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Least Squares (OLS), Indirect Least Squares (ILS), and 
Two-Stage Least Squares (2SLS) [2]. Among these classi-
cal methods, 2SLS is one of the most widely used due to its 
simplicity and the consistency of its estimators.

On the other hand, Bayesian methods eliminate the need 
for sampling assumptions but introduce significant com-
plexity, particularly in the specification of prior distributions 
and the derivation of posterior distributions. The Bayesian 
Method of Moments (BMOM) [3] offers an alternative 
approach by avoiding these sampling assumptions, and 
the BmomOP T  method enhances BMOM by optimizing 
parameters to achieve minimum entropy values [4]. Chao 
and Phillips [5] investigated the behavior of posterior dis-
tributions under Jeffreys prior within SEMs, while Geweke 
[6] developed general methods for Bayesian inference using 
non-informative reference priors. Kleibergen and Van Dijk 
[7] advanced Bayesian SEMs by incorporating reduced 
rank structures. Additionally, the Markov Chain Monte 
Carlo (MCMC) method, including the Metropolis-Hastings 

1  Introduction

A Simultaneous Equation Model (SEM) [1] is a statistical 
model that represents a system of regression equations with 
bidirectional relationships and interdependencies among the 
variables. Various methods are employed to estimate SEMs, 
including Full Information Maximum Likelihood (FIML) 
and Three-Stage Least Squares (3SLS), as well as Ordinary 
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Abstract
Simultaneous Equations Model (SEM) is a set of regression equations where bidirectional relationships exist between 
variables. SEMs are widely used to model complex systems, capture the interdependencies between different variables, 
and make predictions about future outcomes in a wide range of fields such as economics, markets, or health sciences. 
In the literature, the performance of numerous methods, both classical and Bayesian, has been widely studied in various 
aspects such as endogeneity or correlation. To our knowledge, the study of estimator performance under varying levels 
of data variability in simultaneous equation models is not well-developed. This paper aims to evaluate the performance 
of methods for estimating SEMs of different sizes, considering the number of variables and the variability of endogenous 
variables. An experimental study has been conducted applying different estimation methods, including Two Stage Least 
Squares (2SLS) and the Optimized Bayesian Method of Moments (BmomOP T ), to evaluate their performance across 
different SEMs. Based on our computational results, the main finding is that the performance of the methods depends on 
the variability of the data, with BmomOP T  being more accurate at lower levels of variability. These results could inter-
est researchers aiming to apply SEMs in practical cases as they offer insights into selecting the estimation method while 
considering both the model size and data variability.
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algorithm and Gibbs Sampling, enables efficient computa-
tion in large models with numerous unknown parameters 
[8].

SEM is a versatile statistical technique that finds applica-
tions in different fields. In tax research, it has been utilised to 
investigate the effects of fiscal decentralisation on regional 
income inequality in Indonesia [9]. Additionally, SEM has 
been employed to explore the relationship between employ-
ment and mental health [10]. In the context of China’s textile 
industry, studies have examined the impact of foreign trade 
on energy efficiency [11]. SEM has also been utilised to 
model prescriptions in primary care settings [12]. Recently, 
a study focused on the impact of physical activity on elec-
tronic media use among Chinese adolescents, emphasising 
urban-rural differences [13].

The Bayesian approach has also been applied in many 
different fields. For example, in agricultural science, a 
Bayesian SEM has been developed to model energy intake 
and distribution in growing pigs [14], the study of the 
impact of product information on third-party websites on 
the feedback mechanism between internal Word-of-Mouth 
and retail sales on Download.com and Amazon.com [15]. 
They have also been applied to explore the effects of peers 
on the behavior of casino games [16], to model the interac-
tion between the perception of risk to people’s health and 
betel chewing habits in Taiwan [17] and to study the effects 
of repetitive iodine blockade of the thyroid on fetal brain 
and thyroid development in rats [18].

The literature mainly compares Bayesian and classical 
estimators in the context of method selection, with findings 
suggesting that Bayesian methods tend to outperform clas-
sical estimators, particularly in small sample sizes [3]. More 
recently, a comparative study has been conducted on large 
models, examining variations in the number of variables 
and sample size [4].

