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Abstract

Simultaneous Equations Model (SEM) is a set of regression equations where bidirectional relationships exist between
variables. SEMs are widely used to model complex systems, capture the interdependencies between different variables,
and make predictions about future outcomes in a wide range of fields such as economics, markets, or health sciences.
In the literature, the performance of numerous methods, both classical and Bayesian, has been widely studied in various
aspects such as endogeneity or correlation. To our knowledge, the study of estimator performance under varying levels
of data variability in simultaneous equation models is not well-developed. This paper aims to evaluate the performance
of methods for estimating SEMs of different sizes, considering the number of variables and the variability of endogenous
variables. An experimental study has been conducted applying different estimation methods, including Two Stage Least
Squares (2SLS) and the Optimized Bayesian Method of Moments (Bmomopr), to evaluate their performance across
different SEMs. Based on our computational results, the main finding is that the performance of the methods depends on
the variability of the data, with Bmomo pr being more accurate at lower levels of variability. These results could inter-
est researchers aiming to apply SEMs in practical cases as they offer insights into selecting the estimation method while
considering both the model size and data variability.

Keywords Simultaneous equation models - Optimized Bayesian method of moments - Entropy - Computational
statistics

1 Introduction Least Squares (OLS), Indirect Least Squares (ILS), and

Two-Stage Least Squares (2SLS) [2]. Among these classi-

A Simultaneous Equation Model (SEM) [1] is a statistical
model that represents a system of regression equations with
bidirectional relationships and interdependencies among the
variables. Various methods are employed to estimate SEMs,
including Full Information Maximum Likelihood (FIML)
and Three-Stage Least Squares (3SLS), as well as Ordinary
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cal methods, 2SLS is one of the most widely used due to its
simplicity and the consistency of its estimators.

On the other hand, Bayesian methods eliminate the need
for sampling assumptions but introduce significant com-
plexity, particularly in the specification of prior distributions
and the derivation of posterior distributions. The Bayesian
Method of Moments (BMOM) [3] offers an alternative
approach by avoiding these sampling assumptions, and
the Bmomopr method enhances BMOM by optimizing
parameters to achieve minimum entropy values [4]. Chao
and Phillips [5] investigated the behavior of posterior dis-
tributions under Jeffreys prior within SEMs, while Geweke
[6] developed general methods for Bayesian inference using
non-informative reference priors. Kleibergen and Van Dijk
[7] advanced Bayesian SEMs by incorporating reduced
rank structures. Additionally, the Markov Chain Monte
Carlo (MCMC) method, including the Metropolis-Hastings
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algorithm and Gibbs Sampling, enables efficient computa-
tion in large models with numerous unknown parameters
[8].

SEM is a versatile statistical technique that finds applica-
tions in different fields. In tax research, it has been utilised to
investigate the effects of fiscal decentralisation on regional
income inequality in Indonesia [9]. Additionally, SEM has
been employed to explore the relationship between employ-
ment and mental health [10]. In the context of China’s textile
industry, studies have examined the impact of foreign trade
on energy efficiency [11]. SEM has also been utilised to
model prescriptions in primary care settings [12]. Recently,
a study focused on the impact of physical activity on elec-
tronic media use among Chinese adolescents, emphasising
urban-rural differences [13].

The Bayesian approach has also been applied in many
different fields. For example, in agricultural science, a
Bayesian SEM has been developed to model energy intake
and distribution in growing pigs [14], the study of the
impact of product information on third-party websites on
the feedback mechanism between internal Word-of-Mouth
and retail sales on Download.com and Amazon.com [15].
They have also been applied to explore the effects of peers
on the behavior of casino games [16], to model the interac-
tion between the perception of risk to people’s health and
betel chewing habits in Taiwan [17] and to study the effects
of repetitive iodine blockade of the thyroid on fetal brain
and thyroid development in rats [18].

