 

∣∣∣
e i j = e ∗A ∗

i j 

= α∗
i j 

∂r ji (e i j ) 

∂e i j 

∣∣∣
e i j = e ∗A ∗

i j 

olds. 

Comparing the above expressions with Proposition 3 and taking 

nto account that 
∂c i (e i ) 

∂e i j 
is a positive increasing function, 

∂r ji (e i j ) 

∂e i j 
a 

ositive decreasing function, and α∗
i j 

∈ [0 , 1] , it can be concluded 

hat ˜ e i j ≥ e ∗A ∗
i j 

for all i , j ∈ N. �

ppendix C 

Theorem 4 , in Section 5 , characterizes all possible types of ef- 

ort equilibrium according to the value of the parameter αi j , for all 

, j ∈ N, i � = j. Before proving this theorem, we consider a previous

emma that is very useful for latter results. It characterizes the op- 

imal effort level for agent i ∈ N in the first stage non-cooperative 

ame. 

emma 2. Let (N, { E i } i ∈ N , { A i } i ∈ N ) be the effort game, with ˆ e i j being

he optimal level of effort that agent i exerts to reduce the costs of 

gent j. Thus, 

1. ˆ e i j = 0 if and only if αi j ≤ αi j 

2. There is a unique ˆ e i j ∈ (0 , 1) that holds c ′ 
i 
( ̂  e i j ) − αi j r 

′ 
ji 
( ̂  e i j ) = 0 if

and only if αi j < αi j < ᾱi j . 

3. ˆ e i j = 1 if and only if αi j ≥ ᾱi j . 

roof. First, remember that the cost function A i (e ) is convex for 

ll i ∈ N. To obtain the optimal effort, the derivative of this func- 

ion can be analyzed with respect to e i j for any j ∈ N\{ i } . It must

e noted that 
∂A i (e ) 

∂e i j 
> 0 ⇐⇒ c ′ 

i 
(e i j ) > αi j r 

′ 
ji 
(e i j ) for all e i j ∈ [0 , 1] ,

hich is a necessary and sufficient condition for ˆ e i j = 0 to be the 

ptimal effort. 12 

We begin by proving point 1. Note that αi j = 

c ′ 
i 
(0) 

r ′ 
ji 
(0) 

< 

c ′ 
i 
(e i j ) 

r ′ 
ji 
(e i j ) 

be- 

ause c ′ 
i 
> 0 , r ′ 

ji 
> 0 , c ′′ 

i 
> 0 , and r ′′ 

ji 
< 0 . Thus, c ′ 

i 
(e i j ) is a positive

nd increasing function, and r ′ 
ji 
(e i j ) a positive and decreasing func- 

ion, so for any e i j > 0 , c ′ 
i 
(0) < c ′ 

i 
(e i j ) and r ′ 

ji 
(0) > r ′ 

ji 
(e i j ) . There-

ore, αi j ≤ αi j ⇐⇒ c ′ 
i 
(e i j ) > αi j r 

′ 
ji 
(e i j ) for all e i j > 0 ⇐⇒ ˆ e i j = 0 . 

The demonstration in point 3 is similar to that of point 1. The 

bove arguments are the same and only the signs of the inequali- 

ies change. 

To end the proof, we prove point 2. First, we show that there 

s a unique ˆ e i j ∈ (0 , 1) such that c ′ 
i 
( ̂  e i j ) = αi j r 

′ 
ji 
( ̂  e i j ) , which is the
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∂αi j 
i j ji ji i j i j 
nique optimal effort because 
∂A i (e ) 

∂e i j 

∣∣∣
e i = ̂ e i j 

= 0 and A i (e ) is a con- 

ex function. In addition, c ′ 
i 
(e i j ) is a positive increasing func- 

ion and r ′ 
ji 
(e i j ) a positive decreasing function, in e i j ∈ [0 , 1] . This

eans that equation 

∂A i (e ) 

∂e i j 
= c ′ 

i 
(e i j ) − αi j r 

′ 
ji 
(e i j ) = 0 has a unique

oot, which belongs to (0,1) if and only if αi j ∈ ( αi j , ᾱi j ) . Note that

f αi j ∈ ( αi j , ᾱi j ) then c ′ 
i 
(0) < αi j r 

′ 
ji 
(0) and c ′ 

i 
(1) > αi j r 

′ 
ji 
(1) , and so

here is a unique point ˆ e i j where c ′ 
i 
( ̂  e i j ) = αi j r 

′ 
ji 
( ̂  e i j ) . �

roof of Theorem 4. As we already mention, the optimum ˆ e i j 

s independent of other effort s. Theref ore, the equilibrium effort 

s determined by Lemma 2 . In addition, we want to characterize 

he effort equilibrium according to the value of the parameter αi j . 

hus, in the case of agent j, α ji < α ji < ᾱ ji ⇔ α ji < 1 − αi j < ᾱ ji ⇔
 − ᾱ ji < αi j < 1 − α ji . �

The next corollary shows how the pairwise equilibrium effort s 

 

∗
i j 

depend on αi j , for all i, j ∈ N, i � = j. As expected, as the propor-

ion of aggregate cost reduction obtained by an agent increases, 

he effort that agent exerts also increases (or at least stays the 

ame). 

orollary 2. Let (N, { E i } i ∈ N , { A i } i ∈ N ) be the effort game and (e ∗
i j 
, e ∗

ji 
)

he pairwise efforts equilibrium. Thus, 

•
∂e ∗

i j 

∂αi j 
> 0 , if αi j ∈ ( αi j , ᾱi j ) ; 

∂e ∗
i j 

∂αi j 
= 0 , otherwise. 