While the review covers both classical and Bayesian 
methods applied to simultaneous equations models, it is 
helpful to provide a more structured comparison between 
them. In this study, we analyze these approaches under 
varying levels of data variability, which allows us to high-
light differences in predictive consistency, sensitivity to 
variability, and computational requirements.

On the other hand, the criteria of model selection serve 
as valuable tools for choosing among a set of estimated 
models that differ in goodness of fit and complexity, pro-
viding a relative estimate of the information loss when a 
particular model is employed to represent the underlying 
data-generating process. A more complex model is better 
equipped to capture the relationships under analysis, yet it 

risks losing its explanatory power. However, an excessively 
complex model may overfit the data and fail to generalise 
well beyond the training data. Thus, the objective must be 
to balance complexity and goodness of fit. Various param-
eter criteria are available for comparing models, such as the 
Akaike Information Criteria (AIC) [19, 20], its corrected 
version (AICc) [21], the Schwarz or Bayesian Information 
Criterion (SIC/BIC) [22], Hannan and Quinn (HQ) [23], and 
the Model Selection Criterion based on Kullback-Leibler’s 
Symmetric Divergence [24].

In this context, the concept of entropy is introduced. Ini-
tially, the entropy has been employed in thermodynamics as 
a foundation for the second law of thermodynamics. Entropy 
later found application in statistical mechanics, connecting 
the macroscopic properties of entropy with system states 
[25], and also in various fields, such as finance [26], envi-
ronmental and water engineering [27], urban systems [28], 
and customer satisfaction surveys [29]. A recent study intro-
duces an entropy-based measure as an information criterion 
for the estimation method, serving as a selection criterion 
for the method with more homogeneous prediction errors 
[4].

Compared to previous literature, the main contribution 
of this paper is to provide a comparison of the accuracy 
of SEM estimation methods by considering data variabil-
ity. Furthermore, the paper compares measures obtained 
through classical and Bayesian methods. From a practical 
viewpoint, this contribution may be interesting for research-
ers of health organizations, market research, government, 
etc. who need to understand and estimate complex relation-
ships between multiple variables.

The paper is structured as follows. In Sect. 2, the model 
and the estimation methods used in this study are briefly 
reviewed. Section 3 describes some information criteria for 
selecting estimation methods. The experimental study and 
accuracy are presented in Sect. 4. Finally, Sect. 5 concludes.

2  The SEM and Estimation Methods

2.1  Model Definition

An SEM (1) is a model consisting of m interdependent 
(endogenous) variables that are influenced by k indepen-
dent (exogenous) variables. Each endogenous variable is 
expressed as a linear combination of the other endogenous 
variables, the exogenous variables, and white noise repre-
senting stochastic interference [1].
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y1 = B1,2y2 + B1,3y3 + · · · + B1,mym

+ Γ1,1x1 + · · · + Γ1,kxk + u1
y2 = B2,1y1 + B2,3y3 + · · · + B2,mym

+ Γ2,1x1 + · · · + Γ2,kxk + u2

...
ym = Bm,1y1 + Bm,2y2 + · · · + Bm,m−1ym−1

+ Γm,1x1 + · · · + Γm,kxk + um

� (1)

The SEM can be represented in matrix form (2),

Y BT + XΓ T + U = 0� (2)

where B ∈ Rm×m and Γ ∈ Rm×k are coefficient matri-
ces. Certain coefficients of Bi,j  and Γk,r are pre-defined 
as zeros. The variables x, y and u represent exogenous, 
endogenous and white noise variables respectively and 
they are vectors of dimension n, where n is the sample 
size. Then, Y = (y1, . . . , ym), X = (x1, . . . , xk) and 
U = (u1, . . . , um).

The solution of the model involves obtaining the matri-
ces B and Γ  in (2) by analyzing a representative sample of 
the model. This analysis aims to explain the relationship 
between the two sets of variables by solving a well-defined 
matrix equation (2).

2.2  SEM Estimation Methods

This section presents a brief description of the estimation 
methods used in this work. 

(i)	 Two-stage Least Squares (2SLS) is a statistical method 
commonly used in econometrics for the estimation of 
SEM [1]. Ordinary Least Squares (OLS) is used in two 
steps. First, instrumental variables are used to predict 
the values of the endogenous variables. Then, these pre-
dicted values are inserted into the model in place of the 
original endogenous variables, and OLS is used again to 
estimate the parameters.

