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ABSTRACT

There are multiple situations in which bilateral interaction between agents results in considerable cost
reductions. The cost reduction that an agent obtains depends on the effort made by other agents. We
model this situation as a bi-form game with two states. In the first stage, agents decide how much effort
to exert. We model this first stage as a non-cooperative game, in which these efforts will reduce the
cost of their partners in the second stage. This second stage is modeled as a cooperative game in which
agents reduce each other’s costs as a result of cooperation, so that the total reduction in the cost of each
agent in a coalition is the sum of the reductions generated by the rest of the members of that coalition.
The proposed cost allocation for the cooperative game in the second stage determines the payoff function
of the non-cooperative game in the first stage. Based on this model, we explore the costs, benefits, and
challenges associated with setting up a pairwise effort situation. We identify a family of cost allocations
with weighted pairwise reductions which are always feasible in the cooperative game and contain the
Shapley value. We also identify the cost allocation with weighted pairwise reductions that generate an

efficient equilibrium effort level.

© 2023 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The search for greater efficiency, access to new markets and
greater competitiveness are some of the main factors that result in
inter-organization or inter-corporate cooperation structures. There
are different forms of cooperation depending on the degree of in-
tegration or interdependence of partners and on the intended goals
of agreements. These forms have been widely studied in economic
literature (see e.g. Todeva and Knoke [1] for a survey). There is
one specific type of cooperation whose properties and character-
istics differentiate it from the rest. It can occur between agents
that share, for example, resources, knowledge or infrastructure. The
common purpose is to obtain individual advantages such as reduc-
ing their respective individual costs. The particularity of this form
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of cooperation lies in the fact that the cost reduction is based on
bilateral interactions.

We consider that form of cooperation here in which, given any
pair of cooperating agents, one agent reduces the cost of the other
by a certain amount which is independent of cooperation with
other agents. This means that if there are more agents in the coali-
tion the amount of the cost reduction does not change. This pair-
wise cost reduction is independent of the coalition to which the
pair of agents may belong. Therefore, for any agent, the total cost
reduction in any coalition can easily be calculated as the sum of
the reductions obtained from each bilateral interaction with the
other members of the coalition.

There are several situations where this kind of cooperation with
pairwise cost reduction occurs and is profitable, e.g. strategic col-
laboration agreements between firms to reduce logistical opera-
tional costs. The need to increase market share requires logistics
firms to expand their radius of action as far as possible. This means
major investments in expensive infrastructures at new sites, which
increase operational costs. Agreements are established between
companies to reduce those costs while maintaining control of their
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respective markets and hindering access by new competitors. They
offer the resources held by each firm in its respective area of in-
fluence under advantageous conditions. This enables them to ex-
pand their operating ranges with significant cost savings. Interac-
tions occur bilaterally, with each company using the resources of
the other. These cost reductions are independent of any cost re-
ductions that can also be obtained by interacting with other agents
in larger coalitions.

The second situation is that of bilateral free trade agreements
between countries. In a globalized economy, free trade agreements
are quite common. They facilitate trade in goods and services be-
tween countries, reducing trade barriers and consequently the cost
of trade. These cost reductions are specific to each pair of coun-
tries, and are independent of any other agreements that either may
decide to establish with other countries.

A third situation is the sharing of market data. Currently, in-
formation on customers and their purchase patterns is vitally im-
portant for firms. It enables them to maximize returns on adver-
tising costs and focus on their ideal target markets. Cooperation
between firms (usually from complementary sectors) consists of
sharing information about their respective customers. This reduces
the costs of each of the firms involved. The information that a par-
ticular firm provides is specific to it, so the value of the informa-
tion that it receives from another specific firm is independent of
information from other firms. Even if two firms provide informa-
tion about the same customer, the information itself is different
because it describes the purchase of a different good or service.
This can increase the value of that particular customer as a target,
which again boosts the value of this particular kind of cooperation.

The last situation presented here is that of inter-firm coopera-
tion agreements to reduce costs by increasing the range of firms’
respective telecommunication networks. In eminently competitive
sectors such as mobile telephony and online services, cooperation
between operators has become quite common. For example, they
may share the locations of their respective antennas, which en-
ables them to expand the reach of their networks. This means
greater benefits thanks to the offering of a broader service, while
avoiding the costs that would be entailed by each company in-
stalling its own structures. Here again, cost reduction is bilateral
when two agents decide to share and use each other’s antennas.
These cost savings are independent of any collaboration agree-
ments that each firm may have with other agents to share anten-
nas in larger coalitions.

In this kind of cooperation, the cost reduction between agents
may be highly asymmetric when they cooperate in pairs. For ex-
ample, if two agents A and B decide to cooperate, agent A could
provide a major reduction for agent B, while the reduction pro-
vided in the opposite direction could be more modest. These asym-
metries can induce imbalances or discriminations that could jeop-
ardize cooperation. A fair distribution mechanism for the costs
generated by cooperation is undoubtedly needed to ensure the sta-
bility of any strategic partnership, as Thomson [2] points out.

In addition, it is quite common for this kind of cooperation to
require the agents involved to make a set level of effort. It is nat-
ural to think that the amount by which one agent can reduce the
costs of the other (if they decide to cooperate) could depend on
the effort that the agent exerts. For example, if one country can ob-
tain information relevant to another (e.g. information on tax eva-
sion and the flight of capital involving its citizens), the amount
and quality of the specific information may depend on the effort
exerted by the first country in gathering it. This extends the situ-
ation beyond a cooperative model. For this reason, we model the
sequence of decisions as a bi-form game ([3]). In the first stage of
the bi-form game, agents decide how much (costly) effort they are
willing to exert. This has a direct impact on their pairwise cost re-
ductions. This first stage is modeled as a non-cooperative game in
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which agents determine the level of pairwise effort to reduce the
costs of their partners. In the second stage, agents engage in bi-
lateral interactions with multiple independent partners where the
cost reduction brought by each agent to another agent is indepen-
dent of any possible coalition. We study this bilateral cooperation
in the second stage as a cooperative game in which cooperation
leads agents to reduce their respective costs, so that the total re-
duction in costs for each agent in a coalition is the sum of the
reductions generated by the rest of the members of that coalition.
In the non-cooperative game of the first stage, the agents antici-
pate the cost allocation that will result from the cooperative game
in the second stage by incorporating the effect of the effort made
into their cost functions. Based on this model, we explore costs,
benefits, and challenges associated with setting up a pairwise ef-
fort situation.

We investigate the impact of pairwise efforts on cost reduc-
tions and the resulting cost structure for this framework. In par-
ticular, we explore the design of a cost-allocation mechanism that
efficiently allocates the gains from pairwise effort to all parties.
To that end, we first compute the optimal level of cost reduction,
taking into account the pairwise cost reductions collectively ac-
crued by all agents. An ideal allocation scheme should encourage
agents to participate in it and, at the same time, establish proper
incentives to make efforts prior to cooperation. Specifically, we first
show that it is profitable for all agents to participate in a pairwise
effort situation. Then we study how the total reduction in costs
should be allocated to the participants in such a situation. We do
this by modeling the pairwise cost reduction between agents that
takes place in the second stage as a cooperative game, which we
refer to as the pairwise effort game or "PE-game”.

We prove that the marginal contribution of an agent diminishes
as a coalition grows in PE-games (i.e. they are concave games) and
thus all-included cooperation is feasible, in the sense that there are
possible cost reductions that make all agents better off or, at least,
not worse off (i.e. PE-games are balanced, which means that the
core is not empty). This all-included cooperation is also consistent
(i.e. PE-games are totally balanced, which means the core of ev-
ery subgame is non-empty). We identify various allocation mech-
anisms that enable all-included cooperation to be feasible (i.e. al-
location mechanisms that belong to the core of PE-games). In par-
ticular, we discuss a family of cost allocations with weighted pair-
wise reduction which is always a subset of the core of PE-games.
This is a broad family of core-allocations which includes the Shap-
ley value, which is obtained when all the weights work out to a
half. We provide a highly intuitive, simple expression for the Shap-
ley value, which matches the Nucleolus in our model. To select one
of these core-allocations in the second stage, we take into account
the incentives that it generates in the efforts made by agents, and
consequently in the aggregate cost of a coalition. We show that the
Shapley value can induce inefficient effort strategies in equilibrium
in the non-cooperative model. However, it is always possible to
find core-allocations with weighted pairwise reductions that cre-
ate appropriate incentives for agents to make optimal efforts that
minimize aggregate costs, i.e. core-allocations that generate an ef-
ficient level of effort in equilibrium.

This paper contributes to the literature by presenting a doubly
robust cost sharing mechanism. That mechanism not only has good
properties regarding the cooperative game in the second stage but
also creates appropriate incentives in the non-cooperative game in
the first stage that enable efficiency to be achieved.

Cooperative game theory has developed a substantial mathe-
matical framework for identifying and providing suitable cost shar-
ing allocations (see, e.g., [4-6] for a survey). Multiple solutions
have been proposed from a wide range of approaches (see, e.g.,
[7-16]). The Shapley value ([17]) is considered one of the most
outstanding of them, and a suitable solution concept (see, e.g.,
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[18,19] for a survey). As an allocation rule it has very good prop-
erties, such as efficiency, proportionality, and individual and coali-
tional rationality. However, it has the disadvantage of posing com-
putational difficulties, which increase as the number of players in-
creases. Nonetheless, there is a large body of literature in which
the Shapley value is proposed as a simple, easy-to-apply solution
in different economic scenarios (see, e.g., [20-25]). These papers
give simplified solutions for different classes of games. They take
the cost structure as given and do not consider the system ex-
ternalities that arise when agents make efforts to give and re-
ceive cost reductions. Our paper here incorporates both the non-
cooperative aspects of making efficient efforts (by modeling deci-
sions related to pairwise cost reductions) and the cooperative na-
ture of giving and receiving cost reductions in pairwise effort situ-
ations.

As in principal-agent literature, we refer to action by agents as
"effort”. In this setting, the concept of "effort” is widely used in an-
alyzing different kinds of problem. One of the first was the moral
hazard problems: See for example [26]. Other examples are Holm-
strom [27] and Dewatripont et al. [28], who identify conditions un-
der which more information can induce an agent to make less ef-
fort. The approach in our model is quite different, in that we do
not consider any kind of principal. As far as we know, our model
is novel in that it analyzes the incentive for agents to make efforts
in a bi-form game: A non-cooperative stage where agents choose
how much effort to make and a cooperative second stage. As men-
tioned, we show that the solution of the cooperative game deter-
mines the incentives of agents to make an effort in the first stage,
and consequently the efficiency of the final outcome.

In [29], it is also used a bi-form model to analyze the role of
process improvement in a decentralized assembly system in which
an assembler lays in components from several suppliers. The as-
sembler faces a deterministic demand and suppliers incur variable
inventory costs and fixed production setup costs. In the first stage
of the game suppliers invest in process improvement activities to
reduce their fixed production costs. Upon establishing a relation-
ship with suppliers, the assembler sets up a knowledge sharing
network which is modeled as a cooperative game between sup-
pliers in which all suppliers obtain reductions in their fixed costs.
They compare two classes of allocation mechanism: Altruistic al-
location enables non-efficient suppliers to keep the full benefits of
the cost reductions achieved due to learning from the efficient sup-
plier. The Tute allocation mechanism benefits a supplier by trans-
ferring the incremental benefit generated by including an efficient
supplier in the network. They find that the system-optimal level of
cost reduction is achieved under the Tute allocation rule. Our bi-
form game is novel in terms of incentive for efforts by agents and
is also richer in results: We find the allocation rule that generates
the unique efficient effort in equilibrium in cooperation with pair-
wise cost reduction.

The paper is organized as follows. Section 2 presents the bi-
form game and describes in detail the two stages in which the
model is developed. Section 3 is devoted to analyzing the second
stage which is a cooperative game. In this cooperative game, agents
reduce each other’s costs as a result of cooperation, so that the to-
tal reduction in the cost of each agent in a coalition is the sum
of the reductions generated by the rest of the members of that
coalition. In Section 4 the first stage is studied, that is the non-
cooperative game that precedes the cooperative game in the sec-
ond stage. Here, the agents anticipate the cost allocation that re-
sults from the cooperative game in the second stage by incorpo-
rating the effect of the effort exerted into their cost functions. We
consider a family of cost allocation rules (in the second state) with
pairwise reductions weighted separately (WPR family) and obtain
the corresponding effort equilibria in the first state. Then, we de-
velop a general and complete analysis of the efficient effort equi-
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libria. Finally, in this section, we found the core-allocation rule in
this WPR family that generates the unique efficient effort equilib-
ria. Section 5 focuses on a subfamily of the WPR family in which
pairwise reductions are not weighted separately, but are weighted
as aggregated reduction, this is the WPAR family. We find out that
the level of efficiency is lower than that attained when the pair-
wise reductions are weighted separately for each agent. Then, we
found the rule, within this WPAR family, that generates the equi-
librium efforts closest to the efficient ones. Finally, Section 6 com-
pletes the study of our model by comparing the two families of
core-allocation analyzed. We complete the paper with a section of
conclusions and four appendices containing the proofs of the re-
sults and tables of summaries (notation and optimization prob-
lems).