•
∂e ∗

ji 

∂αi j 
< 0 if αi j ∈ (1 − ᾱ ji , 1 − α ji ) ; 

∂e ∗
ji 

∂αi j 
= 0 , otherwise. 

roof. By the implicit function theorem, 
∂e ∗

i j 

∂αi j 
= −

∂(c ′ 
i 
(e ∗

i j 
) −αi j r 

′ 
ji 
(e ∗

i j 
)) 

∂αi j 

∂(c ′ 
i 
(e ∗

i j 
) −αi j r 

′ 
ji 
(e ∗

i j 
)) 

∂e ∗
i j 

= 

r ′ 
ji 
(e ∗

i j 
) 

c ′′ 
i 
(e ∗

i j 
) −αi j r 

′′ 
ji 
(e ∗

i j 
) 

> 0 , because r ′ 
ji 
(e ∗

i j 
) > 0 , c ′′ 

i 
(e ∗

i j 
) > 0 , and r ′′ 

ji 
(e ∗

i j 
) < 0 .

hus, for any αi j ≤ αi j , Lemma 2 implies that e ∗
i j 

= 0 , thus, 
∂e ∗

i j 

∂αi j 
= 0 .

owever, if αi j ∈ ( αi j , ᾱi j ) , then e ∗
i j 

∈ (0 , 1) and 

∂e ∗
i j 

∂αi j 
> 0 . Finally, if

i j ≥ ᾱi j , then e ∗
i j 

= 1 and 

∂e ∗
i j 

∂αi j 
= 0 . Analogously, if α ji ≤ α ji ⇐⇒ 

i j ≥ 1 − α ji , then e ∗
ji 

= 0 and 

∂e ∗
ji 

∂αi j 
= 0 , if α ji ∈ ( α ji , ᾱ ji ) ⇐⇒ αi j ∈

1 − ᾱ ji , 1 − α ji ) , then e ∗
ji 

∈ (0 , 1) and 

∂e ∗
ji 

∂αi j 
< 0 . Finally, if α ji ≥

¯ ji ⇐⇒ αi j ≤ 1 − ᾱ ji , then e ∗
i j 

= 1 and 

∂e ∗
ji 

∂αi j 
= 0 . �

Theorem 5 , in Section 5 , provides the weights αi j that min- 

mizes function L ∗
i j 
(αi j ) , and the efficient effort equilibrium. To 

olve the above optimization problem it is necessary to know the 

unction L ∗
i j 
(αi j ) very accurately. 

To demonstrate Theorem 5 , three technical lemmas are needed 

rst. Lemmas 3, 4 , and 5 characterize the derivatives 
∂(A ∗

i 
(αi j )) 

∂αi j 
, 

∂(L ∗
i j 
(αi j )) 

∂αi j 
, and 

∂ 2 (L ∗
i j 
(αi j )) 

∂α2 
i j 

respectively. 

The first lemma shows how the optimal cost function of agent 

 ∈ N depends on αi j . Henceforth, to simplify notation, we consider 

hat for any i, j ∈ N, 
∂r i j (e ∗

ji 
) 

∂e ∗
ji 

and 

∂c i (e ∗
i 
) 

∂e ∗
i j 

stand for derivatives 
∂r i j (e ji ) 

∂e ji 

nd 

∂c i (e i ) 

∂e i j 
evaluated in the unique effort equilibrium. 

emma 3. Let (N, { E i } i ∈ N , { A i } i ∈ N ) be the effort game and e ∗ the ef-

ort equilibrium. Thus, 

1. 
∂(A i (e ∗)) 

∂αi j 
= 

∂(A ∗
i 
(αi j )) 

∂αi j 
= 

{ 

−r i j (e ∗
ji 
) − αi j 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

∂e ∗
ji 

∂αi j 
− r ji (e ∗

i j 
) , i f 

−r i j (e ∗
ji 
) − r ji (e ∗

i j 
) < 0 , 
13 
 

∈ ( αi j , ᾱi j ) 

2. 

∂(A j (e ∗)) 

∂αi j 
= 

∂(A ∗
j 
(1 −αi j )) 

∂αi j 

= 

{ 

r ji (e ∗
i j 
) − (1 − αi j ) 

∂r ji (e ∗
i j 

) 

∂e ∗
i j 

∂e ∗
i j 

∂αi j 
+ r i j (e ∗

ji 
) , i f αi j ∈ (1 − ᾱ ji , 1 − α ji ) 

r ji (e ∗
i j 
) + r i j (e ∗

ji 
) > 0 , otherwise . 

roof. It is known that A i (e ∗) = c i (e ∗
i 
) − ∑ 

z∈ N\{ i } αiz (r iz (e ∗
zi 
) +

 zi (e ∗
iz 
)) , and A 

∗
i 
(αi j ) = c i (e ∗

i 
) − αi j (r i j (e ∗

ji 
) + r ji (e ∗

i j 
)) , thus 

∂(A i (e ∗)) 

∂αi j 
= 

∂(A ∗
i 
(αi j )) 

∂αi j 
= 

∂c i (e ∗
i 
) 

∂e ∗
i j 

∂e ∗
i j 

∂αi j 
− r i j (e ∗

ji 
) − αi j 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

∂e ∗
ji 

∂αi j 
−

 ji (e ∗
i j 
) − αi j 

∂r ji (e ∗
i j 
) 

∂e ∗
i j 

∂e ∗
i j 

∂αi j 

= 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− αi j 

∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
− r i j (e ∗

ji 
) − αi j 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

∂e ∗
ji 

∂αi j 
− r ji (e ∗

i j 
) . 