The literature mainly compares Bayesian and classical
estimators in the context of method selection, with findings
suggesting that Bayesian methods tend to outperform clas-
sical estimators, particularly in small sample sizes [3]. More
recently, a comparative study has been conducted on large
models, examining variations in the number of variables
and sample size [4].

While the review covers both classical and Bayesian
methods applied to simultaneous equations models, it is
helpful to provide a more structured comparison between
them. In this study, we analyze these approaches under
varying levels of data variability, which allows us to high-
light differences in predictive consistency, sensitivity to
variability, and computational requirements.

On the other hand, the criteria of model selection serve
as valuable tools for choosing among a set of estimated
models that differ in goodness of fit and complexity, pro-
viding a relative estimate of the information loss when a
particular model is employed to represent the underlying
data-generating process. A more complex model is better
equipped to capture the relationships under analysis, yet it
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risks losing its explanatory power. However, an excessively
complex model may overfit the data and fail to generalise
well beyond the training data. Thus, the objective must be
to balance complexity and goodness of fit. Various param-
eter criteria are available for comparing models, such as the
Akaike Information Criteria (AIC) [19, 20], its corrected
version (AICc) [21], the Schwarz or Bayesian Information
Criterion (SIC/BIC) [22], Hannan and Quinn (HQ) [23], and
the Model Selection Criterion based on Kullback-Leibler’s
Symmetric Divergence [24].

In this context, the concept of entropy is introduced. Ini-
tially, the entropy has been employed in thermodynamics as
a foundation for the second law of thermodynamics. Entropy
later found application in statistical mechanics, connecting
the macroscopic properties of entropy with system states
[25], and also in various fields, such as finance [26], envi-
ronmental and water engineering [27], urban systems [28],
and customer satisfaction surveys [29]. A recent study intro-
duces an entropy-based measure as an information criterion
for the estimation method, serving as a selection criterion
for the method with more homogeneous prediction errors
[4].

Compared to previous literature, the main contribution
of this paper is to provide a comparison of the accuracy
of SEM estimation methods by considering data variabil-
ity. Furthermore, the paper compares measures obtained
through classical and Bayesian methods. From a practical
viewpoint, this contribution may be interesting for research-
ers of health organizations, market research, government,
etc. who need to understand and estimate complex relation-
ships between multiple variables.

The paper is structured as follows. In Sect. 2, the model
and the estimation methods used in this study are briefly
reviewed. Section 3 describes some information criteria for
selecting estimation methods. The experimental study and
accuracy are presented in Sect. 4. Finally, Sect. 5 concludes.

2 The SEM and Estimation Methods
2.1 Model Definition

An SEM (1) is a model consisting of m interdependent
(endogenous) variables that are influenced by & indepen-
dent (exogenous) variables. Each endogenous variable is
expressed as a linear combination of the other endogenous
variables, the exogenous variables, and white noise repre-
senting stochastic interference [1].
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y1 = Bi1ays + Bi13ys + -+ BimYm
+ Iz + -+ Tz

Y2 = Bo1y1 + Baays + - + BamYm
+ Iz + -+ 1o gy + ug

(1
Ym = Bm,lyl + Bm72y2 + -+ Bm,mflymfl
+Fm,lx1 ++Fm,kxk+um
The SEM can be represented in matrix form (2),
YBT + X" +U =0 ()

where B € R™*™ and I' € R™*F are coefficient matri-
ces. Certain coefficients of B;; and I}, are pre-defined
as zeros. The variables x, y and u represent exogenous,
endogenous and white noise variables respectively and
they are vectors of dimension n, where n is the sample
size. Then, Y = (y1,...,Ym), X = (21,...,2%) and
U= (ug,...,Uun).

The solution of the model involves obtaining the matri-
ces B and I' in (2) by analyzing a representative sample of
the model. This analysis aims to explain the relationship
between the two sets of variables by solving a well-defined
matrix equation (2).

2.2 SEM Estimation Methods

This section presents a brief description of the estimation
methods used in this work.