2. Model

We consider a model with a finite set of agents N = {1, 2, .n},
where each agent has a good (for example resources, knowledge
or infrastructure) and has to perform a certain activity. The total
cost of an agent’s activity can be reduced if it cooperates with an-
other agent, which means that the two agents share their goods.
These cost reductions obtained by sharing goods in pairs depend
on the effort made previously by each agent. Our model consists
of two different stages. In the first stage, agents choose their effort
levels as in a non-cooperative game. In the second stage, agents co-
operate to reduce their costs, and allocate the minimum cost they
achieve by pairwise cost reductions as in a cooperative game. The
proposed cost allocation for the cooperative game in the second
stage determines the payoff function of the non-cooperative game
in the first stage. Therefore, we model the sequence of decisions as
a bi-form game ([3]). The two stages of the model are described in
detail below.

First Stage (non-cooperative game): Each agent i € N chooses
in this state an effort level e; = (ej1, ..., €ji_1), €i(it1)s---€in) €
[0,1]™1, where e;j € [0, 1] stands for the level of effort by agent i
to reduce the cost of agent j if they cooperate in the second stage.
These efforts have a cost c;(e;) € R, for any i € N. We assume that
¢i() :[0,1]"! - R, is a scalar field of class C%([0,1]""1).! More-

over, for all e;; € [0, 1] with j e N\{i}, it is assumed that BC(;T(S') > 0,
P54 > 0, and S5 = 0 for all h i, j, which implies that the

ij
marginal cost "CB’T(S’) is independent of the effort that i exerts with
agents other than j.2

Second Stage (cooperative game): Given the effort made in the
first stage, agents cooperate, so for any pair of cooperating agents
i,jeN and a given effort e;;, agent i reduces the total cost of
agent j by an amount rj(e;;) € Ry, and vice versa. These partic-
ular reductions between agents i, j € N are independent of cooper-
ation with other agents. We also assume for all j € N\{i} that func-
tion ry;(.) : [0, 1] — Ry is class (2, increasing and concave® at [0,1].
Thus, these agents participate in bilateral interactions with multi-
ple independent partners whose cost reductions are coalitionally
independent, i.e. the cost reduction given by each agent to another
agent is independent of any possible coalition. This means that the
total reduction in cost for each agent in a coalition S c N is the
sum of the pairwise cost reductions given to that agent by the rest

T A scalar field is said to be class C2 at [0, 1]*! if its 2-partial derivatives exist at
all points of [0, 1]"! and are continuous.

2 This last assumption implies that the Hessian matrix is a diagonal matrix. In
addition, note that, given our assumptions about c;, w.l.o.g. we could consider that
ci(er) = X jem gy Cij(eij) where ¢;;() : [0,1] — Ry. We omit it from the paper so as
not to introduce more notation into the model.

3 drji(ei;)/8e;; > 0 (increasing) and 82rjf(e,»j)/69izj < 0 (concave).
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of the members of the coalition, i.e. for agent i, it is 3\ g3 Tij(€ji)-
We assume perfect information regarding agents’ costs and cost re-
ductions depending on efforts.

Given an effort profile e = (e1,ey,...,ey) € [0, 1]*™1 in the
first stage, the second stage can be seen as a cooperative game,
more specifically a transferable utility cost game (N, e, c), where N
is the finite set of players, and c: 2N — R is the so-called charac-
teristic function of the game, which assigns to each subset SC N
the cost c¢(S) that is incurred if agents in S cooperate. By con-
vention, c(#) = 0. The cost of agent i in coalition S C N is given
by S(@i) :=c;(e;) — 2 jes\{i) rij(ej;). This cost can be interpreted as
the reduced cost of agent i in coalition S. Note that the larger
the coalition, the greater the cost reduction it achieves, i.e. for all
ieScTcN, cT'({i}) <S{i}). The total reduced cost for coalition
S is given by

cS) =) cdih =) lale) - > nijlep)] (1)

ieS ieS jeS\{i}

When all agents cooperate, they form what is called the grand
coalition, which is denoted by N. Thus, c¢(N) is the aggregate
cost of the grand coalition. The allocation of the grand coalition
cost achieved through cooperation, in the second stage, assigns
a reduced final cost to each agent, that is, ¥;(e), for all ieN,
where ¥; : E — R with E :=[]jvE and E; :=[0,1]*"'. Then, we
define the cost allocation rule ¥ : E — R" s.t. ¥r(e) = (¥i(e))ien
and Yy Vi(e) = c(N).

The non-cooperative cost game in the first stage is defined
through that cost allocation rule ¥ by (N, {E;}icn, {Vi}ien), Where
E; is the strategy space of agent i ¢ N (its effort level space), and
Y; is the payoff function of agent i, but in this case is a cost func-
tion. Hence, for an effort profile e € E, the corresponding cost func-
tion is i (e). That effort is made in anticipation of the result of
the cooperative cost game that follows in the second stage. There-
fore, we first analyze the second stage (see Section 3), and focus
on different ways of allocating the grand coalition cost. We de-
termine cost allocation rules with good computability properties
and coalitional stability for this cooperative cost game. Notice that
a given cost allocation rule will generate precise incentives in the
first state and consequently particular equilibrium effort strategies*
In turn, these particular effort strategies will have an associate cost
of the grand coalition. At this point, a question about efficiency
arises. The lower the cost of the grand coalition generated in equi-
librium is, the more efficient the equilibrium effort strategies and
the allocation rule considered will be.

Therefore, there are two dimensions to be considered. First,
the cost allocation rule for the cooperative game should have
good properties (computability and coalitional stability). Second,
the allocation rule must induce the right incentives in the non-
cooperative game to obtain the lowest cost of the grand coalition.
This interesting, relevant question is analyzed in Section 4 and 5.

Throughout the paper, we consider the following assumptions:

(CA) Cost assumptions: c¢; € C2, and 33’7(16’) > 0 (increasing),
32c;(e;) '
dejjdejg

325;# > 0 (convex), and

ij

(RA) Reduction assumptions: r;; eC?, and orji(e;;)/8e;; > 0
(increasing), 82rj,-(eij)/56i2j < 0 (concave).

A summary of the notation and the main optimization prob-
lems (Tables 1 and 2) can be found in Appendix D.

=0, if k # j (additively separable).

4 An effort strategy profile is said to be in equilibrium when each agent has noth-
ing to gain by changing only their own effort strategy given the strategies of all the
other agents (Nash equilibrium).

Omega 121 (2023) 102920
3. Cooperation with pairwise cost reduction

This section presents the analysis of cooperation with pairwise
cost reduction in the second stage. Agents make their efforts in
pairwise sharing in the first stage, and initiate cooperation with ef-
forts e = (eq,...,€;,...,en). We model the PE-game as a multiple-
agent cooperative game where each agent i incurs an initial cost
of c;(e;). All agents in a pairwise effort group (coalition) give cost
reductions to and receive such reductions from other agents. As a
result, all agents in the coalition reduce their initial costs to levels
that depend on the efforts made in the first stage by the others.
No agent outside the pairwise effort situation benefits from this
pairwise cost reduction opportunity. We introduce all the game-
theoretic concepts used in this paper, but readers are referred to
[30] for more details on cooperative and non-cooperative games.

We refer to the pairwise effort situation as a PE-situation and
denote it by the tuple (N, e, {c;(e;), {rji(ei})}jen\ (i} }ien). We asso-
ciate a cost game (N, e, c) with each PE-situation as defined by (1).

The class of PE-games has some similarities with the class of
linear cost games introduced in [31]. They define the concept of
cost-coalitional vectors as a collection of certain a priori informa-
tion, available in the cooperative model, represented by the costs
of the agents in all possible coalitions to which they could belong.
The cost of a coalition in their study is thus the sum of the costs
of all agents in that coalition. However, the PE-games considered
here are significantly different from their linear cost games. Linear
cost games focus on the role played by benefactors (giving) and
beneficiaries (receiving) as two groups of disjoint agents, but PE-
games consider that all agents could be dual benefactors, in the
sense that they be benefactors and beneficiaries at the same time.
In addition, PE-games are based on a bilateral cooperation between
agents that enables both to reduce their costs but is coalitionally
independent.

We now consider a PE-situation
(N, e, {ci(e;), {rij(eij)}jen (i }ien) and consider whether it is prof-
itable for the agents in N to form the grand coalition to obtain
a significant reduction in costs. We find that the answer is yes,
and show that the associated PE-game (N, e, c¢) is concave, in the
sense that for all ie N and all S, T € N such that SCT c N with
ieS, soc(S)—c(S\{i}) = c(T)—c(T\ {i}). This concavity property
provides additional information about the game: the marginal
contribution of an agent diminishes as a coalition grows. This is
well-known and is called the "snowball effect”.

The first result in this section shows that PE-games are always
concave. This means that the grand coalition can obtain a signifi-
cant reduction in costs. In that case, the reduced total cost is given
by c(N) = 3" ci(e;) — R(N), where R(N) = >~ > rj;(ej) is the to-

ieN ieN jeN\({i}
tal reduction produced by bilateral reductions between all agents
in the situation, which turns out to be the total cost savings for
all agents. The proof of Proposition 1, together with all our other
proofs for this section, is shown in Appendix A.

Proposition 1. Every PE-game is concave.

An allocation rule for PE-games is a map ¥ which assigns a
vector ¥ (e) e R" to every (N, e,c), satisfying efficiency, that is,
> ¥i(e) = c(N). Each component v;(e) indicates the cost allocated
ieN
to i e N, so an allocation rule for PE-games is a procedure for al-
locating the reduced total to all the agents in N when they coop-
erate. It is a well-known result in cooperative game theory that
concave games are totally balanced: The core of a concave game
is non-empty, and since any subgame of a concave game is con-
cave, the core of any subgame is also non-empty. That means that
coalitionally stable allocation rules can always be found for PE-
games. We interpret a non-empty core for PE-games as indicating a
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setting where all included cooperation is feasible, in the sense that
there are possible cost reductions that make all agents better off
(or, at least, not worse off). The totally balanced property suggests
that this all-included cooperation is consistent, i.e. for every group
of agents whole-group cooperation is also feasible.
A highly natural allocation rule for PE-games is ¢;(e) =
CN({I}) =ci(ei) 7Ri(N), for all ieN, with Rl(N) = Z T'ij(ej,')
JjeN\{i}
being the total reduction received by agent i ¢ N from the rest of
the agents j e N\{i}. It has good properties at least with respect
to computability and coalitional stability in the sense of the core.
Formally, the core of a PE-game (N, c¢) is defined as follows

Core(N,c) = {x e R"/ Y "x;=c(N), Y "x; < c(S)VS < N}. (2)
ieN ieS
Notice that ¢(e) € Core(N, c). Indeed, )" ¢;(e) <c(N) and for
ieN

every SCN, Y ¢i(e) = Y. cN (i) < Y. c5(i) = c(S). Nevertheless, the
ieS ieS ieS

agents could argue that this allocation does not provide sufficient

compensation for their dual role of giving and receiving. Note that

the allocation only considers their role as receivers.

PE-games are concave, so cooperative game theory provides al-
location rules for them with good properties, at least with respect
to coalitional stability and acceptability of items. We highlight the
Shapley value (see [17]), which assigns a unique allocation (among
the agents) of a total surplus generated by the grand coalition.
It measures how important each agent is to the overall coopera-
tion, and what cost can it reasonably expect. The Shapley value of
a concave game is the center of gravity of its core (see [32]). In
general, this allocation becomes harder to compute as the number
of agents increases. We present a simple expression here for the
Shapley value of PE-games that takes into account all bilateral re-
lations between agents and compensates them for their dual role
of giving and receiving.

Given a general cost game (N, c), we denote the Shapley value
by ¢(c), where the corresponding cost allocation for each agent
ieN, is

It =1)
0=y B Do) — ey, with | TI=t.

ieTCN
3)

The Shapley value has many desirable properties, and it is also
the only allocation rule that satisfies a certain subset of those
properties (see [33]). For example, it is the only allocation rule that
satisfies the four properties of Efficiency, Equal treatment of equals,
Linearity and Null player ([17]).

Given a PE-game (N, e, ¢), we denote by ¢ (e) the Shapley value
of the cost game. The following Theorem shows that the Shap-
ley value provides an acceptable allocation for PE-games. Indeed,
it reduces the individual cost of an agent by the average of the to-
tal reduction that it obtains from the others (R;(N)) plus half of
the total reduction that it provides to the rest of the agents, i.e.