The first term of the above expression is always zero, 

.e. 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− αi j 

∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
= 0 . To see this, note that if αi j ∈ 

 αi j , ᾱi j ) , then e ∗
i j 

∈ (0 , 1) by Lemma 2 , so 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− αi j 

∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
=

 because it is evaluated in equilibrium. In the other case, where 

i j ≤ αi j or αi j ≥ ᾱi j , e ∗
i j 

= 0 by Proposition 2 , so 
∂e ∗

ji 

∂αi j 
= 0 . There-

ore, 
∂(A i (e ∗)) 

∂αi j 
= −r i j (e ∗

ji 
) − αi j 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

∂e ∗
ji 

∂αi j 
− r ji (e ∗

i j 
) . 

It is known by assumption that r i j (e ∗
ji 
) ≥ 0 , 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

> 0 . If αi j ∈

1 − ᾱ ji , 1 − α ji ) , then by Proposition 2 , 
∂e ∗

ji 

∂αi j 
< 0 . However, if αi j / ∈

1 − ᾱ ji , 1 − α ji ) then, by Proposition 2 , 
∂e ∗

ji 

∂αi j 
= 0 , so 

∂(A i (e ∗)) 

∂αi j 
=

r i j (e ∗
ji 
) − r ji (e ∗

i j 
) . 

The proof is analogous for 
∂(A j (e ∗)) 

∂αi j 
. �

Notice that the effect of αi j on the cost function of agent i 

ould be positive or negative because of two simultaneous ef- 

ects. First effect: As expected, if αi j increases so does the propor- 

ion of cost reduction that agent i can obtain, and thus the cost 

unction, A i (e ∗) , decreases. This decrease is measured by the term 

r i j (e ∗
ji 
) − r ji (e ∗

i j 
) < 0 in the derivative. Second effect: When αi j in-

reases, the effort of agent j decreases in equilibrium, so the cost 

unction of agent i increases. The term −αi j 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

e ∗
ji 

∂αi j 
> 0 mea- 

ures this second effect. The sum of these two effects determines 

he sign of the derivative. Therefore, an increase in the propor- 

ion of the aggregate cost reduction that an agent obtains could 

ncrease the cost of that agent if the second effect dominates the 

rst. This is an interesting result: Giving too much to a particular 

gent could be not only worse for the aggregate cost but also for 

hat particular agent. 

The second lemma calculates the derivative of the aggregate 

ost function L ∗
i j 
(αi j ) in the effort equilibrium for any i, j ∈ N. 

emma 4. Let (N, { E i } i ∈ N , { A i } i ∈ N ) be the effort game, and e ∗ the ef-

ort equilibrium. Thus, 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 

(
∂c j (e ∗

j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
I j + 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
I i 

where I i = 

{
1 i f αi j ∈ ( αi j , ᾱi j ) 

0 otherwise 
and I j = 

1 i f αi j ∈ (1 − ᾱ ji , 1 − α ji ) 

0 otherwise 
. 

Therefore, there are four possible cases: 

•
∂(L ∗

i j 
(αi j )) 

∂αi j 
can be positive and/or negative if αi j ∈ ( αi j , ᾱi j ) ∩ (1 −

ᾱ ji , 1 − α ji ) 

•
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 0 if αi j / ∈ ( αi j , ᾱi j ) ∪ (1 − ᾱ ji , 1 − α ji ) 

•
∂(L ∗

i j 
(αi j )) 

∂αi j 
> 0 if αi j ∈ (1 − ᾱ ji , 1 − α ji ) ∩ 

(
(0 , αi j ) ∪ ( ̄αi j , 1) 

)
•

∂(L ∗
i j 
(αi j )) 

< 0 if α ∈ 

((
0 , 1 − ᾱ

)
∪ 

(
1 − α , 1 

)
) ∩ 

(
α , ᾱ

))
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roof. From (6) , we calculate that 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 

∂c j (e ∗
j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
+ 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
. Simplifying for 

he different subsets of αi j , the following emerges: 

1. if αi j ∈ ( αi j , ᾱi j ) ∩ (1 − ᾱ ji , 1 − α ji ) then, by Theorem 4 ,

e ∗
ji 

∈ (0 , 1) and e ∗
i j 

∈ (0 , 1) , thus, by Corollary 2 , 
∂e ∗

ji 

∂αi j 
< 0

and 

∂e ∗
i j 

∂αi j 
> 0 . In addition, since 

∂c j (e ∗
j 
) 

∂e ∗
ji 

− (1 − αi j ) 
∂r i j (e ∗

ji 
) 

∂e ∗
ji 

= 0 

and 

∂c i (e ∗
i 
) 

∂e ∗
i j 

− αi j 

∂r ji (e ∗
i j 
) 

∂e ∗
i j 

= 0 , it follows that 
∂c j (e ∗

j 
) 

∂e ∗
ji 

−
∂r i j (e ∗

ji 
) 

∂e ∗
ji 

< 0 and 

∂c i (e ∗
i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

< 0 . Therefore, 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= (

∂c j (e ∗
j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
+ 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
, which can be 

positive or negative in this case. 

