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ABSTRACT
Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. 
The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes 
mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is 
projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 
30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have 
varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited 
to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and 
pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are 
some common markers associated with their development. For instance, gut barrier impairment and 
inflammation associated with an unbalanced gut microbiota and their metabolites may be common 
factors in diabetes development and progression. Here, we summarize the microbial signatures that 
have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite 
profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent 
advances relating to promising preventive and therapeutic interventions focusing on the targeted 
modulation of the gut microbiota to alleviate T1D, T2D and GDM.
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1. Introduction

Diabetes mellitus or simply diabetes is a chronic 
disease characterized by high levels of glucose in 
the blood (hyperglycemia), which is associated with 
increased life-long risks to several systems in the 
body through microvascular complications. 
Despite having fundamentally different pathogen
esis, both major forms of diabetes, namely type 1 
(T1D) and type 2 diabetes (T2D), are characterized 
by the loss of functional pancreatic β-cells, which 
are responsible for the production and secretion of 
insulin, i.e., the main hormone involved in the 
regulation of the glucose levels in the blood. 
While T1D onsets involves significant loss of β- 
cells due to autoimmune attack, T2D results from 
mild-to-moderate β-cell loss due to metabolic 
stress.1 T2D is also characterized by varying 

degrees of insulin resistance in peripheral tissues 
due to variable β-cell loss,2 while, in T1D, insulin 
resistance can be observed in patients with poor 
glycemic control or due to intensive insulin 
therapy.3 Gestational diabetes mellitus (GDM) is 
also a complex metabolic disorder that may result 
from an underlying β-cell dysfunction.4 Of note, 
besides T1D, T2D and GDM, there are more than 
50 subcategories of diabetes described, including 
monogenic forms of diabetes and the latent auto
immune diabetes of adults (LADA), highlighting 
the heterogeneity of etiology and presentations of 
this metabolic condition.5

According to the International Diabetes 
Federation, diabetes affects approximately 537 mil
lion adults between 20–79 years, and it is expected 
that this number will rise to 643 million by 2030 
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and 783 million by 2045.6 T2D is estimated to 
account for 90% of overall diabetes cases, with 
T1D constituting around 5–10%. Alarmingly, 
both the prevalence and incidence of T1D and 
T2D have been increasing yearly.6 The prevalence 
of GDM varies worldwide but it is also increasing 
and now impacts 1–30% of women during 
pregnancy.7 Based on these figures, it is urgent 
that new strategies to address the development 
and progression of diabetes are found.

Despite their different etiologies, increasing evi
dence suggests that T1D, T2D and GDM share 
common elements with respect to their develop
ment and progression. The onset of disease arises 
from a complex interaction between genetic and 
environmental factors, where the genetic back
ground may modulate disease susceptibility and 
environmental factors may act as triggers for dis
ease development.8,9 Interestingly, while the rela
tionship between T2D and diet is well established 
and constitutes one pillar of intervention 
strategies,10 the relationship between T1D and 
non-genetic environmental factors is yet to be 
fully understood.11 However, given that only 10% 
of genetically predisposed individuals develop 
T1D,12 increasing prevalence suggests that envir
onmental changes might impact T1D develop
ment. Moreover, as in T2D, factors like diet and 
gut microbiota have been proposed as modulators 
of T1D pathophysiology.13,14 Links between T2D 
and GDM have also been proposed, as GDM can 
result from high levels of glucose in the blood, and 
T2D can be developed as a consequence of GDM. 
Moreover, both diseases may be linked to preexist
ing metabolic alterations, such as those associated 
with pre-diabetes.7

In the last couple of decades, it has become 
increasingly apparent that the gut microbiota has 
a significant impact on human health. A growing 
body of evidence indicates that bacteria, archaea, 
viruses, fungi, and their metabolites, have a direct 
effect on the human body. Negative impacts on 
these communities of microorganisms and the 
metabolites they produce, referred to by some as 
gut dysbiosis, have been associated with a variety of 
health conditions, both localized and systemic. The 
immune system has also been linked to most of 
these conditions, as imbalances amongst the gut 
microbiota can be accompanied by increased 

intestinal permeability and translocation of bacter
ial products that induce local and systemic 
inflammation.15 Examples of such conditions 
include metabolic syndrome,16,17 irritable bowel 
syndrome (IBS),18,19 inflammatory bowel disease 
(IBD),20 colorectal cancer,21 rheumatoid arthritis,22 

and conditions related to the nervous system, such 
as autism,23,24 Parkinson’s disease,25 Alzheimer’s 
disease,26 multiple sclerosis27 and depression.28,29

Notably, impaired pancreatic function has been 
associated with gut microbiota dysbiosis. 
Furthermore, it has been suggested that disruption 
of a proposed microbiota-pancreas axis could con
tribute to the development and progression of 
acute and chronic pancreatitis and pancreatic duc
tal adenocarcinoma.30–32 Moreover, diabetes has 
also been associated with gut microbiota dysbiosis, 
which suggests that targeted approaches to modu
late the gut microbiota could impact the develop
ment and progression of such pancreatic 
conditions.33

Here, we summarize the current knowledge 
relating to the relationship between the etiology 
of diabetes and the gut microbiota, with an empha
sis on gut microbiota-associated metabolites. We 
also discuss the potential for the use of different 
strategies, focusing on targeted modulation of the 
gut microbiota, as a prevention and therapeutic 
options in these metabolic conditions.