Gi(N) =3 jeniy Tii Ceij)-
Theorem 1. Let (N, e, c) be a PE-game. For each agent k € N, ¢y (e) =
Ck(ek) - %[Rk(N) + Gk(N)]-

From Theorem 1 it can be derived that the Shapley value, ¢ (e),
considers the dual role of giving and receiving of all agents, and
the final effect on those agents depends on which role is stronger.
As mentioned above, if an allocation does not compensate them for
their dual role of giving and receiving, and it only considers their
role as receivers, as the individual cost in the grand coalition, ¢ (e),
does, the cooperation would not be desirable for those dual agents.
This non-acceptability can be avoided by using the Shapley value,
which also coincides with the Nucleolus (|34]) for PE-games.
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The nucleolus selects the allocation in which the coalition
with the smallest excess (the worst treated) has the high-
est possible excess. The nucleolus maximizes the "welfare” of
the worst treated coalitions. Denote by v(e) € R® the Nucle-
olus of the PE-game (N,e,c), associated with a PE-situation
(N, e, {ci(e), {rij(eij)}jen (i }ien)- First, we define the excess of
coalition S in (N,e,c) with respect to allocation x as d(S,x) =
c(S) — Y jcsx;. This excess can be considered as an index of the
"welfare” of coalition S at x: The greater d(S, x), the better coali-
tion S is at x. Let d*(x) be the vector of the 2" excesses arranged
in (weakly) increasing order, i.e., df (x) < d;f (x) for all i < j. Second,
we define the lexicographical order >,. For any x,y e R", x >, y if
and only if there is an index k such that for any i < k, x; =y; and
Xy > Yk The nucleolus of the PE-game (N, e, c) is the set

v(e) ={xeX:d*"(x) = d*(y) for all y € X} (4)

with X = {x e R" : ", yX; = c(N), x; > c({i}) for all i € N}.

It is well known that the Nucleolus is a singleton for balanced
games and that it is always a core-allocation.

The Proposition 2 proves that for PE-games the Shapley value
matches the Nucleolus. This is a very good property that few cost
games satisfy.

Proposition 2. Let (N,e,c) be a PE-game. For each agent k € N,
vi(e) = Py (e).

Therefore, given an effort profile, the Shapley value is a very
suitable way of allocating the reduced cost due to cooperation.
Note that, the cost reduction as a result of cooperation between
any pair of agents i, j € N is rjj(ej;) 4 rj;(e;;), and the Shapley value
assigns one half of this amount to i and the other half to j. This
seems a reasonable way to split this aggregate cost reduction.
However, if agents knew before choosing their levels of efforts that
the cost reductions resulting from their efforts were going to be
allocated according to the Shapley value, the incentives created
could generate inefficiencies. Some agents could find it optimal to
exert too little effort and in some situations this could be ineffi-
cient.

For example, consider a PE-situation in which one agent has the
ability to produce a substantial reduction in costs for other agents
with a low effort cost and the rest of the agents have almost no
ability to reduce costs for others even with a high effort cost. If the
Shapley value is used as the allocation rule for this game, agents
may not have incentives to make any level of effort. Note that
in the first step agents have to decide how much effort to make.
However, if the Shapley value is modified to give a greater portion
of the pairwise cost reduction to the especially productive agent,
it might make more effort and thus produce a greater reduction in
cost for other agents. This change in the Shapley value generates
new allocation rules, which can reduce the cost of the grand coali-
tion regarding the Shapley allocation. The following example with
three agents illustrates these ideas.

Example 1. Consider a pairwise inter-organizational situation
with three firms, i.e. N={1,2,3}. For any effort profile e e
[0,1], the PE-situation is given by the following initial costs,

c1(e12,e13) = 100 + 100eq; + 4e2, + 100e;3 + 4e?,
c2(e21,623) = 100 + 100e;; + 4e3; + 100e,3 + 4e3,
c3(e31,e32) = 100 + 100e3; + 4e3; + 100e3; + 4e3,
and the following pairwise reduced costs, all of them in thousands
of Euros,

rin(eq;) = 2 +200ey; — 3e2, with i =2,3
rip(egi) = 2 +3ey; — €2, with i=1,3
ri3(es;) = 2 + 3e3; — 2, with i=1,2
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If the allocation rule in the second stage is the Shapley value,
the firms choose their levels of effort according to this cost al-
location function. It is straight forward to show that in this case
the unique effort equilibrium e*, is one in which the three firms
make no effort, i.e. ey = 0 for i, j € N.”> Thus, the Shapley value dis-
tributes the cost of the grand coalition c*(N) = 288 equally, i.e. for
each firm i=1,2,3, ¢;(e*) = ¢i(ef) - %ngw\{i}[ﬂj(@f,-) +1ji(e5)] =
100 — —((2+2)+(2+2)) =96.

Note that, for example, in the relationship between firm 1 and
2, the pairwise cost reduction is ryy(ey) + 11 (eq2), and the Shap-
ley value gives 2 of this amount to firm 1 and the other to firm
2. However, if the proportion that firm 1 obtains is mcreased e.g.
from } to 3, and the part for firm 2 is thus reduced to J, the
incentive of firm 1 to make an effort can be increased. The same
goes for firms 1 and 3 so that the incentive of firm 1 to make an
effort for firm 3 is also increased. These changes in the Shapley
value lead to a new allocation rule which we denote by Q(e) =
(Q4(e), (e), R3(e)) for any effort profile e € [0,1]6. With this
new allocation rule, the equilibrium efforts are zero for firms 2
and 3, and one for firm 1. That is, e** =1, for j=2,3, e** 0, for
j=1,3, and e**j‘. =0, for j=1,2. In thlS case, the grand coalmon
cost ¢**(N) = 102 is allocated equally between firms 2 and 3, and
the rest to firm 1. That is, €;(e**) =100 — 1[(2+200 - 3) +2] -
%(2 +2)=47,75fori=2,3, and 24 (e**) = 100 + 100 + 4 + 100 +

- 3[(2+(2+200-3)) + (2 + (2+200 - 3))] = 6,5.

Hence, the new allocation rule 2(e**) greatly reduces the grand
coalition cost (by 136.000 Euros) as well as the costs of each firm;
i.e. a reduction of 89.500 Euros for firm 1 and 23.250 Euros for
firms 2 and 3. In relative terms, with the Shapley value each com-
pany pays 33.33% of the total cost. However, with the modified
Shapley value agent 1 only pays 4.4% of the total cost, while agents
2 and 3 pay 47.8% each. Therefore, the modified Shapley value gen-
erates a more efficient outcome in the sense that it creates more
appropriate incentives for firms.

To reach efficient effort strategies in equilibrium (henceforth
EEE) in the first stage, we consider a new family of allocation rules,
for PE-games (second stage), based on the Shapley value. This fam-
ily consists of the rules ©2(e) € R", where for all i € N,

Q;(e) = ci(e;) — Z [wfjrij(eji) + w;‘irji(eij)],
JjeN\{i}
with a)" i . €10.1], for all jeN\{i}, such that a)i =1 —a)j and

o, =1- a)’ The Shapley value is a particular case of this famlly

]l
of rules in wh1ch a)’ = a);l = 2, for all i e N and all j € N\{i}. This
family of cost allocatlon for PE-games is referred to as cost alloca-
tion with weighted pairwise reduction.

The Theorem below shows that the family of cost allocations
with weighted pairwise reduction is always a subset of the core of
PE-games. This property identifies a wide subset of the large core
of PE-games, including the Shapley value (and thus the Nucleolus).

Theorem 2. Let (N, e, c) be a PE-game. For every family of weights
a)’ a)’ €[0,1], i, je N,i# j, such thata)' _170)1 and a)’ =1-

J
],, Q(e) belongs to the core of (N, e, c).

Now a complete analysis of the EEE for cooperation in pairwise
cost reduction can be conducted.

5 Theorem 3, in Section 4, shows the efforts of equilibrium in the non-cooperative
game in the general case.
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4. Efficiency, equilibrium strategies, and optimal rule

We first define an efficient effort profile as the effort profile

that minimizes the cost of the grand coalition, c(N) = >;_ylci(e;) —
> jenn(iy Tij (€5 -

Definition 1. An effort profile é=(é;,...,6;,...,6;) with
6 = (é“ ..... €i(i-1): €icis1)> - - - €in) € [0, 1]*-1 is efficient if &= arg

el ]]"(n b Yienlcie) — Z]eN\ Tij (6]1)]

An efficient effort profile é is well defined because c(N) as a
function of e is strictly convex in e;; for all i, j € N,i # j.b

The following proposition shows that the effort e;; is efficient if
the marginal cost of that effort equals the marginal reduction that
this effort generates; otherwise, the effort is zero or one. The proof
of Proposition 3 appears in Appendix B, together with those of all
the other proofs in this section.

Proposition 3. There exists a unique efficient effort profile

E=(F1.....00....80) With &= (.. ... 81 Bigen). . Bm) €

[0, 1]™-1, such that

« &y =0if G~ Mforaue,-je[o 1],

- ey =11 29 < drﬂ“*f for all e;; € [0.1],

* &;j € (0,1) is the unique solution of 86’(5) = %(5”) e
ij=ij ij=rij

otherwise.

We now focus on the non-cooperative effort game that arises
under the family of cost allocation with weighted pairwise reduction
(henceforth, WPR family). Then we analyze efficiency in equilib-
rium.

Consider the WPR family, ie., Qi(e) =c(e;) —
Y jeni [w;']r,j(e],)+w§,rﬂ(e,j)] for all ie N with a)i wi e[0,1],

i, jeN,i# j, such that a)’] —l—w{] and w’ —l—w] For each
specification of these weights, a particular allocatlon rule can be
obtained that induces a certain equilibrium effort strategy in the
first stage, which in turn generates the associated cost allocation
in equilibrium. The aim of this section is twofold. First, we identify
the efficient allocation rule within the WPR family, i.e., that which
results in the lowest cost of the grand coalition. Second, we show
that the effort profile induced in equilibrium by this allocation
rule coincides with the efficient effort profile of Proposition 3.

The non-cooperative cost game associated with Q = (£2;);.y in
the first stage is defined by (N, {E;}icn, {2i}icn), Where for every
agent i € N, E; :=[0, 1] 1 is the players’ i strategy set, and for all
effort profiles e € E := [];.y E;, and £2; is the cost function for agent
i e N. We call this an effort game.

In this game, we use the following definition of equilibrium.

Definition 2. The effort profile e* = (e%,...,e};) € E is an equilib-
rium for the game (N, {E;}icn, {€2i}ien) if €f is the optimal effort for
agent i € N given the strategies of all the other agents j € N\{i}.

First, note that the optimal effort for agent i ¢ N given the
strategies of all the other agents j € N\{i} is the effort e; that min-
imizes 2;(e;, e_;). Note that the function ;(e;, e_;) is strictly con-
vex in the effort e;; that agent i exerts for any j e N\{i}.” This
means that for agent i there is a unique optimal level of effort &;;

PP . 2 a2
6 Note that the second derivative in e;; is equal to ZGe) _ i)
? 7

, which is al-

2
ways positive because -G
U

7 9Qi(e) _ (’)c(e)
Note that 5= = St — o) =

>0 and M <0.
U
_ ol ity ) and %8© _ #ae)
:’iefJ

92
>0 and Zrites) :;’E(ze”) <0
ij

i 9%rjitei)
1 JLATj -
= Tae ~ Y ae >0 be
2,
cause, as assumed above, 22¢i(e)
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for each j e N\{i}. That optimal level &; depends on the parame-

ter w'., on the marginal cost of agent i in regard to effort &; (le.

ji’
aci(? i) ), and on the marginal cost-reduction for agent j in regard to

). Consequently, although the cost function of

effort &;, (i.e. J’( if)
}

agent i depends on other agents’ efforts (ej; for all j e N\{i}), the
optimal effort does not.
To obtain the optimal effort, we analyze the derivative of the

convex function ;(e) with respect to e;;, for any j € N\{i}. It must
be noted that 2%i® > 0 — df,’(e_) wl D for all e;; € [0, 1],
e ji ae,} J

The following result characterizes the optimal effort level for agent
i € N in the first stage of the game.

Lemma 1. Let (N, {E;}icn, {2i}ien) be an effort game and &;; be the
optimal level of effort that agent i exerts to reduce the costs of agent
j. Thus,

. 3 . 9ci(e: arji(e;i)
* &; =0 if and only lf%gl)>wﬂ 19 1=, for all e;; € [0, 1],
“ . . (e; Gl
e &;=1if and only if &Z;T(;’) < wﬂ rfl(e” , for all e;; € [0, 1],
e & €(0,1) that holds % = w‘ﬂ- 3(9” , otherwise.
U ley=gy T ey

The following theorem shows the unique allocation rule of the
WPR family that induces an efficient effort profile in equilibrium.
This allocation rule gives all the reductions to the agent that gen-
erates them. Formally, let H(e) := (H;(e));cn be the allocation rule
in the WPR family with a);i =1 for i, je N,i# j, that is H;(e) =
ci(e)) — X jen(iy Tji(esj) for i e N. We consider an allocation rule as
efficient if it induces an efficient effort profile in equilibrium.