2. if αi j / ∈ ( αi j , ᾱi j ) ∪ (1 − ᾱ ji , 1 − α ji ) then, by Theorem 4 , e ∗
ji 

∈
{ 0 , 1 } and e ∗

i j 
∈ { 0 , 1 } , and by Corollary, 

∂e ∗
ji 

∂αi j 
= 

∂e ∗
i j 

∂αi j 
= 0 . There-

fore, 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 0 . 

3. if αi j ∈ (1 − ᾱ ji , 1 − α ji ) ∩ 

(
(0 , αi j ) ∪ ( ̄αi j , 1) 

)
, then, as above, 

∂(L ∗
i j 
(αi j )) 

∂αi j 
= 

(
∂c j (e ∗

j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
> 0 . 

4. if αi j ∈ 

((
0 , 1 − ᾱ ji 

)
∪ 

(
1 − α ji , 1 

)
) ∩ 

(
αi j , ᾱi j 

))
then 

∂(L ∗
i j 
(αi j )) 

∂αi j 
= (

∂c i (e ∗
i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
< 0 . 

�

The derivative is a piecewise function and there are in- 

ervals where its sign is independent of the particular form 

f the functions of the game. For those cases, it is straight- 

orward to find the optimal αi j that minimizes the func- 

ion L ∗
i j 
(αi j ) . In those intervals, the derivative is either pos- 

tive, negative or zero throughout the interval. These cases 

re respectively 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 

(
∂c j (e ∗

j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
> 0 , 

∂(L ∗
i j 
(αi j )) 

∂αi j 
= 

∂c i (e ∗
i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
< 0 , and 

∂(L ∗
i j 
(αi j )) 

∂αi j 
= 0 . However, there is an 

nterval where the sign of the derivative depends on the particular 

orm of functions of the game. In this particular case 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 

∂c j (e ∗
j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
+ 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
. This occurs when 

i j ∈ ( αi j , ᾱi j ) ∩ (1 − ᾱ ji , 1 − α ji ) , which implies that in equilib-

ium simultaneously 0 < e ∗
i j 

< 1 and 0 < e ∗
ji 

< 1 . Therefore, in this

ase only, the derivative may be zero for some αi j within this in- 

erval. In that case, the second derivative is needed to solve the 

ptimization problem. 

The third Lemma shows that the aggregate cost function L ∗
i j 
(αi j ) 

s convex in αi j . Two additional assumptions about third deriva- 

ives need to be introduced. 

emma 5. Let (N, { E i } i ∈ N , { A i } i ∈ N ) be the effort game, e ∗ the effort

quilibrium, and 
∂ 3 c i (e ∗

i 
) 

∂e ∗3 
i j 

> 0 and 
∂ 3 r ji (e ∗

i j 
) 

∂e ∗3 
i j 

< 0 , for any i, j ∈ N. Thus

∂ 2 L ∗
i j 
(αi j )) 

∂α∗2 
i j 

> 0 for all αi j ∈ ( αi j , ᾱi j ) ∩ (1 − ᾱ ji , 1 − α ji ) . 

roof. Take αi j ∈ ( αi j , ᾱi j ) ∩ (1 − ᾱ ji , 1 − α ji ) . Thus, 

∂ 2 (L ∗
i j 
(αi j )) 

∂α2 
i j 

= 

∂ 2 
[(

∂c j (e ∗
j 
) 

∂e ∗
ji 

−
∂r i j (e ∗

ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 
∂αi j 

+ 
(

∂c i (e ∗
i 
) 

∂e ∗
i j 

−
∂r ji (e ∗

i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 
∂αi j 

]
∂α2 

i j (
∂ 2 c j (e ∗

j 
) 

∂ e ∗
ji 
∂ αi j 

− ∂ 2 r i j (e ∗
ji 
) 

∂ e ∗
ji 
∂ αi j 

)
∂e ∗

ji 

∂αi j 
+ 

(
∂c j (e ∗

j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂ 2 e ∗

ji 

∂α2 
i j 

+ 

(
∂ 2 c i (e ∗

i 
) 

∂ e ∗
i j 
∂ αi j 

− ∂ 2 r ji (e ∗
i j 
) 

∂ e ∗
i j 
∂ αi j 

)
∂e ∗

i j 

∂αi j 
+ 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂ 2 e ∗

i j 

∂α2 
i j 
14 
= 

(
∂ 2 c j (e ∗

j 
) 

∂ 2 e ∗
ji 

∂e ∗
ji 

∂αi j 
− ∂ 2 r i j (e ∗

ji 
) 

∂ 2 e ∗
ji 

∂e ∗
ji 

∂αi j 

)
∂e ∗

ji 

∂αi j 
+ 

(
∂c j (e ∗

j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂ 2 e ∗

ji 

∂α2 
i j 

+ 

(
∂ 2 c i (e ∗

i 
) 

∂ 2 e ∗
i j 

∂e ∗
i j 

∂αi j 
− ∂ 2 r ji (e ∗

i j 
) 

∂ 2 e ∗
i j 

∂e ∗
i j 

∂αi j 

)
∂e ∗

i j 

∂αi j 
+ 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂ 2 e ∗

i j 

∂α2 
i j 

= 

(
∂ 2 c j (e ∗

j 
) 

∂ 2 e ∗
ji 

− ∂ 2 r i j (e ∗
ji 
) 