(1) Two-stage Least Squares (2SLS) is a statistical method
commonly used in econometrics for the estimation of
SEM [1]. Ordinary Least Squares (OLS) is used in two
steps. First, instrumental variables are used to predict
the values of the endogenous variables. Then, these pre-
dicted values are inserted into the model in place of the
original endogenous variables, and OLS is used again to
estimate the parameters.

(i) Bayesian Method of Moments (BMOM) is a double
K-class estimator [3]. When there is insufficient infor-
mation to obtain the likelihood function, this method
allows a data analysis without specifying a probability
function and without sampling assumption. The estima-
tor is defined by two parameters, K7 and K5, whose
values determine whether the estimation emphasizes
goodness of fit, precision, or a balance of both.

(iii) The Optimized BMOM Method (Bmomopr) [4] is a
variation of the original BMOM approach, designed to
optimize the estimation process by adjusting the param-
eters K and K5 in order to minimize the AIC value.

The expression for the AIC in the context of an SEM is
given by:

A]Cznln‘f?e

+2i(mi+ki—1)+m(m+1) 3)
=1

where 7 is the sample size, m is the number of equa-
tions, m; and k; are the number of endogenous and
exogenous variables in i-equation, and . the matrix

of variance-covariance of the errors e; =Y; — Y,

j=1,...,m.

(iv) Bayesian Approach in Two-stages (Bayesas): This
approach employs a Normal-Inverse Gamma prior to
derive precise analytic expressions for the posterior
distribution of the structural B and I" coefficients in the
SEM. It follows a two-stage procedure, similar to 2SLS,
but replaces the use of OLS with Bayesian estimation in
both stages.

(v) Markov Chain Monte Carlo (MCMC) is a computational
technique used to generate samples from complex prob-
ability distributions. It is particularly valuable when
direct sampling is challenging due to high-dimensional
spaces or complex dependencies among variables.

3 Parameter Criteria

A parameter criterion as a measure for comparing and
evaluating methods, provides an objective way of deter-
mining the quality, adequacy y effectiveness of a statistical
approach to a specific objective. Choosing which parameter
criteria is appropriate, is crucial to making informed deci-
sions about which method to use in a given context. Akaike
Information Criteria, expressed in (3), is the most extensed
used parameter criteria. It is widely used in multivariate
regression models and has been adapted to SEM [30] as a
method selection criteria.

On the other hand, a method selection based on entropy
involves evaluating this metric across various methods,
prioritizing methods with the lowest entropy values. This
approach aligns with the principle of Occam’s razor, which
favors simpler methods that balance complexity with fit-
ting accuracy. In an experimental study by [4], the authors
employed an entropy-based measure as a selection criteria
for an SEM estimation method. This measure is represented
by equation (4):

5 (22— (pi)™)

m

Hy(e) = 4)
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where m is the number of endogenous variables, and the p;;;
values for each endogenous variable have been obtained as
follows (5):

€ij )
plj:ni .7:1727"'m7 5

D imi €ij )
where e;; = Y;; — Y;;, n is the sample size and, p;; rep-
resents the error mass associated with each endogenous
variable.

This entropy-based measure (5) provides an alternative to
traditional criteria such as the AIC. It evaluates how estima-
tion errors are distributed across the system. Lower entropy
values indicate more concentrated and predictable residuals,
while higher values reflect greater dispersion. This is par-
ticularly valuable in SEMs, where not only the magnitude
but the structure of the error matters. Entropy thus serves as
a selection criterion that captures both goodness-of-fit and
internal consistency.

4 Experimental Study

In the experiments, SEMs (2) have been generated as fol-
lows: matrices B and I" are randomly generated from an
Uniform distribution, X is generated from a multivariate
Normal distribution, and Y is calculated as Y ~ I1X + U,
where U ~ N(0,0,). Values of o, ranging from 0.10 to
10.00 were used, leading to different levels of variability in
the SEM, denoted by o,,. Tests were catried out in C code
and imported some functions from statistical software R
(GNU R version 3.5.2).