Theorem 3. Consider the effort game (N, {E;}icn, {Hi}icn)- Let e be
the level of effort that an agent i exerts to reduce the costs of agent j
in the unique equilibrium with i, j € N, i # j. Thus,

er. = 0 if and only if % > w
! é lej=0 € ley=0
o (s
« e;;=1if and only if 861(” %
e;i=1 ij le.=1
l_[ ij
(e: o (e; )
s ej; € (0,1) that holds df,’;.e.’) = rg;e(_e_”’ , otherwise.
J e 5 _el*j ij eij _eu

In addition, e;‘j =¢&; for i, jeN,i# j and H;(e) is the only allo-
cation rule of the WPR family that always induces an efficient effort
profile in equilibrium.

The next Corollary shows that the allocation rule H is not only
the only efficient one within the WPR family, but that it induces
the lowest possible grand coalition cost for any possible allocation
rule.

Corollary 1. Let ® be the set of all allocation rules for PE-games.
There is no ¥ € © such that the effort equilibrium profile induced in
the non cooperative game (N, {E;}icn, {1i}icn) generates a lower cost
of the grand coalition than allocation rule H.

As mentioned, the effort e;; is efficient when its marginal cost
matches the marginal reduction that it generates; otherwise, the
effort is zero or one. Allocation rule H(e) aligns the incentives of
agents in the first stage game with this idea. It gives all the reduc-
tion to the agent that generates it. In that case, the best response
of any agent is to make its marginal cost equal to the marginal
reduction that its effort generates; otherwise, this agent exerts
the minimal or maximal effort depending on which is higher: the
marginal cost or the marginal reduction.
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We illustrate this analysis with the 3-firm case given in
Example 2 in Section 6.

In this section we work out the allocation rule (in the second
stage) within the WPR family that generates the unique efficient
effort equilibrium (in the first stage). However, there are situations
in which pairwise reductions cannot be weighted separately, i.e. it
is not possible to assign different weights to what an agent gives
and what the same agent receives in a pairwise interaction. For
example, there may be situations in which there is a unique cost
reduction for any pair of agents that depends on the effort exerted
by both agents, i.e. an aggregate reduction. In that case they have
to decide how to split the whole cost reduction. Such cases require
a weight to be assigned to the pairwise aggregate reduction.

The question that arises in this new scenario is whether the
level of efficiency maintained is the same as that attained when
the pairwise reductions are weighted separately for each agent.
Unfortunately, the answer is no: the level of efficiency decreases
in this new scenario. The next section focuses on measuring the
level of efficiency of efforts in equilibrium for a particular family
of weighted pairwise aggregate reductions.

5. Measuring efficiency for pairwise aggregate reduction

Consider the family of cost allocation with weighted pairwise
aggregate reduction A(e) € R" defined as follows:

Ai(e) =ci(e;) — Z ajj[rij(eji) +rji(e;)], (5)

JeN\{i}

with ;; € [0, 1]. The interaction between agents i and j generates
an aggregate cost reduction which is r;;(ej;) + rji(e;;). The parame-
ter «;; measures the proportions in which this reduction is shared
between agents i and j, i.e. @;; is the proportion for agent i and
aji=1-a; for agent j.

Note that A(e) is a subfamily of the WPR family Q(e), where
now wl = a)]j = ajj, for all i, j € N. From now on we refer to this
subfamily as the WPAR family. It is important to note that the
Shapley value and the Nucleolus belong to the WPAR family with
ajj = 2 for all i, jeN, i# j. We consider whether the allocation
rule H(e), which generates the efficient effort in equilibrium, is
applicable in this situation. Unfortunately, H(e) does not fit the
scheme of pairwise aggregate reduction.

This section analyzes the non-cooperative effort game that
arises in the first stage when cost allocations in the WPAR family
are considered.

Our goal is to find out, within the WPAR family, a core-
allocation in the cooperative game of the second stage that induce
the effort equilibrium level in the first stage closest to the efficient
one. We consider that an effort profile e’ e E is more efficient than
a profile ¢” e E if the aggregate cost generated in the second stage
by €’ is lower than that generated by e”.

We therefore first study the non-cooperative effort game
that arises under this new cost allocation A(e), that is
(N. AE}ien. {Ai}ien)-

To simplify notation and analysis, we consider that for all i e N

3 92¢;i(e: orji(ejj)
and j e N\{i}, ¢ (eu) = C'(e). ¢ (ejj) := acé;e’), rii(eij) = geiju

(eu

and r}’i(e,-j) :_ . Note that, as the WPAR family is a subfam-

ily of WPR, the propertles of the latter apply to the former.

Before analyzing the EEE of the above non-cooperative effort
game, we define thresholds of alpha parameters that enable them
to be reached.
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Definition 3. Given an effort game (N, {E;}icn, {Ai}icn), we define
the following lower and upper thresholds for each pair of agents i
and j,

CdO - . d) _ GO ¢(1)
Q= 75;1'(0)' Qjj 1= rl’l,ﬁ aji = 7o and aj; ;= GRS

It is clear that 0 < ¢;; < &;; because ¢ is an increasing function
and r}i decreasing one. Analogously, 0 < & j; < &j;.

The first Theorem in this section characterizes all possible types
of effort equilibrium according to the value of the parameter o;;,
for all i, j € N, i # j. The proof of Theorem 4 appears in Appendix C,
together with all the other proofs in this section.

Theorem 4. Let (N, {E;}icn, {Ai}icn) be an effort game. The pairwise
efforts in any unique equilibrium (e’ﬁ, e;i) are given by
0 if and only if ot < &5
e = el if and only if & < oy < @;;
1 if and only if o > @
0 if and only if @;; > 1 -«
e = e if and only if 1 —@j; <o <1-—
1if and only if o5 < 1

Qi
where el € (0,1) is the unique solution of ci(e) — al-jr;,i(el-j) =0
and e € (0, 1) is the unique solution of cj.(ej) -1 —a,-j)rlf].(ej,-) =0

It is demonstrated in Appendix C that e! increases with ajj
while ¢ decreases, see Corollary 2. The findings of Corollary 2 are
valuable when the objective is to incentivize agents i, j € N to in-
crease their pairwise effort e;; by adjusting the parameter o;;.
However, our aim is to go beyond this and achieve optimal effi-
ciency within the WPAR family. In other words, we seek to de-
termine the optimal values of (xl.*j, for all i, j € N, which minimizes
the aggregate cost function ) ; yA;(e*) at equilibrium, where both
A; and the effort equilibrium e* depend on «;;.

The search for alpha parameters which will lead to the EEE
can be simplified by taking into account the bilateral indepen-
dent interactions of agents. Note first that any pair of agents have
a particular o;;, and second that the optimal effort made by any
agent i ¢ N in regard to any agent j € N\{i} is independent of the
optimal effort that agent i exerts in regard to any other agent
h e N\{i, j}. Thus, minimizing ) ;_yA;(e*) in terms of a;; is equiv-
alent to minimizing A;(e*) + Aj(e*), since each particular o;; only
appears in A;(e*) and Aj(e*). Fortunately, the problem can be fur-
ther simplified: Note that, A;(e*) and A;(e*) are the sums of dif-
ferent terms, but «;; only appears in those terms related to the
interaction between i and j (see (5)). These terms are c;(e}) —
oz,j(ru(eﬂ) + rﬂ(e* )) from A;(e*), and cj(ej) -(1- oz,-j)(rﬁ(e;‘j) +
rl](e*)) from A; (e*) Thus, a new function Af(w;j) :=ci(e}) —
oz,j(r,](ejl)+rj,(e* ) can be considered, and analogously Aj(l —
a;). Note that ¥ (?a(xe ) a*(g’;{(gl,» aX(gO[(Xe*» d*(A*a(;XauD
forx=1,2,. Therefore for each pair i and j, lt is possible to de-
fine the functlon Ly, (oz,j) = Af (a45) +A (1 — ;). Hence, minimiz-
ing > ;v Ai(e*) is equ1valent to mmlmlzmg ij (@;j), with

and

Lj(eiij) = ci(ef) +cj(ej)
— [ (rij(e5) + rjiCes)) + (1 — o) (rjicefy) + 1y (€5) ]
= ci(e]) +cj(e}) — (rij(e}) +rjief;)) (6)

The function L} (ozu) depends on ¢;; through the equilibrium
efforts e and e because they depend on o;;. We now focus on
finding the o;; that minimizes function L;‘j(aij), and provide a pro-
cedure for finding the EEE for pairwise aggregate reduction.
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We can summarize this reasoning as follows.® Let & = (&)ien
and @; = (j) jen\ i), then o* = arg mm YienAi(e*) & o=

ael0, 1=
arg m[l(;l ]A i(e*) +Aje*) forallieN < «; =arg m{l(?”cl(e*) -

j
ajie ajj€
aij(rij(e],) +r]l(e*))+c_](e*) (1 al])(rﬂ(e )+r1](ej,‘)) for all
LjeNi#je oj=arg m{z(?l]c,(e*) +cj(€5) — (rji(ep) + ryj(ex)) for
u
all i, jeN,i#j. As L (ozl]) = ci(e} )+CJ(€*) -
then oz] = arg m{zg1 L; (oz,]) foralli jeN,i#j.

[e %

(rij(e5) + 1ji(ef;)),

For any effort game considered here, there are only six possi-
ble distributions of the lower and upper thresholds of the alpha
parameter.’ These cases are

Case A oy<oj<l-0i<l-o ]»
Case B o; <10 <oy <1-—g
Case C o <1-@i<1-g; < 7)
Case D 1-0oj<o;<oy<1-gp
Case E 10 <oy;<1-—o;<j
Case F 1-oji<1-g; <<
in cases A-F.

The last theorem characterizes the optimal a;‘j
Thus, Theorem 5 provides the a;fj that incentivizes an efficient ef-
fort equilibrium for WPAR.'® In Theorem 5 we use the following
notation:

1. V[ab]e[a,b] withO<a<b<1is:

AL (@)
a if —L 0 for all ; < [a, b]
ij
. Lk (@)
otl[ja‘b] ={b if gTa” <0 for all o € [a, b]
(au)) .
Solution of — = otherwise
Oifax <O
2. Ala)=3Jaifae(0,1)
lifa>1

Theorem 5. Let (N, {E;}icn, {Ai}icn) be an effort game, and
L;‘](a,-j):c,v(e*)+cj e*) (rU(e )+r],(e:fj)). The optimal solution

“1*] = arg m[m LY (aU) is in each case,
0,1

Case A o is any element of [ayj, 1 — aj].

8 In principle, this problem could be considered a bilevel optimization problem
([40]). The main characteristic of a bilevel programing problem is a kind of hierar-
chy, because its constraints are defined, in part, by a second optimization problem.
In our case, the second level (lower level or follower’ level) will be the problem

[mir |Ai(e) with solution e* = (e} );cy Where e* depends on «. The first level (up-
e;e[0,1]-1)

per level or leader’s problem) will be min

Y ienAi(e*). Thus, we can rewrite the
el0,1]n-D

problem as follows:

”(}le” YienAila, )

s.t. (@, e) € [0, 1]"=D x [0, 1]"(=D
e e Gi(a) forallie N
with e = (&;)ien

where Gj(a) = argmmA (a,e)

st. e €0, 1](” D, ael0,1]7=D

However, it is difficult to see this problem as a Stakelberg game, as described for
example in [41], because « is not a strategy profile but a parameter of the reduc-
tion cost functions. We believe that our setting better fits a bi-form game that was
introduced by [3].

® Note that aj; < &; and a;; < @;.

10 The function Ly is a piecewise function, and although it is continuous in a;; €
[0, 1] it is not differentiable at all points in its domain. Since it is defined over inter-
vals, it is generally non-differentiable at the endpoints of these intervals. Therefore,
to compute the minimum, it is also necessary to evaluate the function at the inter-
val endpoints. In addition, due to its convexity, the minimum can also be an interior
point within any of the intervals. However, each interval entails a distinct deriva-
tive function, thereby contributing to the complexity of the computation process.
The introduction of Theorem 5 streamlines the evaluation procedure by reducing
the number of points to be assessed, presenting them in a case-by-case framework.
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any element of [&;;, 1] if a¢ =

A(q;;) and A(@;)) <1
ii = ] &€ otherwise

where [ |
—ai, 1-a; -
of = =argmin{L;;(d; " ). L (A@;)))
Case D
" any element of [0, 1 —&j;] if &P = A(1 —&;;) and A(1 —aj;) >0
ij = |«P otherwise
where
— argmin{L; (A (1 - &;)). Lj @),
Case E
any element of [0,1 —aj] if «f = A(1 — @) and A(1—@j;) >0
oe:; = q any element of [d;;, 1] if «f = A(a;;) and A (&) <1
of otherwise
where [ »
. - el
E = argmin{L;(A (1 —@;)). @ "M L (A G))
Case F
any element of [0, 1 —aj] if of = A(1—@j) and A(1 —&j;) > 0
oel’; = q any element of [d;;, 1] if «f = A(a;;) and A (&) <1
of otherwise
where

of = argmin{Li; (A (1 - &), L (A (i)}

To conclude the section, we describe a procedure for finding an
efficient effort in equilibrium induced by the WPAR family.