(ii)	 Bayesian Method of Moments (BMOM) is a double 
K-class estimator [3]. When there is insufficient infor-
mation to obtain the likelihood function, this method 
allows a data analysis without specifying a probability 
function and without sampling assumption. The estima-
tor is defined by two parameters, K1 and K2, whose 
values determine whether the estimation emphasizes 
goodness of fit, precision, or a balance of both.

(iii)	The Optimized BMOM Method (BmomOP T ) [4] is a 
variation of the original BMOM approach, designed to 
optimize the estimation process by adjusting the param-
eters K1 and K2 in order to minimize the AIC value. 

The expression for the AIC in the context of an SEM is 
given by: 

AIC = n ln
∣∣∣Σ̂e

∣∣∣ + 2
m∑

i=1
(mi + ki − 1) + m(m + 1)� (3)

	  where n is the sample size, m is the number of equa-
tions, mi and ki are the number of endogenous and 
exogenous variables in i-equation, and Σ̂e the matrix 
of variance-covariance of the errors ej = Yj − Ŷj ,  
j = 1, . . . , m.

(iv)	Bayesian Approach in Two-stages (Bayes2S): This 
approach employs a Normal-Inverse Gamma prior to 
derive precise analytic expressions for the posterior 
distribution of the structural B and Γ coefficients in the 
SEM. It follows a two-stage procedure, similar to 2SLS, 
but replaces the use of OLS with Bayesian estimation in 
both stages.

(v)	 Markov Chain Monte Carlo (MCMC) is a computational 
technique used to generate samples from complex prob-
ability distributions. It is particularly valuable when 
direct sampling is challenging due to high-dimensional 
spaces or complex dependencies among variables.

3  Parameter Criteria

A parameter criterion as a measure for comparing and 
evaluating methods, provides an objective way of deter-
mining the quality, adequacy y effectiveness of a statistical 
approach to a specific objective. Choosing which parameter 
criteria is appropriate, is crucial to making informed deci-
sions about which method to use in a given context. Akaike 
Information Criteria, expressed in (3), is the most extensed 
used parameter criteria. It is widely used in multivariate 
regression models and has been adapted to SEM [30] as a 
method selection criteria.

On the other hand, a method selection based on entropy 
involves evaluating this metric across various methods, 
prioritizing methods with the lowest entropy values. This 
approach aligns with the principle of Occam’s razor, which 
favors simpler methods that balance complexity with fit-
ting accuracy. In an experimental study by [4], the authors 
employed an entropy-based measure as a selection criteria 
for an SEM estimation method. This measure is represented 
by equation (4):

H2(e) =
∏m

j=1 (2 − (pij)pij )
m

� (4)
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mean of 5.0 and precision of 0.2 as the initial parameter has 
been employed. Finally, Gibbs Sampling has been chosen 
for MCMC to simulate the posterior distribution importing 
the MCMCpack package from R. For the comparison, the 
Euclidean distance (Dδ,δ̂) between the coefficient matrix 
δ = [B; Γ] and its estimation δ̂, the AIC, the entropy H2(e), 
and the execution time in seconds have been calculated.

In order to facilitate the reader’s subsequent comprehen-
sion, we provide a table which summarizes the descriptions 
of subsequent recurring symbols (Table 1).

Tables 2, 3 and 4 present the results of three SEMs with 
different number of endogenous and exogenous variables 
and sample size. The first two columns denote the model 
size and the name of measure, while the remaining columns 
display the mean and standard deviation of the measures for 
each method. The experiments were conducted for 30 trials 
in each SEM.

Table 2 presents the results of SEMs with σy = 0.1. The 
first SEM with m = 10, k = 20 and n = 100 shows that the 
minimum value of Dδ,δ̂  (23.306) has been obtained by 
BmomOP T , followed by 2SLS, Bayes2S , the BMOMs, 
and finally, MCMC. The AIC indicates that the BMOM 
traditional is the method that obtains the minimum value 
(2056.552) compared to the rest. Regarding the entropy, the 
minimum value is reached by BmomOP T  (4.54), followed 
by 2SLS, Bayes2S , BMOMs and MCMC. And, in terms 
of the execution time, 2SLS is the method that requires the 
least time (0.043), while BmomOP T  needs the most time 
for the estimation (316.834).