For the estimation of the SEM, 7 methods have been
used: 2SLS, 3 versions of BMOM, Goodness of Fit
(Bgy), Precision of Estimation (B,.), and the Tradi-
tional Bayesian Approach (By,), the Optimized BMOM
(Bmomopr), Bayesss, and MCMC. Specifically, for
Bmomopr to obtain optimal values of K; and K5, the
optim function from R has been imported. In the case of
Bayesas method, a Normal-Inverse Gamma prior with a

Table 1 Statements of important symbols

Symbol Statements

Y, Observed value of endogenous variable j for observation i
ij

f/ij Estimated value of Y;;

€ij Estimation error: Y;; — f/ij

i Proportion of error mass for variable j and observation i
ij

n Sample size

m Number of endogenous variables

k Number of exogenous variables

Standard deviation of the structural error term U
Standard deviation of the response variable Y

Ou

a.
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mean of 5.0 and precision of 0.2 as the initial parameter has
been employed. Finally, Gibbs Sampling has been chosen
for MCMC to simulate the posterior distribution importing
the MCMCpack package from R. For the comparison, the
Euclidean distance (D; ;) between the coefficient matrix
6 = [B;T] and its estimation 4, the AIC, the entropy Ha(e),
and the execution time in seconds have been calculated.

In order to facilitate the reader’s subsequent comprehen-
sion, we provide a table which summarizes the descriptions
of subsequent recurring symbols (Table 1).

Tables 2, 3 and 4 present the results of three SEMs with
different number of endogenous and exogenous variables
and sample size. The first two columns denote the model
size and the name of measure, while the remaining columns
display the mean and standard deviation of the measures for
each method. The experiments were conducted for 30 trials
in each SEM.

Table 2 presents the results of SEMs with o, = 0.1. The
first SEM with m = 10, k = 20 and n = 100 shows that the
minimum value of D 55 (23.306) has been obtained by
Bmomopr, followed by 2SLS, Bayesss, the BMOMs,
and finallyy, MCMC. The AIC indicates that the BMOM
traditional is the method that obtains the minimum value
(2056.552) compared to the rest. Regarding the entropy, the
minimum value is reached by Bmomopr (4.54), followed
by 2SLS, Bayesas, BMOMs and MCMC. And, in terms
of the execution time, 2SLS is the method that requires the
least time (0.043), while Bmomopr needs the most time
for the estimation (316.834).

By increasing the complexity of the SEM in terms
of the number of variables and sample size (m = 10, k =
40, n = 400), the model has obtained the minimum val-
ues of Dy s (11.146) with Bmomopr, AIC with BMOM
By, (15255.394), and Hy(e) with both Bmomopr and
2SLS (5.567). Bayesag is the method that requires the least
time for the estimation (0.219). And for the largest SEM (m
=20, k = 100, n = 1000), the same results as the previous
SEM have been obtained, being Bmomopr the method
with minimum D ; (19.849). The minimum Hs(e) (6.558)
has been obtained for both Bmomo pr and 2SLS.

These results indicate that Bmomopr consistently
achieves the lowest mean values for both D; ;s and H(e)
across model sizes. This comparative perforﬁnance is also
illustrated in Fig. 1, which summarizes the results graphi-
cally for o, = 0.1. Regarding computational efficiency,
2S8LS, Bayesas, and BMOMs are the methods that require
the least estimation time.

Furthermore, all methods are affected by the increase in
complexity of the model associated with the number of vari-
ables and sample size.