∂ 2 e ∗
ji 

)(
∂e ∗

ji 

∂αi j 

)2 

+ 

(
∂c j (e ∗

j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂ 2 e ∗

ji 

∂α2 
i j 

+ 

(
∂ 2 c i (e ∗

i 
) 

∂ 2 e ∗
i j 

− ∂ 2 r ji (e ∗
i j 
) 

∂ 2 e ∗
i j 

)(
∂e ∗

i j 

∂αi j 

)2 

+ 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂ 2 e ∗

i j 

∂α2 
i j 

> 0 

Now we prove that 
∂ 2 e ∗

ji 

∂α2 
i j 

< 0 and 

∂ 2 e ∗
i j 

∂α2 
i j 

< 0 , so 
∂ 2 (L ∗

i j 
(αi j )) 

∂α2 
i j 

> 0 . 

We first prove that 
∂ 2 e ∗

ji 

∂α2 
i j 

< 0 . It is known that 

∂A j (e ∗) 

∂e ji 
= 

∂c j (e ∗
j 
) 

∂e ∗
ji 

− (1 − αi j ) 
∂r i j (e ∗

ji 
) 

∂e ∗
ji 

= 0 

We now derive the second term regarding αi j . 
∂ 2 c j (e ∗

j 
) 

∂e ∗2 
ji 

∂e ∗
ji 

∂αi j 
+ 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

− (1 − αi j ) 
∂ 2 r i j (e ∗

ji 
) 

∂e ∗2 
ji 

∂e ∗
ji 

∂αi j 
= 0 

We now do the same for αi j . (
∂ 3 c j (e ∗

j 
) 

∂e ∗3 
ji 

(
∂e ∗

ji 

∂αi j 

)2 

+ 

∂ 2 c j (e ∗
j 
) 

∂e ∗2 
ji 

∂ 2 e ∗
ji 

∂α2 
ji 

)
+ 

∂ 2 r i j (e ∗
ji 
) 

∂e ∗2 
ji 

∂e ∗
ji 

∂αi j 

−(1 − αi j ) 

(
∂ 3 r i j (e ∗

ji 
) 

∂e ∗3 
ji 

(
∂e ∗

ji 

∂αi j 

)2 

+ 

∂ 2 r i j (e ∗
ji 
) 

∂e ∗2 
ji 

∂ 2 e ∗
ji 

∂α2 
ji 

)
= 0 (

∂ 2 c j (e ∗
j 
) 

∂e ∗2 
ji 

− (1 − αi j ) 
∂ 2 r i j (e ∗

ji 
) 

∂e ∗2 
ji 

)
∂ 2 e ∗

ji 

∂α2 
ji 

+ 

∂ 2 r i j (e ∗
ji 
) 

∂e ∗2 
ji 

∂e ∗
ji 

∂αi j 

+ 

(
∂ 3 c j (e ∗

j 
) 

∂e ∗3 
ji 

− (1 − αi j ) 
∂ 3 r i j (e ∗

ji 
) 

∂e ∗3 
ji 

)(
∂e ∗

ji 

∂αi j 

)2 

= 0 

∂ 2 e ∗
ji 

∂α2 
i j 

= 

−
∂ 2 r i j (e ∗

ji 
) 

∂e ∗2 
ji 

∂e ∗
ji 

∂αi j 
−
( 

∂ 3 c j (e ∗
j 
) 

∂e ∗3 
ji 

−(1 −αi j ) 
∂ 3 r i j (e ∗

ji 
) 

∂e ∗3 
ji 

) (
∂e ∗

ji 
∂αi j 

)2 

∂ 2 c j (e ∗
j 
) 

∂e ∗2 
ji 

−(1 −αi j ) 
∂ 2 r i j (e ∗

ji 
) 

∂e ∗2 
ji 

Clearly, this expression is lower than zero if 
∂ 3 c j (e ∗

j 
) 

∂e ∗3 
ji 

> 0 and 

∂ 3 r i j (e ∗
ji 
) 

∂e ∗3 
ji 

< 0 ; note that 
∂e ∗

ji 

∂αi j 
< 0 by Proposition. 

Analogously, we obtain 

∂ 2 e ∗
i j 

∂α2 
i j 

= 

∂ 2 r ji (e ∗
i j 

) 

∂e ∗2 
i j 

∂e ∗
i j 

∂αi j 
−
( 

∂ 3 c i (e ∗
i 
) 

∂e ∗3 
i j 

−αi j 

∂ 3 r ji (e ∗
i j 

) 

∂e ∗3 
i j 

) (
∂e ∗

i j 
∂αi j 

)2 

∂ 2 c i (e ∗
i 
) 

∂e ∗2 
i j 

−αi j 

∂ 2 r ji (e ∗
i j 

) 

∂e ∗2 
i j 

< 0 . �

Lemma 5 enables us to state that in any interval where 

he piecewise derivative function takes the value 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 

αi j 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

∂e ∗
ji 

∂αi j 
− (1 − αi j ) 

∂r ji (e ∗
i j 
) 

∂e ∗
i j 

∂e ∗
i j 

∂αi j 
, the function L ∗

i j 
(αi j ) is con- 

ex (see also Lemma 4 ). 