EEE PROCEDURE

Given an effort game (N, {E;}icn, {Ai}icn)

—

. we first calculate the lower and upper thresholds of the bilat-
eral interaction between any pair of agents by using Definition

2. we then focus on the list (7) and determine which case (A-F)
applies;

3. Theorem 5 provides an optimal O‘f} for all i, j € N to minimize
the centralized (aggregate) cost allocation Y";_yA;j(€*);

4, with this o Theorem 4 gives the associated efficient effort
equilibrium (e;*j, ejfi) for every pair of agents, and thus an ef-
ficient effort equilibrium e* for the game;

5. at this point the optimal cost allocation that incentivizes agents
i,je N to make an efficient effort equilibrium e and € is

known, i.e.
Arey =ciler) = > og[ri(es) +mile) ]
JeN\{i}

We illustrate this procedure with the 3-firm case given in
Example 2 in Section 6.

6. Comparison of WPR and WPAR families

We complete the study of our model of cooperation with
pairwise cost reduction by comparing the two families of core-
allocations analyzed. We find that there is a loss of efficiency when
cooperation is restricted to a pairwise aggregate cost reduction.
That loss of efficiency can be measured. In addition, we show that
those agents who receive less than the total reduction generated
and bear the total cost of this effort always exert less effort than
the efficient agent.

As mentioned above, the allocation rule H(e) induces an equi-
librium effort e*H that matches the efficient effort of Proposition 3,
i.e. e = & This means that there is no rule that generates a lower
cost of the grand coalition, see Corollary 1. However, as also men-
tioned above, WPAR is a subfamily of WPR, but H(e) is not in
WPAR, so e*? is not always equal to e*,

Let A*(e) be the allocation rule in WPAR that induces the effort
profile e*A" that minimizes the cost of the grand coalition, i.e. the
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efficient allocation in this subfamily. The difference, in terms of ef-
ficiency, between the cost of the grand coalition with e** and é
can be measured. Note that for any particular functions c;(e;) and
rij(eji) for i, j e N, i # j, the associated e*A" and & can be obtained.
Let A be this difference or loss of efficiency, where

A=) = > el = la@) - > 1@l

ieN JjeN\{i} ieN jeN\{i}
(8)

The following proposition shows the relation between efforts
e*A" and &. The proof of Proposition appears in Appendix B.

Proposition 4. Let e;‘f‘* for i, jeN, i+ j be the equilibrium efforts
of A*(e), that minimize the cost of the grand coalition in the family
WPAR. Thus, the efficient effort &; > e;‘j‘*for alli, jeN, i # j.

As mentioned above, when an agent receives less than the total
reduction that it generates and bears the total cost of that effort,
then that agent always exerts less effort than the efficient one

Finally, readers may think that the rationale behind the efficient
rule, H(e), in the WPR family, could also apply to the WPAR family.
However, this is not the case. To reach an efficient effort equilib-
rium in the WPR family, for each pair of agents i, j € N,i # j, the

. i aQi(e) _ dci(e)) i Orjieij) j
1 i — i\Ci) 1 JiATj
weight w}; must be 1, because de; = de, w}; e, , and wj;
I (e dc;(e; i dryi(es
must also be 1, because aj( ) Bgtep) i il J'). However, this
eji dej ij dej

is no longer true for the WPAR family."!
The following example with three agents illustrates the compar-
ison of the two core allocation families and completes the paper.

Example 2. Consider a pairwise inter-organizational situation
with three firms, i.e. N={1,2,3}. For any effort profile e e
[0,1]6, the PE-situation is given by the following initial costs,

Cq (9121913) =100 + 100eq, + 46%2 + 100e43 + 49%3

Cy (921,923) =100 + 100ey; + 48%1 + 100e;3 +4€§3

C3 (931632) =100 + 100e3; + 4@%1 + 100e3, + 4@%2

and the following pairwise reduced costs, all of them in thousands
of Euros,

i1 (e”) =2 =+ 1109” — 2@%1» with i = 2, 3
Tip (82,') =2 =+ 105@2,’ — 36% with i = 1, 3
ri3(e3;) = 2 + 105e5; — 3e3; with i=1,2

By Definition 3, the pair of firms {1, 2} has the thresholds «, =
0.91, @12 = 1.02, oy, = 0.95, and &y = 1.09, which correspond to
Case F in the Table 7. By using Theorem 5, it can easily be checked
that af = A(@p) <1 and aj, = 1. Thus, by Theorem 4, e}, =
0.833, e5, =0. As firms 2 and 3 are identical, aj; =1, %, = 0.833
and ej, = 0. Finally, for the pair {2,3}, ay; =0.95, @3 =1.09,
o3, = 0.95, and a3, = 1.09. This is again Case F. Note that in case F,

F = argmin{L;; (A (1 — @32)), L33 (A(@y3))}, where in this partic-
ular case L35 (A (1 —a3p)) = L55(A(Qp3)) with A(1—a3;) =0 and

1 In WPAR, for each pair of agents i, j € N, i # j, the weight @;j is not always 1,

9A; dci(e; arji(e;;) 9Aj(e) _ dci(e)) orij(eji)

because #4€) — (e _ ;26 and R ) T but oy =1 -
Note that if a;; =1, then o;; =0 and the derivative condltlons for efficiency in
Proposition 3 would be violated. Bear in mind that the weights w}. that appear

af;’;ff’ for i, j e N,i+ j are independent of one another. However,

9A;(e)
()e

—aji

in each derivative

the weights o;; that appear in the each derivative

for i, j e N,i+# j are not,
because o;; =1 —aj;. In addltlon it is known that a)’ = wﬂ =aj; in WPAR for all

i,j e N,i+# j, where w}] =1- w and w’J =1- a)’ The fact that pairwise cost re-

duction is aggregated by a;; in the subfamily WPAR means that it is not possible to
apply the efficient argument used for the WPR family.
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A(ap3) =1 Thus, two solutions emerge: (i) €35 = 0.357, €3, =0,
and o35 =1, and (ii) e5; =0, e}, = 0.357, and a3, = 0. Therefore,
there are two EEE in WPAR.

(l) 6’{2 = (:')]k3 = 0833, 631 = O, 633 = 0357, €§1 = €§2 =0

(i) e, = €j; =0.833, €5, = e, = 0,35, =0, €3, = 0.357

We now calculate the efficient efforts in this example by
Proposition 3. They are the solutions of c](e;;) — rj.i(e,-j) =0, thus,
é]z = 613 = 0833, and éz] = 523 = 531 = 532 = 0.357. Note that by
Theorem 3 these efforts are also the effort equilibrium obtained
by the allocation rule H(e).

This example is a particular subcase of Case F. This implies that
oc;‘j is zero or one, which in turn implies that one of the agents
makes no effort and the other makes the efficient value. However,
they are never able to make the efficient effort simultaneously un-
der WPAR. The loss of efficiency in WPAR with regard to WPR can
be calculated with the help of (8).

A = Yienlie®) = X jemiy T (€)1 = Lienlci(@) -
Y jew iy T (@)1 = 278.776 — 276.104 = 2.67.

7. Conclusions and future research

This paper presents a model of cooperation with pairwise cost
reduction. The direct impact of pairwise effort on cost reductions
is investigated by means of a bi-form game. First, the agents deter-
mine the level of pairwise effort to be made to reduce the costs
of their partners. Second, they participate in a bilateral interac-
tion with multiple independent partners where the cost reduction
that each agent gives to another agent is independent of any possi-
ble coalition. As a result of cooperation, agents reduce each other’s
costs. In the non-cooperative game that precedes cooperation, the
agents anticipate the cost allocation that will result from the co-
operative game by incorporating the effect of the effort made into
their cost functions. We show that all-included cooperation is fea-
sible, in the sense that there are possible cost reductions that make
all agents better off (or, at least, not worse off), and consistent. We
then identify a family of feasible cost allocations with weighted
pairwise reduction. One of these cost allocations is selected by tak-
ing into account the incentives generated in the efforts that agents
make, and consequently in the total cost of coalitions. Surprisingly,
we find that the Shapley value, which coincides with the Nucleolus
in this model, can induce inefficient effort strategies in equilibrium
in the non-cooperative model. However, it is always possible to se-
lect a core-allocation with appropriate pairwise weights that can
generate an efficient effort.

Future research could take any of several directions. First, this
paper assumes that the individual effort cost function c;(e;) is in-
dependent of the effort of other agents, and that the marginal cost

% is independent of the effort that i makes in regard to agents
1

aaeci’j;eefi; = 0. We make a similar assumption with
the cost reduction function rij(e;fi). There is some degree of in-
dependence between efforts. This is a reasonable assumption in
many contexts, but in some settings different assumptions might
be needed. For example, there are situations with strategic com-
plementarity in which the efforts of agents reinforce each other. In
such cases the cost function is supermodular. In other cases there
is strategic substitutability, so that efforts offset each other and the
function is submodular. Focusing on the effort cost function of one

other than j, ie.

.o dck(e . .
agent, if 5;'((,2 > 0 then there is complementarity between the
ij9¢%
.. dcZ (e . . o .
efforts, and if oec'g?i, < 0, then there is substitutability. This is a
ij Y%

very interesting future extension. It could also be worth consider-
ing this complementarity/substitutability not only between the dif-
ferent efforts that one agent makes in regard to other agents but
also between the efforts made by different agents. This assump-

10
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tion can be made on both the effort cost functions and the cost
reduction function. Obviously, complementarity on the effort cost
function has the opposite effect to that on the cost reduction func-
tion.

The second direction is close to the first. The pairwise total
cost reduction could be considered as a general function which
is increasing in the efforts e; and ej;, that is Rjj(ejj,ej;). In
our model, this function is additively separable, i.e. Rj;(e;;,e;j;) =
rij(eji) +rji(e;;). However, as mentioned above, there could be sit-
uations with strategic complementarity or substitutability in which
the efforts of agents reinforce or offset each other. In that case, the
function R;;(e;;, e;;) would not be separable. This is also an inter-
esting question for analysis.

Another direction is related to the assumption of bilateral inter-
action between agents. This has the advantage of being analytically
more tractable and is widely applied in practice (e.g., [35-37]), but
overall interaction between agents, dependent on groups, is an im-
portant factor that we believe does not affect the success of coop-
eration. One possible future extension would be to investigate the
cooperative model with multiple cost reduction and the impact of
the efforts made on those cost reductions.

Finally, we identify a large family of core-allocations with
weighted pairwise reduction which contains the Shapley value and
the Nucleolus and always provides a level of efficient effort in
equilibrium. This family is very rich in itself, as a set solution con-
cept for our cooperative model. Research into this core-allocation
family can be furthered through an in-depth analysis of its struc-
ture and its geometric relationship to the core.
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Appendix A
Proposition 1, in Section 3, shows that PE-games are always

concave. To prove this, the class of unanimity games must be de-
scribed. In [39], it is proved that the family of unanimity games
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{(N,ug), T c N} forms a basis of the vector space of all games with
set of players N, where (N, ur) is defined for each S € N as follows:

1, TCS
ur($) = {O, otherwise

Hence, for each cost game (N, c) there are unique real coeffi-
cients (or)rcn such that ¢ = Y ;- arur. Many different classes of
games, including airport games ([24]) and sequencing games ([38]),
can be characterized through constraints on these coefficients.

Proof of Proposition 1

Proof. Let (N, e, {c;(e;). {rji(eij)}jen\jitlien) be a PE-situation and
(N, e, c) the associated PE-game. First, we prove that this game can
be rewritten as a weighted sum of unanimity games u; and uy; ;
for all i, j € N as follows:

c=Y cledug — Y rjleugj.
ieN i,jeN;i#j
Indeed, for all S N,
c(S) = cileuy(S) — > rijleug j(S)

(9)

ieN i,jeN;i#]
=>cle)— Y. milei) =) cle) =Y Y rlej).
ieS i,jeS;i#j ieS ieS jeS\{i}

It is easily shown that the additive game };_yc;(e)uy,
is concave and that ugj; is convex. Thus, the game
—Yijen:izj Tij(€ji)ugijy s concave because of rj;(e;) >0 for
all i, j € N. Finally, the concavity of (N, e,c) follows from the fact
that game c is the sum of two concave games. O

The Theorem 1, in Section 3, shows that the Shapley value
reduces the individual cost of an agent by half the total reduc-
tion that it obtains from the others (R;(N)) plus a half of the to-
tal reduction that it provides to the rest of the agents, which is
Gi(N) =3 jen iy Ti (€ij)-

The Shapley value is the only allocation rule that satisfies the
four properties of Efficiency, Equal treatment of equals, Linearity
and Null player. Next, we describe all of these properties of the
Shapley value, which are useful in demonstrating the Theorem 1.