Table 3 presents the results for SEMs with o, = 1.0. In
all models, Bmomopr consistently achieved the lowest
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Table 2 Mean and standard deviation of D 5.6- AIC, Ha (e) and time (seconds) for 30 trials when varying the problem size and the estimation method. o,

(m, k, n)

MCMC

Bayesas

Bmomopr

BMOM
By

2SLS

Measure

1a

44.6536.511

Bpe

31.96210.130 68.3734.435

23.3068.462

29.5707 292 43.2336.553 43.5096.567

D&,é

(10, 20, 100)

4438.846235.293
4.0970.012

2684.088571.362
4.0650.015

2853.010627.993
4.0540.014

2056.552535.776
4.0700.013

2080.392538.473
4.0680.013

2085.189539.692
4.0680.013

2511.737567.795
4.0560.014

AIC

Hs(e)

Time
D 5,6

288.37024.462
89.0564.633

0.0470.010

0.6030.168 0.6030.168 316.834148.244
11.1463.504

0.6030.168

0.0430.013

24.80217.350

37-3916,771 37-7846,782

37.3656.768

19.4865.255

(10, 40, 400)

21809.350705.884
5.6010.006

16814.8362095.821

5.5710.010

17443.1201991.016
5.5670.007

15255.3941593.465

5.5700.007

15277.8031598.426

5.5690.007

15279.3051598.832

5.5690.007

16538.7391844.884

5.5670.005

AIC

Hs(e)

Time
D 5,6

4.4370.769 2448.428919.992  0.2190.035 503.49941.883
19.8493.787

4.4370.769

4.4370.769

0.2320.035

197.6653.093

47.4867.043

88.2623.800 88.9995.814

88.2718.806

42.8086.468

(20, 100, 1000)

126819.4151197.312

6.5640.003

92738.9844454.168 104887.9605183.736 99824.9594824.378

6.5590.003

92829.9914458.503
6.5590.003

92828.6174459.255
6.5590.003

99642.7034799.050
6.5580.004

AIC

6.5590.003

6.5580.003

Hs(e)

Time

2650.51685.397

1.3970.220

50.0892.990 50.0892.990 50.0892.990 22795.8005931.209

1.5550.088

values for both Dj ; and H3(e), while BMOMs were asso-
ciated with the lowest AIC values. This performance is also
reflected in Fig. 2, which graphically summarizes D; 5 and
Hj(e) across model sizes for o, = 1.0. On the otheryhand,
2SLS and Bayesag required the least time for estimation.

Finally, Table 4 shows the results for SEMs with o, = 10.
Under such conditions of high variability, none of the applied
methods consistently outperforms the others across the three
models, either in terms of Dy ; or Hy(e). Specifically, in the
largest SEM, the minimum value of H. 2(e) is obtained with
both BMOMs and Bmomopr (6.555), followed closely
by 2SLS and MCMC (6.556). In this model, the Bayesag
method did not produce results due to convergence issues.
Figure 3 offers a graphical overview of the methods’ perfor-
mance for o, = 10.

Having reviewed the tabular results for the three SEMs,
Fig. 4 shows the results for all six models, including the
three previously discussed and three additional ones. The
figure illustrates the results for SEMs with varying sizes and
o, values ranging from 0.1 to 10. Each SEM was gener-
ated across 30 trials, and the mean standard deviation of
the endogenous variables, oy, was calculated. The color
squares in the figure indicate the method that achieves the
minimum mean for D; s, AIC, Hz(e), and time.

It is observed that Bmomo pr (green color) achieves
the minimum value of D ; across a significant number of
SEMs when oy is below 5.4. However, when variability
exceeds 5.4, BMOM methods yield the lowest D; 5 values.

In terms of AIC, BMOM methods consistently7 yield the
lowest mean values, while the 2SLS method also performs
well across all o, values.

Regarding Hs(e), Bmomopr reaches the minimum
value for o, values below 4.6, but as variability increases,
the method achieving the minimum value changes.

Finally, 2SLS and Bayesag are the methods that require
the least time across all the models studied.

Table 5 summarizes the performance of Bmomopr for
Dy ; and Hj(e). It categorizes variability into three levels
and shows the percentage of SEMs in which Bmomopr
reaches the minimum values for these measures. For exam-
ple, in the first row, out of 30 SEMs with low variability
(oy < 3.00), BmomOPT achieved the minimum D; s in
96.67% of cases and the minimum Hs(e) in 76.67% of
cases. When variability ranges between 3 and 6, the percent-
ages are 88.57% and 58.62%, respectively. For SEMs with
high variability, Bmomo pr does not achieve the minimum
D; 5 compared to other methods but does achieve the mini-
mum Hs(e) in 41.18% of cases.