The following proposition shows that, according to the value 

f the effort equilibrium, the cost function L ∗
i j 
(αi j ) is a continu- 

us piecewise function with four types of piece. This result char- 

cterizes all of those pieces, showing the shape of L ∗
i j 
(αi j ) and the 

ptimal αi j in each type of piece. 

roposition 5. Consider the effort game (N, { E i } i ∈ N , { A i } i ∈ N ) and e ∗

s the effort equilibrium. Let αi j ∈ [ a, b] be a piece of L ∗
i j 
(αi j ) with

 ≤ a < b ≤ 1 , L ∗
i j 
(αi j ) can have only four types of piece: 

1. Constant: (e ∗
i j 
, e ∗

ji 
) is either (0,0), (1 , 0) , (0,1) or (1,1). Thus

∂(L ∗
i j 
(αi j )) 

∂αi j 
= 0 and L ∗

i j 
(αi j ) is always constant. Therefore, any 

αi j ∈ [ a, b] minimizes L ∗
i j 
(αi j ) . 

2. Increasing: e ∗
i j 

is either 0 or 1, and 0 < e ∗
ji 

< 1 . Thus 
∂(L ∗

i j 
(αi j )) 

∂αi j 
=(

∂c j (e ∗
j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
> 0 and L ∗

i j 
(αi j ) is always increasing. 

Therefore, αi j = a minimizes L ∗
i j 
(αi j ) . 
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3. Decreasing: 0 < e ∗
i j 

< 1 , and e ∗
ji 

is either 0 or 1. Thus

∂(L ∗
i j 
(αi j )) 

∂αi j 
= 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
< 0 and L ∗

i j 
(αi j ) is always 

decreasing. Therefore, αi j = b minimizes L ∗
i j 
(αi j ) . 

4. Depending on cost function shape: 0 < e ∗
i j 

< 1 and 0 < e ∗
ji 

<

1 . Thus, 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 

(
∂c j (e ∗

j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
+ 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
. 

In this case, there is always a unique α̌[ a,b] 
i j 

∈ [ a, b] that mini- 

mizes L ∗
i j 
(αi j ) , which is: 

α̌[ a,b] 
i j 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

a if 
∂(L ∗

i j 
(αi j )) 

∂αi j 
> 0 for all αi j ∈ [ a

b if 
∂(L ∗

i j 
(αi j )) 

∂αi j 
< 0 for all αi j ∈ [ a

Solution of 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 0 otherwise 

roof. The proof of Lemma 4 shows four possible cases for L ∗
i j 
(αi j ) .

he point 2. of the proof of Lemma 4 proves the point 1. (Con-

tant). The point 3. proves the point 2. (Increasing), and point 4. 

roves point 3 (decreasing). Finally, to prove the point 4. (Depend- 

ng on cost function shape) we need the point 1. of Lemma 4 and

emma 5 which proves that L ∗
i j 
(αi j ) is convex in this case. There- 

ore, in this last case, it is also straightforward to show that 
∂(L ∗

i j 
(αi j )) 

∂αi j 
is continuous, so there is always a unique αi j that mini- 

izes L ∗
i j 
(αi j ) in such pieces. The procedure for calculating α̌[ a,b] 

i j 
is 

he following: First, by Theorem, we calculate e ∗
i j 

and e ∗
ji 

as a func- 

ion of αi j from c ′ 
i 
(e i j ) − αi j r 

′ 
ji 
(e i j ) = 0 and c ′ 

j 
(e ji ) − α ji r 

′ 
i j 
(e ji ) = 0 .

econd, we build the function L ∗
i j 
(αi j ) with the e ∗

i j 
(αi j ) and e ∗

ji 
(αi j )

reviously calculated. Finally, we calculate 
∂(L ∗

i j 
(αi j )) 

∂αi j 
and obtain 

ˇ
[ a,b] 
i j 

. �

Finally, Theorem 5 characterizes the optimal α∗
i j 

, for all i, j ∈ N

ith i � = j, which incentivizes an efficient effort equilibrium, which 

s also provided. 

Proof of Theorem 5 

roof. As L ∗
i j 
(αi j ) is a continuous piecewise function, we ana- 

yze the five pieces that define it in each case. Lemma, and 

roposition 5 enable the type of piece to be determined, thus giv- 

ng the value of αi j that minimizes L ∗
i j 
(αi j ) in each piece. Compar- 

ng the pieces gives the α∗
i j 

that minimizes the aggregate cost for 

ach of the six cases. This value need not be unique. Note, in addi-

ion, that αi j , ᾱi j , ᾱ ji and α ji are always greater than zero, but any 

f them may be greater than one, which implies that some pieces 

f certain cases may not exist. We prove the theorem case by case: 

Case A ( αi j < ᾱi j < 1 − ᾱ ji < 1 − α ji ) 

Note that those thresholds are always greater than zero, so 

0 < αi j < ᾱi j < 1 − ᾱ ji < 1 − α ji < 1 . By Lemma 4 , 

if αi j ∈ 

(
0 , αi j 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

If αi j ∈ 

(
αi j , ᾱi j 

)
, then L ∗

i j 
(αi j ) is decreasing, which implies 

that αi j = 1 − ᾱ ji minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
ᾱi j , 1 − ᾱ ji 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

If αi j ∈ 

(
1 − ᾱ ji , 1 − α ji 

)
, then L ∗

i j 
(αi j ) is increasing, which 

implies that 1 − ᾱ ji minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
1 − α ji , 1 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

Therefore, α∗
i j 

is equal to any αi j ∈ [ ̄αi j , 1 − ᾱ ji ] . 