By increasing the complexity of the SEM in terms 
of the number of variables and sample size (m = 10, k = 
40, n = 400), the model has obtained the minimum val-
ues of Dδ,δ̂  (11.146) with BmomOP T , AIC with BMOM 
Bta (15255.394), and H2(e) with both BmomOP T  and 
2SLS (5.567). Bayes2S  is the method that requires the least 
time for the estimation (0.219). And for the largest SEM (m 
= 20, k = 100, n = 1000), the same results as the previous 
SEM have been obtained, being BmomOP T  the method 
with minimum Dδ,δ̂  (19.849). The minimum H2(e) (6.558) 
has been obtained for both BmomOP T  and 2SLS.

These results indicate that BmomOP T  consistently 
achieves the lowest mean values for both Dδ,δ̂  and H2(e) 
across model sizes. This comparative performance is also 
illustrated in Fig. 1, which summarizes the results graphi-
cally for σu = 0.1. Regarding computational efficiency, 
2SLS, Bayes2S , and BMOMs are the methods that require 
the least estimation time.

Furthermore, all methods are affected by the increase in 
complexity of the model associated with the number of vari-
ables and sample size.

Table 3 presents the results for SEMs with σu = 1.0. In 
all models, BmomOP T  consistently achieved the lowest 

where m is the number of endogenous variables, and the pij  
values for each endogenous variable have been obtained as 
follows (5):

pij = eij∑n
i=i eij

j = 1, 2, . . . m,� (5)

where eij = Yij − Ŷij , n is the sample size and, pij  rep-
resents the error mass associated with each endogenous 
variable.

This entropy-based measure (5) provides an alternative to 
traditional criteria such as the AIC. It evaluates how estima-
tion errors are distributed across the system. Lower entropy 
values indicate more concentrated and predictable residuals, 
while higher values reflect greater dispersion. This is par-
ticularly valuable in SEMs, where not only the magnitude 
but the structure of the error matters. Entropy thus serves as 
a selection criterion that captures both goodness-of-fit and 
internal consistency.

4  Experimental Study

In the experiments, SEMs (2) have been generated as fol-
lows: matrices B and Γ are randomly generated from an 
Uniform distribution, X is generated from a multivariate 
Normal distribution, and Y is calculated as Y ∼ ΠX + U , 
where U ∼ N(0, σu). Values of σu ranging from 0.10 to 
10.00 were used, leading to different levels of variability in 
the SEM, denoted by σy. Tests were carried out in C code 
and imported some functions from statistical software R 
(GNU R version 3.5.2).

For the estimation of the SEM, 7 methods have been 
used: 2SLS, 3 versions of BMOM, Goodness of Fit 
(Bgf ), Precision of Estimation (Bpe), and the Tradi-
tional Bayesian Approach (Bta), the Optimized BMOM 
(BmomOP T ), Bayes2S , and MCMC. Specifically, for 
BmomOP T  to obtain optimal values of K1 and K2, the 
optim function from R has been imported. In the case of 
Bayes2S  method, a Normal-Inverse Gamma prior with a 

Table 1  Statements of important symbols
Symbol Statements

Yij
Observed value of endogenous variable j for observation i

Ŷij
Estimated value of Yij

eij Estimation error: Yij − Ŷij

pij
Proportion of error mass for variable j and observation i

n Sample size
m Number of endogenous variables
k Number of exogenous variables

σu
Standard deviation of the structural error term U

σy
Standard deviation of the response variable Y
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values for both Dδ,δ̂  and H2(e), while BMOMs were asso-
ciated with the lowest AIC values. This performance is also 
reflected in Fig. 2, which graphically summarizes Dδ,δ̂  and 
H2(e) across model sizes for σu = 1.0. On the other hand, 
2SLS and Bayes2S  required the least time for estimation.

Finally, Table 4 shows the results for SEMs with σu = 10. 
Under such conditions of high variability, none of the applied 
methods consistently outperforms the others across the three 
models, either in terms of Dδ,δ̂  or H2(e). Specifically, in the 
largest SEM, the minimum value of H2(e) is obtained with 
both BMOMs and BmomOP T  (6.555), followed closely 
by 2SLS and MCMC (6.556). In this model, the Bayes2S  
method did not produce results due to convergence issues. 
Figure 3 offers a graphical overview of the methods’ perfor-
mance for σu = 10.