(EFF) Efficiency. The sum of the Shapley values of all agents
equals the value of the grand coalition, so all the gain is al-
located to the agents:

> i) = c(N).

ieN

(10)

(ETE) Equal treatment of equals. If i and j are two agents who
are equivalent in the sense that c(Su {i}) = c(SU {j}) for ev-
ery coalition S of N which contains neither i nor j, then
$1(c) = ;(©).

(LIN) Linearity. If two cost games ¢ and c* are combined, then
the cost allocation should correspond to the costs derived
from c and the costs derived from c*:

¢i(c+c*) = ¢i(c) + ¢i(c*), Vie N. (11)
Also, for any real number aq,
¢i(ac) = ap;(c),Vie N. (12)

(NUP) Null Player. The Shapley value ¢;(c) of a null player i in
a game c is zero. A player i is null in c if c(SU {i}) = c(S) for
all coalitions S that do not contain i.

Proof of the Theorem 1. Consider the PE-game (N, e, ¢) rewritten
as a weighted sum of unanimity games given by (9), i.e.

c=Y cledug — Y rjleugj.

ieN i,jeN;i#j

1
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Take an agent k € N. By the (LIN) property of the Shapley value,
¢y (e), it follows that

o(e) = ¢k(ZNCi(€i)U{i}> - ¢k(

ij(eji) (Ui
> (e (”{,1})) (13)
= ZN ci(e i (ugpy) —

iLjeNii]
> > rleidi(ugj)-

ieN jeN\{i}

In addition, it is known from the (NUP) property that

1, i=k
bi(up) = {0, otherwise ()
and from (ETE) and (NUP), that
12 i=kj=ki#]
AU {0, otherwise (15)

Consequently, by substituting the values (14) and (15) in
Eq. (13), the following is obtained:

dr(e) =celer) — Y rCeidd(upy) — Y. (e dr(ugin)

JjeN\{k} JjeN\{k}
1
= cr(ey) — 5 Z [rjCeji) + rir(ex;)].
JjeN\{k}

Finally, it can be concluded that, for each agent k € N,

P1(@) = () — 3 [Re(N) + (M),
O

Proof of Propesition 2. To prove that the Shapley value coincides
with the Nucleolus for PE-games, it is first necessary to describe
the class of PS-games introduced by [39].

Denote by M;c(T) the marginal contribution of player i € T, that
is M;c(T) =c(T) —c(T \ {i}), for all ie T C N. A cost game (N, c)
satisfies the PS property if for all i € N there exists k; € R such that
M;c(TU{i}) + Mjc(N\T) =k;, for all ie N and all T € N\ {i}. Kar
et al. [39] show that for PS games, the Shapley value coincides
with the Nucleolus, i.e. ¢;(c) = v;(c) = % for all i e N.

Therefore, it only remains to show that (N,e,c) is a PS-game
with k; = [c;(e;) — Ri(N)] + [c;(e;) — G;(N)], for all i € N.

First, it is straightforward to prove that M;c(T) =
ci(en) = Yjer\lrjiei;) +rij(ej)]  for all ieT < N. Second,
we show that M;c(TU{i}) + Mjc(N\T) = [c;(e;) — Riy(N)] +
[ci(e;)) —Gi(N)] for all ieN and T cN\{i}. Indeed, take
a coalition TSN and an agent ieT. It is shown that
Mic(T U {i}) = ci(e;) — Xjer (rjiCeij) +1ij(ej0)). and  Mic(N\T) =
ci(e)) = Xjencrupiy) (TjiCeij) +1ij(eji)). Therefore,

Mic(T U {i}) + Mic(N\ T) = 2ci(e;) — Xjem iy (ji(eij) + rij(eji)) =

[cier) = X jem iy Tij (e ] + [ci(ei) — 3 jemiy T eif) |-

Hence,  M;c(T U{i}) + Mic(N\T) = [ci(e;) — Ri(N)] + [ci(e;) —
Gi(N)] =k;), and so (N,e,c) is a PS game. O

Proof of Theorem 2. Consider the PE-game (N,e,c) associated
with the PE-situation (N, e, {c;(e;), {rij (ei})} jen\ (i} }ien)- Take a fam-
ily of weights ng,ij1. €[0,1], for all je N\{i}, such that a)l’fj =
1—w{j and a)’]l =1 —wj:i, and 2(e) the corresponding cost al-
location with weighted pairwise reduction with Q;(e) = c;(e;) —
Zje,\,\{i}[wl'fjrij(eﬁ)+a)}irj,-(e,~j)], for all i e N. To prove that Q(e)
belongs to the core of (N,e,c) it must be checked that (1)
Yien R2i(e) = c(N), (2) Yics Qi(e) < c(S), for all Sc N.

We start by checking (1). Notice that > ;_y2j(e) =c(N) is
equivalent to

Yien Ljen\(iyl@yiij(eji) + @i = Yien 2jeny iy Tij (€ji)-

Indeed,
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Yien Ljen iy l@)irij(€ji) + @rji(ei)] = Yien Xjeny iy (@) +
w{j)rij(eji) =D ieN 2jen\(i) Tij(€ji), where the last equality is due
to a)}j +le] =1foralli,jeN.

Next we check (2). Take S c N. Notice now that ;. €2;(e) <
c(S) is equivalent to

Yies Xjen iyl @]jTij (€ji) + @iirji(ei)] = Yies jesy iy Tij (€ji) = 0.

Indeed, an argument similar to that used in (1) leads to

Yies ZjeN\{i}[w::jrij(eji) + a);irji(eij)] = Yies 2jes\ (i} Tij (€ji) =

Yics Zjes\[i}[a),l:jrij(eji) + w;irji(eij)] +
Yies ZjeN\5u{i}[w§jTij(€jf) + wj-irji(eij)] = Yies Ljes\ii Tij(€ji) =

> ies Zjesw} Tij (eji) + Xies ZjeN\Su{i}[w,’:jrij (eji) + w}irji(eij)] -
Yies 2jes\{iy Tij (€ji) =

Yies Ljensuit|@}Tij (€ji) + hrjie] = 0. O

Appendix B
Proof of Proposition 3

To prove this result it is necessary to analyze c(N) as a func-
tion of e. First, It is easy to prove that c¢(N) is strictly convex in e;;

. . 2 2c(e) 92
for all i, j € N, i+ j. Indeed, aaC(ZN) =9 ac'(zel) ‘ ra i) 0, because
E'J eU eU
92¢: (e: 32r;(e;; . . ~
% >0 and dr]‘i(;”) < 0. Thus, there is a unique effort profile &
ij ij

that minimizes c(N).
Second, we focus on finding this efficient effort profile é. Note

) 0

that the derivative 35('\” 33’5_8_') w only depends on e;; be-
ij

cause :: f;e) =0 for all h # i, j. Therefore, if dge(s) M for all

e;j €0, 1] then the function c(N) is increasing in e;j, wh1ch im-

plies that é; = 0. Analogously, if M > L(i”) for all e;; € [0, 1],
then &; = 1. Finally, if there is a solutlon of ag,(e) M that
) ]

solution is &;. O

Proof of Lemma 1

Consider the non-cooperative game (N, {E;}icn, {Qi}ien). To
learn the optimal level of effort ; that agent i must exert to re-
duce the costs of agent j in this game, it is necessary to analyze
the function 2;(e) = c;(e;) — ZjeN\{i}[a);jr,-j(eﬁ) + a)}irﬁ(eu)] for all

i e N with wi. o' e[0,1],1, j € N,i# j, such that a);.‘j=1—a){j and

As above, we also prove that the function 2;(e) is strictly
32Qe)  92¢(ep i 0%rjite;))
Indeed, 55— = T ~ @i ez

convex in e;;. > 0 because

92c;(e;)
aégj' >
of effort é.
Again, we focus on ﬁnding this optimal level of effort

92r;;(e;; . . .
0 and % < 0. Hence, there is a unique optimal level

ij

é. We

know that "Q © "g"e(_e_") - arﬁ'(e”) but dc*(_e_) only depends on
€ij ij Jji de €ij
e;j, because 38:' E()e;) =0 for all h # i, j. Moreover, for all ¢;; € [0, 1],
1]
Qi (e) Bc,(e) i Brﬂ(e,])
aeij 20 = 1j ji 391]
Bci(ei) i 301(91]

Therefore, if for all e;; € [0, 1], then &; = 0. If

Jji
ac;(e;)

;0
A < o r”(e”) for all g;; € [0, 1], then &;; = 1. Finally, if there is
ij Jji ij
. i Orjile;; A . .
a solution of ac,(e) i rg;f,”). that solution is &; and is unique.
ij

Hence, there is a umque optimal level of effort. O

Proof of Theorem 3
Now consider the non-cooperative game (N, {E;}icn, {Hi}ien)-

Note that, both derivative functions % and ”geﬁ only de-
i ij
pend on e;;. Thus, by Lemma, the optimal level of effort of a par-
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ticular agent i € N with another particular agent j e N\{i}, i.e. &;,
is independent of any other effort made by i or by any other agent.
Thus, the equilibrium is also characterized by Lemma with “)31 =1
for i, j € N,i# j. Comparing Lemma 1 with Proposition, it follows
directly that the equilibrium must also be efficient. O

Proof of Corollary 1

This is straightforward from the proof of Theorem 3 O

Proof of Proposition 4

Take A*(e) the allocation rule in WPAR with a;*j foralli,jeN
which induces the effort profile e*A” that minimizes the cost of the
grand coalition. Since WPAR is a subfamily of WPR in which a);j =

w{] =a;j€[0,1] for all i, je N, by Lemma 1 the optimal level of
effort for A*(e) can be also characterized.

Thus, the efforts are optimal in equilibrium and so e*A" must
hold that

e*JA =0 if and only if ac,(e) > ozU (e”) , for all e;; [0, 1],
}
efjA =1 if and only if 83}% < ozu (e”) , for all eU e[0,1],
. +A* Bci(e ) (eu)
Otherwise, e € (0,1) so Ty |, e = l.j 3eu S
=) Ui

holds.

Comparing the above expressions with Proposition 3 and taking

into account that

dq(g) a

. . . . arii(e;i
is a positive increasing function, g;__”)
1

positive decreasing function, and o € [0,1], it can be concluded
that &; > ef]A*for alli, jeN. O

Appendix C

Theorem 4, in Section 5, characterizes all possible types of ef-
fort equilibrium according to the value of the parameter a;;, for all
i, j € N,i# j. Before proving this theorem, we consider a previous
Lemma that is very useful for latter results. It characterizes the op-
timal effort level for agent i € N in the first stage non-cooperative
game.

Lemma 2. Let (N, {Ej}icn. {Ai}ien) be the effort game, with &;; being
the optimal level of effort that agent i exerts to reduce the costs of
agent j. Thus,

1. &;=0if and only if oj; < &;;

2. There is a unique &;; € (0, 1) that holds c](&;)
and only if a;; < o5 < @jj.

3. é,’j =1 ifand only l'fOll'j > &U

— a1 (&) =0 if

Proof. First, remember that the cost function A;(e) is convex for

all i e N. To obtain the optimal effort, the derivative of this func-

tion can be analyzed with respect to e;; for any j € N\{i}. It must

be noted that M 9A(e) ':(e;j) for all e;j € [0, 1],
I

which is a necessary and sufficient condltlon for &; =0 to be the
optimal effort.'?

>0 < c(e;) > ajjT;

c;(0) C;(eij)
T (0) ~i(eij)
cause cl. >0, r].l. >0, cl. > 0, and rﬁ < 0. Thus (o (e,]) is a positive
and increasing function, and r’ ;(e;j) a positive and decreasing func-
tion, so for any e; > 0, ¢ (0) < cj(e;;) and r :(0) > r :(e;j). There-
fore, ajj < @ <= ci(ejj) > ﬁ(eu) for all eu >0 <:> é;=0.

The demonstration in point 3 is similar to that of point 1. The
above arguments are the same and only the signs of the inequali-
ties change.