Case B ( αi j < 1 − ᾱ ji < ᾱi j < 1 − α ji ) 

Analogously, 0 < αi j < 1 − ᾱ ji < ᾱi j < 1 − α ji < 1 , and by 

Lemma 4 , 5 and Proposition 5 , 

if αi j ∈ 

(
0 , αi j 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 
15 
If αi j ∈ 

(
αi j , 1 − ᾱ ji 

)
, then L ∗

i j 
(αi j ) is decreasing, which im- 

plies that αi j = 1 − ᾱ ji minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
1 − ᾱ ji , ᾱi j 

)
, then α̌i j minimizes L ∗

i j 
(αi j ) , where α̌i j 

is define in Proposition 5. 

If αi j ∈ 

(
ᾱi j , 1 − α ji 

)
, then L ∗

i j 
(αi j ) is increasing, which im- 

plies that ᾱi j minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
1 − α ji , 1 

)
, then e ∗

i j 
= 1 , e ∗

ji 
= 0 , and L ∗

i j 
(αi j ) is con-

stant in this interval. 

Therefore, α∗
i j 

= α̌
[ 1 −ᾱ ji , ̄αi j ] 
i j 

. 

Case C ( αi j < 1 − ᾱ ji < 1 − α ji < ᾱi j ) 

It may happen here that either ᾱi j < 1 or ᾱi j ≥ 1 . Thus there 

are two subcases: 

0 < αij < 1 − αji < 1 − αji < αij < 1 ;
0 < αij < 1 − αji < 1 − αji < 1 < αij . 

Starting with the first subcase, by Lemma 4 , 5 and 

Proposition 5 

if αi j ∈ 

(
0 , αi j 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

If αi j ∈ 

(
αi j , 1 − ᾱ ji 

)
, then L ∗

i j 
(αi j ) is decreasing, which im- 

plies that αi j = 1 − ᾱ ji minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
1 − ᾱ ji , 1 − α ji 

)
, then α̌i j minimizes L ∗

i j 
(αi j ) . 

If αi j ∈ 

(
1 − α ji , ᾱi j 

)
, then L ∗

i j 
(αi j ) is decreasing, which im- 

plies that ᾱi j minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
ᾱi j , 1 

)
, then L ∗

i j 
(αi j ) is constant, in this interval. 

However, in the second subcase ᾱi j > 1 , which implies that 

the last interval described above does not exist. The rest of 

the analysis is similar to the first subcase. 

Therefore, α∗
i j 

= arg min { L ∗
i j 
( ̌α

[ 1 −ᾱ ji , 1 −α ji ] 
i j 

) , L ∗
i j 
(�( ̄αi j )) } . Note 

that, if α∗
i j 

= �( ̄αi j ) and ᾱi j < 1 , then α∗
i j 

is equal to any 

αi j ∈ ( ̄αi j , 1) . 

Case D ( 1 − ᾱ ji < αi j < ᾱi j < 1 − α ji ) 

It may happen here that either 1 − ᾱ ji > 0 or 1 − ᾱ ji ≤ 0 . 

Thus there are two subcases: 

0 < 1 − αji < αij < αij < 1 − αji < 1 ;
1 − αji < 0 < αij < αij < 1 − αji < 1 . 

Starting with the first subcase, by Lemma 4 , 5 and 

Proposition 5 

if αi j ∈ 

(
0 , 1 − ᾱ ji 

)
, then e ∗

i j 
= 0 , e ∗

ji 
= 1 , and L ∗

i j 
(αi j ) is con-

stant in this interval. 

If αi j ∈ 

(
1 − ᾱ ji , αi j 

)
, then L ∗

i j 
(αi j ) is increasing, which im- 

plies that αi j = 1 − ᾱ ji minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
αi j , ᾱi j 

)
, then α̌i j minimizes L ∗

i j 
(αi j ) . 

If αi j ∈ 

(
ᾱi j , 1 − α ji 

)
, then e ∗

i j 
= 1 , 0 < e ∗

ji 
< 1 , and L ∗

i j 
(αi j ) is

increasing, which implies that ᾱi j minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
ᾱi j , 1 

)
, then e ∗

i j 
= 1 , e ∗

ji 
= 0 , and L ∗

i j 
(αi j ) is constant

in this interval. 

However, if 1 − ᾱ ji < 0 the first interval above does not exist. 

Again, the rest of the analysis is similar to the first subcase. 

Therefore, α∗
i j 

= arg min { L ∗
i j 
(�(1 − ᾱ ji )) , L 

∗
i j 
( ̌α

[ αi j , ̄αi j ] 
i j 

) } . Note 

that if α∗
i j 

= �(1 − ᾱ ji ) and 1 − ᾱ ji > 0 , then α∗
i j 

is equal to

any αi j ∈ [0 , 1 − ᾱ ji ] . 

Case E ( 1 − ᾱ ji < αi j < 1 − α ji < ᾱi j ) 

In this case, it may happen that either 1 − ᾱ ji > 0 or 1 −
ᾱ ji ≤ 0 , and either ᾱi j < 1 or ᾱi j ≥ 1 . Thus there are four 

subcases: 

0 < 1 − αji < αij < 1 − αji < αij < 1 ;
1 − αji < 0 < αij < 1 − αji < αij < 1 ;
0 < 1 − αji < αij < 1 − αji < 1 < αij ;
1 − αji < 0 < αij < 1 − αji < 1 < αij . 