Having reviewed the tabular results for the three SEMs, 
Fig.  4 shows the results for all six models, including the 
three previously discussed and three additional ones. The 
figure illustrates the results for SEMs with varying sizes and 
σu values ranging from 0.1 to 10. Each SEM was gener-
ated across 30 trials, and the mean standard deviation of 
the endogenous variables, σ̄y, was calculated. The color 
squares in the figure indicate the method that achieves the 
minimum mean for Dδ,δ̂ , AIC, H2(e), and time.

It is observed that BmomOP T  (green color) achieves 
the minimum value of Dδ,δ̂  across a significant number of 
SEMs when σ̄y is below 5.4. However, when variability 
exceeds 5.4, BMOM methods yield the lowest Dδ,δ̂  values.

In terms of AIC, BMOM methods consistently yield the 
lowest mean values, while the 2SLS method also performs 
well across all σ̄y values.

Regarding H2(e), BmomOP T  reaches the minimum 
value for σ̄y values below 4.6, but as variability increases, 
the method achieving the minimum value changes.

Finally, 2SLS and Bayes2S  are the methods that require 
the least time across all the models studied.

Table 5 summarizes the performance of BmomOP T  for 
Dδ,δ̂  and H2(e). It categorizes variability into three levels 
and shows the percentage of SEMs in which BmomOP T  
reaches the minimum values for these measures. For exam-
ple, in the first row, out of 30 SEMs with low variability 
(σ̄y < 3.00), BmomOPT achieved the minimum Dδ,δ̂  in 
96.67% of cases and the minimum H2(e) in 76.67% of 
cases. When variability ranges between 3 and 6, the percent-
ages are 88.57% and 58.62%, respectively. For SEMs with 
high variability, BmomOP T  does not achieve the minimum 
Dδ,δ̂  compared to other methods but does achieve the mini-
mum H2(e) in 41.18% of cases.

The results indicate that the performance of the estima-
tion methods varies with the data’s variability. Specifically, 
BmomOP T  is more effective in intervals of lower variabil-
ity for Dδ,δ̂ , although it still achieves the minimum value 
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Evaluation of Estimation Methods for Simultaneous Equations Models Across Varying Levels of Data Variability

sample size increases, particularly in terms of estimation 
accuracy. However, the choice of method ultimately depends 
on the context and whether the priority lies in precision or 

for H2(e) in some cases of high variability. Regarding the 
scalability of BmomOP T  to very large datasets, it is worth 
noting that the method exhibits superior performance as the 

Fig. 3  Graphical summary of Dδ,δ̂  and H2(e) for the SEMs in Table 4 (σu = 10)

 

Fig. 2  Graphical summary of Dδ,δ̂  and H2(e) for the SEMs in Table 3 (σu = 1.0)

 

Fig. 1  Graphical summary of Dδ,δ̂  and H2(e) for the SEMs in Table 2 (σu = 0.1)
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5  Conclusions

In research, the choice of an appropriate estimation method 
depends on factors such as the number of variables, the 
data size, and the variability within the data. This study 
compares various estimation methods for SEMs, includ-
ing 2SLS, BMOM approaches, BmomOP T , Bayes2S , and 
MCMC, focusing on how data variability influences their 
performance. The methods were evaluated using measures 
such as Dδ,δ̂ , H2(e), AIC, and execution time.

The findings reveal that data variability significantly 
impacts method performance. Specifically, BmomOP T  per-
forms well at low variability intervals for Dδ,δ̂  but requires 
the most execution time. It also shows promising results for 
H2(e), even at higher variability levels. A strong correla-
tion between Dδ,δ̂  and H2(e) suggests that H2(e) could be 
a valuable criterion for selecting an estimation method.

Aware of the limitations of our work, future research will 
focus on expanding the range of model configurations and 
complexity to improve the generalizability of the results. 
This includes exploring the influence of different parameter 
settings on the performance of the evaluated methods–partic-
ularly Bayesian techniques and BMOM-based approaches. 
A limitation of the present study is the absence of practical 

computational efficiency. For instance, in medical applica-
tions, where precision is often more critical than estimation 
time, BmomOP T  might offer a favorable trade-off despite 
its higher computational cost.