The results indicate that the performance of the estima-
tion methods varies with the data’s variability. Specifically,
Bmomo pr is more effective in intervals of lower variabil-
ity for Dy ;, although it still achieves the minimum value
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Method
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Fig. 1 Graphical summary of D ; and Hz(e) for the SEMs in Table 2 (o, = 0.1)
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Fig.2 Graphical summary of D; ; and Hz(e) for the SEMs in Table 3 (o, = 1.0)
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Fig. 3 Graphical summary of D s and Hz(e) for the SEMs in Table 4 (o, = 10)

for Hy(e) in some cases of high variability. Regarding the ~ sample size increases, particularly in terms of estimation
scalability of Bmomo pr to very large datasets, it is worth ~ accuracy. However, the choice of method ultimately depends
noting that the method exhibits superior performance as the ~ on the context and whether the priority lies in precision or
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Fig. 4 Minimum mean values of
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sented by colors across 30 trials
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Table 5 Percentage of minimum values for D; 5 and Hz(e) achieved
by Bmomo pr by variability levels

oy SEMS Dy H(e)

1.00 - 2.99 30 96.67% 76.67%
3.00 - 6.00 35 88.57% 58.62%
> 6.00 17 0.00% 41.18%

computational efficiency. For instance, in medical applica-
tions, where precision is often more critical than estimation
time, Bmomo pr might offer a favorable trade-off despite
its higher computational cost.

Conversely, the 2SLS method and the BMOMs By, and
By methods attain the lowest values for AIC in many cases.
However, this does not align with the methods that achieve
alower Hy(e), which suggests that these methods may pro-
duce estimates closer to the true model parameters. Despite
this, a correspondence is observed between D, ; and H3(e)
for Bmomopr, particularly at variability leveis below 4.6.

These findings could be valuable in real-world SEM
applications, helping to identify the most appropriate esti-
mation method based on data variability. Additionally, they
offer a potential criterion for selecting the method with the
lowest prediction error.
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5 Conclusions

In research, the choice of an appropriate estimation method
depends on factors such as the number of variables, the
data size, and the variability within the data. This study
compares various estimation methods for SEMs, includ-
ing 2SLS, BMOM approaches, Bmomopr, Bayesag, and
MCMC, focusing on how data variability influences their
performance. The methods were evaluated using measures
such as D; s, Ha(e), AIC, and execution time.

The ﬁnéiings reveal that data variability significantly
impacts method performance. Specifically, Bmomo pr per-
forms well at low variability intervals for Dy s but requires
the most execution time. It also shows promiéing results for
Hj(e), even at higher variability levels. A strong correla-
tion between D, ; and Hy(e) suggests that H3(e) could be
a valuable criterion for selecting an estimation method.

Aware of the limitations of our work, future research will
focus on expanding the range of model configurations and
complexity to improve the generalizability of the results.
This includes exploring the influence of different parameter
settings on the performance of the evaluated methods—partic-
ularly Bayesian techniques and BMOM-based approaches.
A limitation of the present study is the absence of practical
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validation on real-world datasets. Such validation would
require identifying and modeling problems with varying
levels of variability, applying the compared methods, and
analyzing the outcomes in terms of accuracy and efficiency.
Given the scope and theoretical focus of this research, we
deliberately restricted the analysis to controlled scenarios to
establish a clear framework. We regard this as a necessary
first step before addressing the complexity of real-world
data, which will be the subject of future work. Real-world
applications, such as those in health sciences or economics,
will also be considered as illustrative contexts. The findings
presented here offer a valuable comparative foundation that
can help future researchers select appropriate estimation
methods depending on the nature and size of the problem.
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