To end the proof, we prove point 2. First, we show that there
is a unique &;; € (0,1) such that c}(¢;;) = ozijr;.i(éij), which is the

be-

We begin by proving point 1. Note that ¢;;

12 This occurs because A;(e) is an increasing function in e;; and the minimum
value is obtained for é;; = 0, which is the optimal effort for agent i.
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unique optimal effort because %

U le=¢;
vex function. In addition, cj(e;;) is a positive increasing func-
tion and r .(e;j) a positive decreasmg function, in e;; € [0, 1]. This

9A;
aeie) = cj(eij) — ojjr;(e;j) = 0 has a unique

root, which belongs to (0,1) if and only if o;; € (e, @;;). Note that
if o € (@, ;) then c(0) < a,]rﬂ(O) and ¢j(1) > oz,jr;.l.(l), and so
there is a unique point &; where c}(¢;;) = aijr;.i(éij). O

=0 and A;(e) is a con-

means that equatlon

Oli]'

Proof of Theorem 4. As we already mention, the optimum &;
is independent of other efforts. Therefore, the equilibrium effort
is determined by Lemma 2. In addition, we want to characterize
the effort equilibrium according to the value of the parameter o;;.
Thus, in the case of agent j, aji < aji < @ji & @i <1 -0y < Qji &
l—O_éji <Oé,‘j <1 —gﬁ. O

The next corollary shows how the pairwise equilibrium efforts
e depend on a;, for all i, j e N,i+# j. As expected, as the propor-
tion of aggregate cost reduction obtained by an agent increases,
the effort that agent exerts also increases (or at least stays the
same).

Corollary 2. Let (N, {E;}icn, {Ai}icn) be the effort game and (e;‘j,
the pairwise efforts equilibrium. Thus,

e;fl.)

86* *
. aa >0, ifoj € (oc,],oz,,) —L =0, otherwise.
88}‘1 R _
* Tay < Oif ajj € (1 — @i, 1 J,) —_ = 0, otherwise.

A(c] (eX)—ayir(eX))

. ivij ijji‘\Cij
* da[-j
Proof. By the implicit function theorem, da G Ty =
de¥.
1J
n > 0, because r,(e*.) > 0, ¢//(e*,) > 0, and r”.(e%,) <0
/(e ) oturj’l(efj) ’ jivoij * M NTf ’ jivtij .
. ) det.
Thus, for any ajj < j, Lemma 2 implies that e;‘j =0, thus, aal»]- =0.
ij
However, if o;; € (¢;j, &), then ej; if
ajj = &;j, then e* =1and 4 ” = 0. Analogously, if o <) <=

@jj = 1 —aj, then e = i — 0, if o e (@i, @j) <= aj5€
®ij
de.
(1-aj;, 1 —aj), then ejfie (0,1) and 37{; < 0. Finally, if aj >

det;
Y :: L. — O L— o
Qji <= a;j <1-aj;, then e =1 and 7%, =0. O

Theorem 5, in Section 5, provides the weights «;; that min-
imizes function L; (a,]) and the efficient effort equilibrium. To
solve the above optlmlzatlon problem it is necessary to know the
function L;‘j (ajj) very accurately.

To demonstrate Theorem 5, three technical lemmas are needed

. - (A (0
first. Lemmas 3, 4, and 5 characterize the derivatives W
ij
CIGACT)) 92 (L5 () .
3 @ , and 9 respectively.

The first lemma shows how the optimal cost function of agent
i e N depends on «;;. Henceforth to simplify notation, we consider

ac; (e ar;i(es;
3'(* ) stand for derivatives ’5;]’)
ji

that for any i, j € N, ”( i) and

and % evaluated in the unique effort equilibrium.
ij

Lemma 3. Let (N, {E;}icn, {Ai}icn) be the effort game and e* the ef-
fort equilibrium. Thus,

8r,-j(e*.i) ae*l
ae;fij Bajij —Tji(ef)),
rji(e;‘j) <0,

if

—Tij(e}) — ajj

—Tij(€j;) —

1 e _

OAf (o)
B : =

0
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d(Aj(e") d(A}f(l—Olfj))
doz,] aoz,-j
2. (et _ Orjiefp) ¢y i . @i 1—
rji(ef;) — (1 - ) der, Bay; +rij(er), if ajje(—a;l-oay)
rjief;) +1ij(e3;) > 0, otherwise.
Proof. It is known that A;j(e*) = ci(e) — X eny iy iz (Tiz (€5) +

17i(ef,)), and Af(eij) = ci(ef) — ayj(rij(es,) +1ji(ef;)), thus

AAi(e*)) 8<A;f(aij>) Z el e ey — gy i D
30 ay ey day TG T Y The T By,
arji(er,) de¥,
L(e*) — s — L
rji(ef) — o gy, O
dci(e}) drjier) drij(e5;) dej "
—(Te;j — o e - aa, = 1 () — o e gy — Tii(€f))-

The first term of the above expression is always zero,
. dc;(e}) arji(es;) def
1.e. ( ae?j — a,'j 736;}

U =0. To see this, note that if ;e

dajj
. dci(er) arjitef;)
(e, @;j), then ej; € (0,1) by Lemma 2, so e, _wijT?j =
0 because it is evaluated in equilibrium. In the other case, where
der.

Qjj < o O oj > Oy, € = =0 by Proposition 2, so ”, = 0. There-

3(A; (e*) ar;j(e*) de%
fore, #j) = —r,-j(e}fi) — O gej‘;‘]l aaﬁ — rj,-(e’f.).

. . rij(e3

It is known by assumption that rij(e3) = 0, ” ” > 0. If a5 €

*
ji

¢!
",
(T—aj, 1-aj) then, by Proposition 2, (.3;—' =0, so
ij
—Tij(€5) — Tjief;).

The proof is analogous for

—@j, 1 —a;), then by Proposition 2

, aa < 0. However, if ajj ¢

A(Ai(e*) _
dajj

O

9(Aj(e")
dajj *

Notice that the effect of o;; on the cost function of agent i
could be positive or negative because of two simultaneous ef-
fects. First effect: As expected, if o;; increases so does the propor-
tion of cost reduction that agent i can obtain, and thus the cost
function, A;(e*), decreases. This decrease is measured by the term
—Tjj (e}fl.) r],(e ;) < 0 in the derivative. Second effect: When «;; in-
creases, the effort of agent j decreases in equilibrium, so the cost
ar,-j(e}fi) e

8e§i da;
sures this second effect. The sum of these two effects determines
the sign of the derivative. Therefore, an increase in the propor-
tion of the aggregate cost reduction that an agent obtains could
increase the cost of that agent if the second effect dominates the
first. This is an interesting result: Giving too much to a particular
agent could be not only worse for the aggregate cost but also for
that particular agent.

The second lemma calculates the derivative of the aggregate
cost function Ll*j (@j;) in the effort equilibrium for any i, j € N.

> 0 mea-

function of agent i increases. The term —a;;

Lemma 4. Let (N, {E;}icn, {Ai}icn) be the effort game, and e* the ef-
fort equilibrium. Thus,

L)) (dcj(en)  Bryj(es) aejil dci(er)  Orji(efy) 8@}‘”
da,j — e - e, ) Doy it de;; - de; ) Doy i
where L= Loif o e (@, @) and I;=
0 otherwise
1 if o€ —aj1-aj)
0 otherwise
Therefore, there are four possible cases:
AL (i)
R T can be positive and/or negative if o;; € (a5, &) N (1 —
aji, 1—aj)
9 (L (o)) . - -
. TJU =0if o ¢ (5, i) U (1 =@, 1 — )
(L (i) . - -
>0 fojed—-ajl —Qﬁ)m((O,%j)U(aij»]))
oij E (9%;;) L%U)
acth @)

13

<0 oy e ((0.1-a;)u (1 - 1)) N (e @)

0 erv@%;ﬁ
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B ey _
da,]
dcj(er)  arjep de; ac;(e}) rji(e;) . .

< aejl.j - 36}:?1.]1 )60[2— + ( ée;j de*} )daj Simplifying  for

the different subsets of «;;, the following emerges:

Proof. From (6), we calculate that

Lif o5 € (o5, 05) N (1 - @i, 1 —a) then, by Theorem 4,

ij>
de.

e;fie(O,l) and e;*je(O,l), thus, by Corollary 2, i <0
ij

da;
and gi’?j > 0. In addition, since 35;:;}) -(1- U)ar”(e D _o
and é’ch(? — jj arg;;?) =0, it follows that dcaje(f*)
3r3§»«*) <0 and 33;?— f,':f:") < 0. Therefore, %‘f”))
(8609(5 L arg:j”))giﬁ (8358*) - {,:e )>(,a , which can be

positive or negative in this case.

2.0f a4 ¢ (. 045) U (1 — @i, 1 — ) then, by Theorem 4, e*
der.  der
{0,1} and ej; € {0, 1}, and by Corollary, é;(—” = 5L = 0. There-
ij 0t
L, <a,,)>
fore, T =0.

3. if O[,'j € (1 —dﬁ, 1 —gﬁ) n ((O, g,]) @] (C-li]', 1)), then, as abOVe,
B(L (oz,J)) 8cj(e}) Brij(e}i) de
Bau T\ % T 0 ) By

4. ary e ((0.1- &) U (1 - @ 1)) 0 (e, @)) then 4"

(52 - i’fﬁ<ea>) ci 20
ae;j Bel.*j daj;

O

The derivative is a piecewise function and there are in-
tervals where its sign is independent of the particular form
of the functions of the game. For those cases, it is straight-
forward to find the optimal o;; that minimizes the func-
tion L, (aU) In those intervals, the derivative is either pos-
itive, negative or zero thr%ughout }the mt;)erval Thgese cases

o ci(e* ar;;(e*: e*. I(LY (a
S = (el - e ) > 0. S -

are respectively
aci(er)  Irjief) dej B(L (i) .

( 36;‘; — ve;, ) 7wy <0, and T = 0. However, there is an
interval where the sign of the derivative depends on the particular
(Ot,J))

8(1
dci(e*) aryi(et)\ det. dc;(e*) arji(er.) Be*

IV ) ATji Ji i JINTij
(738* - e )a% + ( ae;}.' ~ e )aa This occurs when
ajj € (@jj, @;j) N (1 —@&j;, 1 — i), which implies that in equilib-
rium simultaneously 0 < e < 1and 0 < e < 1. Therefore, in this
case only, the derivative may be zero for some «;; within this in-
terval. In that case, the second derivative is needed to solve the
optimization problem.

The third Lemma shows that the aggregate cost function L;fj (@ij)
is convex in «;;. Two additional assumptions about third deriva-
tives need to be introduced.

form of functions of the game. In this particular case

Lemma 5. Let (N {Ei}icn- {Ai}icn) be the effort game, e* the effort
33r

equilibrium, and c'(e ) - 0 and *:” <0, for any i, j € N. Thus
U ]

92L% (o)) _ _

T»&U Ofor all ojj € (g,-j,aij)ﬂ(l —ozjl-,l—gj,-).

1

Proof. Take o;; € (o5, &) N (1 — &, 1 — ). Thus,

* * ..(e* *
X 92 ac; (e}.)_ar”(eﬂ) Se i 3ci(e;*)_8rﬂ(eij) ?Eij
a (L* (atjj )) Be;f,. Be* ()ot Be;‘j Belf‘j ey

301 Baizj
dZCJ(e*) B r,j(e ) (Bcj(e}f) B ar,-j(ej.i)) aZe}fi
de* Bot” 8e 801” 8e§i Be;‘.i 3%2,-
92¢;(er) rji(el) aci(ei*) drji(eg)\ 9%ej;
de* da,J e* 801,} Bei*j Gefj 3ai2j
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32c cj(e}) dey; 3 rl](e*) des; \ dey; dc;(er) 3 dryj(e5) 329;‘.1.
;i datjj 36‘71. Be}fi aa,z.

?Ze 60(1-} azejf,. da,j
32¢;(er) dej; 3 Bzrﬁ(e;‘j) dey; \ de; N (351.(91_*) B Brj,v(ei*j)) azej]
82e* E)oz,j 829?‘. daj; | dayj def; de;; a(yIZJ
02¢; () 82ru(e*) ﬁ 2 N dej(er) B drij(en) 82ejf,.
82e* Bze* day; aes; de5; 30,_2_

2eer)  Prier) ) [ 0e\% | [ocer)  OrjiCer) 9%}
+( 826;‘1. - Bze}*j (3aij> +( de;; - def; ) 8a >0
2 92er. 32 (L (o ))
<0and - <0,5072U
1 daez oo
j 1
ze*f. .
We first prove that sz‘ < 0. It is known that
ij
0A;(e*) 36 (e ) oryj (e
J — _ _ Jl —
dej; ( U) Be* =0
We now derive the second term regarding o;;.
62cj(e}*.) 35} dr,](eﬂ _a- )d r,j(e ) de
dei7 ey ae, ij de? Bau

We now do the same for o;;.
83cj(e}f) dey; 2 N Bzcj(e;f) Bze}fi N ru(e ) dey
3e3fi3 dajj Be’f.z 304]2.'. Bejx2 0011]

93 rij(€5) 2 é)zrij(ejfi) 329}*.1.
-(1- U)( Taes (a%) +W b =0

8%¢;(e) azr,-j(e;i)> 0%y, N 8%rij(ey) v,

+

e*.
}

B
Now we prove that 0.