Conversely, the 2SLS method and the BMOMs Bta and 
Bpe methods attain the lowest values for AIC in many cases. 
However, this does not align with the methods that achieve 
a lower H2(e), which suggests that these methods may pro-
duce estimates closer to the true model parameters. Despite 
this, a correspondence is observed between Dδ,δ̂  and H2(e) 
for BmomOP T , particularly at variability levels below 4.6.

These findings could be valuable in real-world SEM 
applications, helping to identify the most appropriate esti-
mation method based on data variability. Additionally, they 
offer a potential criterion for selecting the method with the 
lowest prediction error.

Table 5  Percentage of minimum values for Dδ,δ̂  and H2(e) achieved 
by BmomOP T  by variability levels

σ̄y SEMs Dδ,δ̂ H2(e)
1.00 - 2.99 30 96.67% 76.67%
3.00 - 6.00 35 88.57% 58.62%
 > 6.00 17 0.00% 41.18%

Fig. 4  Minimum mean values of 
Dδ,δ̂ , AIC, H2(e), and time repre-
sented by colors across 30 trials

 

1 3



Evaluation of Estimation Methods for Simultaneous Equations Models Across Varying Levels of Data Variability

References

1.	 Gujarati DN, Porter DC (2004) Econometría. McGraw-Hill Inte-
ramericana Editores SA, México DF, 5th edn

2.	 Greene WH (1998) Econometric Analysis. Prentice Hall, 3rd edn
3.	 Zellner A (1998) The finite sample properties of simultaneous 

equations’ estimates and estimators bayesian and non-bayesian 
approaches. J Econom 83(1):185–212

4.	 Pérez-Sánchez B, González M, Perea C, López-Espín JJ (2021) 
A new computational method for estimating simultaneous equa-
tions models using entropy as a parameter criteria. Mathematics 
9(7):700

5.	 Chao JC, Phillips PCB (2002) Jeffreys prior analysis of the 
simultaneous equations model in the case with n+1 endoge-
nous variables. J Econom 111(2):251–283 (Finite Sample and 
Asymptotic Methods in Econometrics)

6.	 Geweke J (1996) Bayesian reduced rank regression in economet-
rics. J Econom 75(1):121–146

7.	 Kleibergen F, van Dijk HK (1998) Bayesian simultaneous equa-
tions analysis using reduced rank structures. Econom Theory 
14(6):701–743

8.	 Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin 
DB (2015) Bayesian Data Analysis. Chapman and Hall/CRC, 3rd 
edn

9.	 Siburian ME (2020) Fiscal decentralization and regional 
income inequality: evidence from Indonesia. Appl Econ Lett 
27(17):1383–1386

10.	 Steele F, French R, Bartley M (2013) Adjusting for selection bias 
in longitudinal analysis using simultaneous equations modeling. 
The relationship between employment transitions and mental 
health. Epidemiology 24:703–711 (Cambridge, Mass.)

11.	 Zhao H, Lin B (2020) Impact of foreign trade on energy effi-
ciency in China’s textile industry. J Clean Prod 245:118878

12.	 Guadalajara Olmeda MN, Barrachina Martínez I (2014) Appli-
cation of simultaneous equation models to temporary disability 
prescriptions in primary healthcare centres. Int J Comput Math 
91(2):252–260

13.	 Bai S, Yin Y, Chen S (2023) The impact of physical activity on 
electronic media use among Chinese adolescents and urban-rural 
differences. BMC Public Health 23(1):1264

14.	 Strathe AB, Jørgensen H, Kebreab E, Danfær A (2012) Bayesian 
simultaneous equation models for the analysis of energy intake 
and partitioning in growing pigs. J Agric Sci 150:764–774

15.	 Zhou W, Duan W (2015) An empirical study of how third-party 
websites influence the feedback mechanism between online 
word-of-mouth and retail sales. Decis Support Syst 76:14–23

16.	 Park HM, Manchanda P (2015) When harry bet with sally: an 
empirical analysis of multiple peer effects in casino gambling 
behavior. Mark Sci 34(2):179–194

17.	 Chen CM, Chang KL, Lin L, Lee JL (2013) Health risk percep-
tion and betel chewing behavior. The evidence from Taiwan. 
Addict Behav 38:2714–2717

18.	 Cohen DPA, Benadjaoud MA, Lestaevel P, Lebsir D, Benderitter 
M, Souidi M (2019) Effects of repetitive iodine thyroid blocking 
on the development of the foetal brain and thyroid in rats: a sys-
tems biology approach. bioRxiv. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​​r​​g​​/​​1​0​​.​1​1​​​0​1​/​​7​1​0​7​6​4