Focusing on the first subcase, by Lemma 4 , 5 and 

Proposition 5 . 
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Table 2 

Summary of optimization problems. 

˜ e Efficient effort profile ˜ e = arg min 
e ∈ [0 , 1] n (n −1) 

c(N) 

ˆ e i Optimal effort s of agent i 

given effort s of other 

agents 

ˆ e i = arg min 
e i ∈ [0 , 1] (n −1) 

A i (e ) 

e ∗
i 

Equilibrium strategy of 

agent i 

e ∗
i 

= ̂  e i 

α∗ Optimal weights of WPAR 

allocation 

α∗ = arg min 
α∈ [0 , 1] n (n −1) 

∑ 

i ∈ N A i (e ∗) 

� 

α∗
i j 

= arg min 
αi j ∈ [0 , 1] 

L ∗
i j 
(αi j ) for i � = j ∈ N

with L ∗
i j 
(αi j ) = c i (e ∗

i 
) + c j (e ∗

j 
) 

R

[

if αi j ∈ 

(
0 , 1 − ᾱ ji 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

If αi j ∈ 

(
1 − ᾱ ji , αi j 

)
, then L ∗

i j 
(αi j ) is increasing, which im- 

plies that αi j = 1 − ᾱ ji minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
αi j , 1 − α ji 

)
, then α̌i j minimizes L ∗

i j 
(αi j ) . 

If αi j ∈ 

(
1 − α ji , ᾱi j 

)
, then L ∗

i j 
(αi j ) is decreasing, which im- 

plies that ᾱi j minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
ᾱi j , 1 

)
, then e ∗

i j 
= 1 , e ∗

ji 
= 0 , and L ∗

i j 
(αi j ) is constant

in this interval. 

In the other three subcases, the first and/or last interval may 

not exist. Once again, the rest of the analysis for those sub- 

cases is similar to the first one. 

Therefore, α∗
i j 

= arg min { L ∗
i j 
(�(1 − ᾱ ji )) , α̌

[ αi j , 1 −α ji ] 
i j 

, 

L ∗
i j 
(�( ̄αi j )) } . Note that if α∗

i j 
= �(1 − ᾱ ji ) and 1 − ᾱ ji > 0

then α∗
i j 

is equal to any αi j ∈ [0 , 1 − ᾱ ji ] , and if αE 
i j 

= �( ̄αi j )

and ᾱi j < 1 , then α∗
i j 

is equal to any αi j ∈ [ ̄αi j , 1] . 

Case F ( 1 − ᾱ ji < 1 − α ji < αi j < ᾱi j ) 

This is the most general case and anything could happen 

with thresholds greater than one. Thus there are nine sub- 

cases. First consider the case 0 < 1 − ᾱ ji < 1 − α ji < αi j < 

ᾱi j < 1 : 

If αi j ∈ 

(
0 , 1 − ᾱ ji 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

If αi j ∈ 

(
1 − ᾱ ji , 1 − α ji 

)
, then L ∗

i j 
(αi j ) is increasing, which 

implies that αi j = 1 − ᾱ ji minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
1 − α ji , αi j 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

If αi j ∈ 

(
αi j , ᾱi j 

)
, then L ∗

i j 
(αi j ) is decreasing, which implies 

that αi j = ᾱi j minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
ᾱi j , 1 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

In any other subcase, the first, second, to last, and last inter- 

vals considered above, may not exist. The rest of the analysis 

for those subcases is similar to the first one. 

Therefore, α∗
i j 

= arg Min { L ∗
i j 
(�(1 − ᾱ ji )) , L 

∗
i j 
(�( ̄αi j )) } . Note

that, if α∗
i j 

= �(1 − ᾱ ji ) and 1 − ᾱ ji > 0 , then α∗
i j 

is equal to

any αi j ∈ [0 , 1 − ᾱ ji ] , but if α∗
i j 

= �( ̄αi j ) and ᾱi j < 1 , then α∗
i j 

is equal to any αi j ∈ [ ̄αi j , 1] . Additionally, if 1 − α ji < 0 and

ᾱi j > 1 , then L ∗
i j 
(�(1 − ᾱ ji )) = L ∗

i j 
(�( ̄αi j ) , so α∗

i j 
is equal to

any αi j ∈ [0 , 1] . 
�

ppendix D 

Table 1 and 2 . 
Table 1 

Notation summary. 

N = { 1 , 2 , .n } Ag

E i = [0 , 1] n −1 Str

E = 

∏ 

i ∈ N E i = [0 , 1] n (n −1) Str

e i j ∈ [0 , 1] Eff

e i = (e i j ) j � = i ∈ E i Eff

e ∈ E Eff

c i : E i → R + Co

r i j : [0 , 1] → R + Co

r i j (e ji ) Co

c : 2 N → R Ch

S ⊆ N Co

c S ({ i } ) = c i (e i ) −
∑ 

j∈ S\{ i } r i j (e ji ) Th

c(S) = 

∑ 

i ∈ S c 
S ({ i } ) Th

ψ i : E → R All

ψ(e ) = ( ψ i (e ) ) i ∈ N All

�i (e ) = c i (e i ) −
∑ 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 
r ji (e i j )] WP

A i (e ) = c i (e i ) −
∑ 

j∈ N\{ i } αi j [ r i j (e ji ) + r ji (e i j )] WP

α = (αi ) i ∈ N with αi = (αi j ) j∈ N\{ i } We

φ(c) Sha

ν(e ) Nu
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