=0

52 - (=) =5 do2 T e 7

8c(e) aru(e) dex. \ 2
+< e*3 = (1 - o) S ded )(3%) =0

d ru(ejl deﬁ 23 ¢ (e;) _a )83rij(e;?i) (i)e}?i )2
2 2 Gy 3 ~%ij) T3 3oy
d e}fi _ E)e ij 82 r)eji ij

5 = 2c. (ot 25 (e*
3otij ] cj(ej)_ . 3 ru(eﬁ)
der2 U7 gex2
ji ji

3. (p*
c](ej)
3

eji

W < 0; note that ’_‘_ < 0 by Proposition.
: o

Analogously, we obtain

arji(e;,) def; <33q(e?) ) e)3rﬁ(ei*j)> ( aef; )2
42 5 20\ ged3 i T e 0,
k] eij deis ij Beij aEij

ij
= . <0. O
aaizj Bzci(elf‘) (’Zfﬁ(efj)

ge2 YT ge2
ij ij

Lemma 5 enables us to state that in any interval where
. . N . 9 (L (a5))
the piecewise derivative function takes the value T’J
ij
arj;(er.) de*. rji(ef; ) der.
—ot,-jgfji]’ 3"‘)11 -Q _O‘u) 38* 5 :JJ the function L;(a;j) is con-

vex (see also Lemma 4).

The following proposition shows that, according to the value
of the effort equilibrium, the cost function LY (a”) is a continu-
ous piecewise function with four types of piece This result char-
acterizes all of those pieces, showing the shape of LY (al]) and the
optimal ¢;; in each type of piece.

Proposition 5. Consider the effort game (N, {E;}icn, {Ai}icn) and e*
as the effort equilibrium. Let «;j € [a, b] be a piece of L;Fj(aij) with
O<a<bz<1, L;“j (ajj) can have only four types of piece:

1. Constant: (e* e*) is either (0,0), (1,0), (0,1) or (1,1). Thus

(L (@) .
T =0 and L..(aij) is always constant. Therefore, any
@;j € [a, b] minimizes L} (ocu)

2. Increasing: ej; is either 0 or 1, and 0 < e%; < 1. Thus o g; ) _

Be* det.

J

Therefore @;j = a minimizes L, (a,])

dci(en)  dry(en)\
( AL r”(e”)) 3; >0 and Li;(ey) is always increasing.
ij

14
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3. Decreasing: O<e;‘j <1 and e% is either 0 or 1 Thus
3(L* (@;j)) ac;(e¥) rji(ef;)
a%” ( 5 e*' - a & )3% 0 and L};(ej) is always

decreasing. Therefore @;j = b minimizes L}; (Olu)
4. Depending on cost function shape: 0 < ef] <land 0 < e;fl. <

1. Thus,
8(L (ozl])) acj(ejf) _ E)r,-j(e;‘.i) Z)E}fi i Bc,-(e;‘) _ E)rj,-(ei*j) é)e;.“j
d(x,j Be’f. Be*,. dajj Be* Be,*. dayj°
v[a b]

In this case, there is always a unique &
mizes L;‘j (@jj), which is:

€ [a, b] that mini-

ALt )

a if Aa, > 0 for all o € [a, b]
Clab AW ()
et = b if —jz— <0 for all o € [a. b]
(a,J» )
Solution of — " —0 otherwise
%ij

Proof. The proof of Lemma 4 shows four possible cases for L,?*j (@jj).
The point 2. of the proof of Lemma 4 proves the point 1. (Con-
stant). The point 3. proves the point 2. (Increasing), and point 4.
proves point 3 (decreasing). Finally, to prove the point 4. (Depend-
ing on cost function shape) we need the point 1. of Lemma 4 and
Lemma 5 which proves that L;‘j(a,-j) is convex in this case. There-
fore, in this last case, it is also straightforward to show that
(L (@)
30{"
mizes L* (@;j) in such pieces. The procedure for calculating a
the followmg First, by Theorem, we calculate e and e as a func-
tion of ;; from cf(e;;) — aijr;,(eij) =0 and ¢, (eﬁ) - otjirl’](eji) =
Second, we build the function L}, (oc,]) with the el (oc,]) and eﬂ (ozl])

previously calculated. Finally, we calculate %
ij

is continuous, so there is always a unique q;; that mini-
ylabl

and obtain
s la.b]
oe,.j . O

Finally, Theorem 5 characterizes the optimal oz;‘j, foralli,jeN
with i # j, which incentivizes an efficient effort equilibrium, which
is also provided.

Proof of Theorem 5

Proof. As L;‘j (@;j) is a continuous piecewise function, we ana-
lyze the five pieces that define it in each case. Lemma, and
Proposition 5 enable the type of piece to be determined, thus giv-
ing the value of ¢;; that minimizes L;‘j (@;j) in each piece. Compar-
ing the pieces gives the a;‘j that minimizes the aggregate cost for
each of the six cases. This value need not be unique. Note, in addi-
tion, that a;;, @;j, &j; and «j; are always greater than zero, but any
of them may be greater than one, which implies that some pieces
of certain cases may not exist. We prove the theorem case by case:

Case A (o < @jj <1-@j <1—-aj)
Note that those thresholds are always greater than zero, so
0<gjj<a@jj<1-aj<1-aj<1 By Lemma 4,
if o;j € (0. ), then L¥;(a;;) is constant in this interval.
If ojj e (ajj, @;), then L “(ajj) is decreasing, which implies
that aj; =1 —aj mlmmlzes Ly, (oz”)
If ;j € (@;j, 1 — @j;), then L, (ozu) is constant in this interval.
If o5 € (1 a1 —7]»1-), then Lii(eyj) is increasing, which
implies that 1 — &;; minimizes L;‘].(otij).
If ojj € (1—a;, 1), then L (o) s constant in this interval.
Therefore, oc”; 1§ equetl to any «;; € [@;5, 1 — @il
CaseB(gij<1 Olj,‘<0tij<1—gﬁ)
Analogously, 0<gj<1-aj<aj<1l-aj<],
Lemma 4, 5 and Proposition 5,
if o5 € (0, o; ) then L; (O‘u) is constant in this interval.

and by

15

Case C (q;; <1—

Case E (1

Omega 121 (2023) 102920

If o € (jj. 1—@;p), then Lyi(ey) is decreasing, which im-
plies that ¢;; = 1 — &;; minimizes L;} (@ij)-
If aij € (] _&ji’&ij)' then &U minimizes L;‘J(au), where dl]
is define in Proposition 5.
If o € (@, 1— ), then Ly (e;) is increasing, which im-
plies that ¢;; minimizes L} (a,])
If a;j € (1—-aj, 1), then e* =1, ¢, =0, and L};(c;;) is con-
stant in this interval.

1-
Therefore, o}, 5 al[] i ]
Olﬂ <1 —Olﬂ < dl])
It may happen here that either @;; < 1 or ¢;; > 1. Thus there
are two subcases:
O<gj<l-oj<l-g;<a;<l;
O<aj<1-@i<l-g;<1<ay
Starting with the first subcase, by Lemma 4, 5 and
Proposition 5
if a; € (0, a;;), then Li;(eij) is constant in this interval.
If ajj e (aj;, 1—aj), then L “(ajj) is decreasing, which im-
plies that o;; =1 — a], mlmmlzes L, (a,])
lfal-j € (1 —&ﬁ,1 —
If ajj e (1 —oz]l,aij) then Ly (c;;) is decreasmg, which im-
plies that ¢;; minimizes L:‘] (Ol,])

aj;), then &; minimizes LY, ().

If ojj € (@, 1), then L¥(e) is constant, in this interval.
However, in the second subcase &;; > 1, which implies that
the last interval described above does not exist. The rest of
the analysis is similar to the first subcase

Therefore, ozj_argmm{L;‘](V[1 %ii ']), U(A(au))} Note

that, if o = A(q;;) and @;; < 1, then o is equal to any
Ujj € (&1]11)
Case D (1 -@qj <oy <5 <1—ay)

It may happen here that either 1-&;; >0 or 1-a;; <0.
Thus there are two subcases:
O<l-wj<aj<oj<l-o;<l;

1-a; <O0<gj<o<1-o;<1

Starting with the first subcase, by Lemma 4, 5 and
Proposition 5

if ojj € (0,1 - @), then ef; =0, e, =1, and Ly (ay) is con-
stant in this interval.

If o € (1-aji,aj;), then Ly (a;) is increasing, which im-
plies that o;; =1 - @&;; mmlmlzes Ll] (@j)-

If ojj € (g,-j, O_l,]) then &,] minimizes L*-(C{,’j)

If ojj € (@yj. 1 - ), then ef; = 1,0 < <1, and L () is
increasing, which 1mp11es that @;; minimizes LU (au)

If & € (&, 1), then ej; =1, 5 =0, and Lj(a;j) is constant
in this interval.

However, if 1 —@j; < 0 the first interval above does not exist.
Again, the rest of the analysis is similar to the first subcase.
Therefore, aJ =arg mm{L* (A1 —ajp)). L* (07[%] a”])} Note
that if ocj} A —aj) and 1-aj >0, then al*]. is equal to
any «;j € [0, 1 —aj].

—O_lji <gij <1 —Qﬁ <O_ll'j)

In this case, it may happen that either 1 —¢&;; >0 or 1—
@ji <0, and either ¢;; <1 or &; > 1. Thus there are four
subcases:

O<l-o<oy<l-g;<a<Tl;
1-; <0<aj<l-gj<oy <1
O<l-aj<aj<l-g;<1<ay

1—Ot],<0<ot]<l—ot] <1<
Focusing on the first subcase, by Lemma 4, 5 and
Proposition 5.
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if o5 € (0.1 - @;;), then Ly;(c;;) is constant in this interval.
If o € (1 —o'zﬁ,g,-j), then L;‘j(ai]-) is increasing, which im-
plies that o;; = 1 — @;; minimizes L;*j(aij).

If ojj € (5, 1 — 7), then &; minimizes L (o).
If ajj e (1 -, a@;), then Lii(eyj) is decreasing, which im-

plies that ¢;; minimizes L;‘j ().
If ajj € (&, 1), then ej; =1, €}, =0, and L};(e;;) is constant
in this interval.
In the other three subcases, the first and/or last interval may
not exist. Once again, the rest of the analysis for those sub-
cases is similar to the first one.
Therefore, oz,f“j =arg min{L;Fj (A —ap)). éi[j%‘jv]—ﬁji]’
Ll*](A(O_[l]))} Note that if ai*j = A(l 70_61‘1‘) and 1 707]‘,' >0
then al.*]. is equal to any o;; € [0, 1 —@j], and if otiEj = A(a))
and @;; < 1, then ai*j is equal to any «;; € [@;, 1].

Case F (1 —O_[ji <1 _jS <gij < O_[u)
This is the most general case and anything could happen
with thresholds greater than one. Thus there are nine sub-
cases. First consider the case 0 <1-a; <1—aj <a;<

i =ij
Olij <1:

If oj; € (0,1 - @j;), then L;(et;j) is constant in this interval.
If ojj € (1 @i 1 —gj,-), then Ly (a;j) is increasing, which

implies that «;; = 1 — &j; minimizes L;‘j (ajj).

If o € (1 — i, j5), then Ly (a;) is constant in this interval.

If & € (ajj, &), then L;(ay;) is decreasing, which implies

that @ = O_[U minimizes L:}(O{,])

If ajj € (O_tij, 1), then Ly; (@jj) is constant in this interval.

In any other subcase, the first, second, to last, and last inter-

vals considered above, may not exist. The rest of the analysis

for those subcases is similar to the first one.

Therefore, otlf*j = argMin{L;‘j(A(l —aj)), L;‘j(A(o'z,-j))}. Note

that, if oti*j =A(1-aj) and 1 —-@aj; > 0, then o; is equal to

any «;j € [0, 1 — &j;], but if ozi*j = A(q;;) and @;j < 1, then a;‘j

is equal to any o;; € [@;, 1]. Additionally, if 1 -« <0 and
a@jj > 1, then Lj(A(1 - &) = L;(A (@), so o is equal to
any a;j € [0, 1].

g

Appendix D

Table 1 and 2.

Table 1
Notation summary.
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Table 2
Summary of optimization problems.

é Efficient effort profile é=arg [mgn ”c(N)
ee[0, 1]
é; Optimal efforts of agent i é =arg mir(l |A,-(e)
. : n-1)

given efforts of other eicl0.1]

agents
er Equilibrium strategy of er=¢

agent i
ot Optimal weights of WPAR  «* = arg min( , YienAi(e®)

allocation acloape-y

o = arga:‘g{igl]L;ﬁj (ajj) fori#jeN
with L;‘J.(a;j) =ci(e}) + cj(ej)
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