19.	 Akaike H (1998) Information theory and an extension of the 
maximum likelihood principle. Selected Papers of Hirotugu 
Akaike. Springer Series in Statistics. Springer, New York, NY, pp 
199–213

20.	 Keerativibool W (2015) New criteria for selection in simultane-
ous equations model. Thailand Stat 10(2):163–181

21.	 Hurvich CM, Tsai CL (1989) Regression and time series model 
selection in small samples. Biometrika 76:297–397

validation on real-world datasets. Such validation would 
require identifying and modeling problems with varying 
levels of variability, applying the compared methods, and 
analyzing the outcomes in terms of accuracy and efficiency. 
Given the scope and theoretical focus of this research, we 
deliberately restricted the analysis to controlled scenarios to 
establish a clear framework. We regard this as a necessary 
first step before addressing the complexity of real-world 
data, which will be the subject of future work. Real-world 
applications, such as those in health sciences or economics, 
will also be considered as illustrative contexts. The findings 
presented here offer a valuable comparative foundation that 
can help future researchers select appropriate estimation 
methods depending on the nature and size of the problem.

Acknowledgements  Not applicable.

Author Contributions  B.P-S. conceived and designed the experiments, 
performed the experiments, performed the computation work, ana-
lyzed the data, prepared figures and/or tables, and approved the final 
draft. C.P. performed the experiments, analyzed the data, authored or 
reviewed drafts of the article, and approved the final draft. M.G. per-
formed the experiments, performed the computation work, prepared 
figures and/or tables, and approved the final draft. JJ.L-E. conceived 
and designed the experiments, analyzed the data, authored or reviewed 
drafts of the article, and approved the final draft.

Funding  This research was also partially supported by the CIP-
ROM/2024/34 grant, funded by the Conselleria de Educación, Cultura, 
Universidades y Empleo, Generalitat Valenciana.

Data Availability  ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​m​​b​p​s​​-​u​m​​h​/​v​a​r​i​a​b​i​l​i​t​y

Declarations

Competing interests  The authors declare that they have no competing 
interests.

Ethics approval and consent to participate  Not applicable.

Consent for publication  Not applicable.

Open Access   This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​o​​n​s​.​​o​
r​g​​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.

1 3

https://doi.org/10.1101/710764
https://github.com/mbps-umh/variability
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


B. Pérez-Sánchez et al.

27.	 Cui H, Sivakumar B, Singh VP (2019) Entropy Applications in 
Environmental and Water Engineering. Academic Press, New 
York

28.	 Purvis B, Mao Y, Robinson D (2019) Entropy and its application 
to urban systems. Entropy 21(1):56

29.	 Oruç ÖE, Kuruoglu E, Gündüz A (2011) Entropy applications 
for customer satisfaction survey in information theory. Front Sci 
1(1):1–4

30.	 Gorobets A (2005) The optimal prediction simultaneous equa-
tions selection. Econ Bull 36(3):1–8

22.	 Schwarz G (1978) Estimating the dimension of a model. Ann Stat 
6(2):461–464

23.	 Hannan EJ, Quinn BG (1979) The determination of the order of an 
autoregression. J Roy Stat Soc: Ser B (Methodol) 41(2):190–195

24.	 Keerativibool W, Jitthavech J (2015) Model selection criterion 
based on Kullback-Leibler’s symmetric divergence for simulta-
neous equations model. Chiang Mai J Sci 42(3):761–773

25.	 Cover TM, Thomas JA (1991) Elements of Information Theory. 
John Wiley and Sons, Inc

26.	 Zhou R, Cai R, Tong G (2013) Applications of entropy in finance: 
a review. Entropy 15(11):4909–4931

1 3


	﻿Evaluation of Estimation Methods for Simultaneous Equations Models Across Varying Levels of Data Variability
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿The SEM and Estimation Methods
	﻿2.1﻿ ﻿Model Definition
	﻿2.2﻿ ﻿SEM Estimation Methods

	﻿﻿3﻿ ﻿Parameter Criteria
	﻿﻿4﻿ ﻿Experimental Study
	﻿﻿5﻿ ﻿Conclusions
	﻿References