2. The pancreatic function and diabetes 
aetiology/pathogenesis

The pancreas is a glandular organ located behind 
the stomach in the abdominal cavity, divided into 
head, body and tail, and has a lobular structure that 
includes numerous secretory vesicles.34 It can be 
histologically and functionally divided into the 
exocrine and endocrine pancreas. The former con
sists of acinar and ductal cells that are involved in 
the production and secretion of digestive enzymes, 
while the latter is formed by an endocrine secretory 
tissue known as the islets of Langerhans or simply 
pancreatic islets. These structures are comprised of 
several endocrine cells, namely α-, β-, δ-, pancrea
tic polypeptide, and ε-cells, which produce and 
secrete several hormones involved in blood glucose 
regulation.35,36 The two main hormones involved 
in the control of glucose homeostasis are insulin 
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and glucagon, produced and secreted by β- and α- 
cells, respectively.35 While insulin regulates blood 
glucose levels by facilitating cellular glucose uptake 
during postprandial hyperglycemia, glucagon sti
mulates hepatic glucose release through elevated 
glycogenolysis and gluconeogenesis and by inhibi
tion of glycogenesis and glycolysis when the glu
cose levels are low in the bloodstream (e.g., during 
fasted states).

Numerous articles have extensively reviewed 
and discussed the etiology and pathogenesis of 
T1D, T2D, and GDM. Therefore, in the present 
review, we will just briefly describe the main points 
involved in the etiology and pathogenesis of these 
forms of diabetes; we refer readers to the following 
reviews on the topic.1,2,7,37–42

2.1. Type 1 diabetes

T1D is an autoimmune disease characterized by 
the destruction of insulin-producing, pancreatic 
β-cells. The exact etiology and pathological 
mechanisms leading to the autoimmune assaults 
are not fully understood, but it is believed to 
involve a complex dialogue between the β-cells 
and the invading immune cells, which culminates 
in islet inflammation and progressive β-cell dys
function and death.43 This dialogue is mainly 
determined by a combination of genetic and 
environmental factors. In genetically predisposed 
individuals, environmental triggers, such as viral 
infections or exposure to certain dietary factors, 
may initiate an autoimmune response, which 
leads to the activation of immune cells, particu
larly T cells, that mistakenly target, attack, and 
destroy β-cells.44,45 The continuous destruction 
of β-cells ultimately results in insulin deficiency, 
leading to hyperglycemia.46 T1D is also associated 
with the presence of autoantibodies against β-cells 
antigens, commonly known as islet autoantibo
dies, that can be detected in the blood before the 
onset of clinical symptoms and are used as mar
kers for the risk of developing T1D.44 In addition 
to genetics and environmental factors, stochastic 
events may also play a role in T1D etiology. It has 
been suggested that the random generation and 
distribution of T-cell and B-cell receptors as well 
as epigenetic modifications may be some of the 

stochastic factors involved in the development of 
T1D.47,48

2.2. Type 2 diabetes

T2D pathogenesis involves several mechanisms 
that lead to impaired insulin secretion and func
tion, including glucolipotoxicity (i.e., excess of glu
cose and long-chain free fatty acid levels in the 
plasma), oxidative stress (i.e., excessive production 
of reactive oxygen species and/or a deficiency in 
antioxidant defense systems), and endoplasmic 
reticulum stress (i.e., the endoplasmic reticulum 
protein folding capacity is overwhelmed). These 
mechanisms are involved in the development of 
insulin resistance in splanchnic and peripheral tis
sues as well as β-cell failure and may contribute to a 
chronic, low-grade inflammation observed in some 
tissues (e.g., adipose tissue and pancreas) during 
T2D progression.49

Insulin resistance occurs when insulin-sensitive 
tissues (e.g., liver, adipose tissue, and skeletal mus
cle) become progressively less responsive to insu
lin, resulting in reduced glucose uptake and 
suppression of endogenous (primarily hepatic) glu
cose production. When faced with constant hyper
glycemia due to impaired insulin action, the body 
usually increases β-cell mass and β-cell secretory 
capacity (which is already abnormal at this stage) to 
compensate for the elevated insulin demand.50 

Although this compensation may initially maintain 
normoglycaemia, β-cell function and mass gradu
ally decrease over time due to the constant stresses 
to which they are submitted (e.g., 
glucolipotoxicity).51,52 Simultaneously, inappropri
ate secretion and/or responses to glucagon and 
incretin hormones, such as glucagon-like peptide- 
1 (GLP-1) and glucose-dependent insulinotropic 
polypeptide (GIP), may contribute to abnormal 
glucose levels, particularly in the post-prandial 
period.53,54 It is well known that obesity and life
style factors, such as sedentary behavior and high 
caloric diet, can further exacerbate these 
mechanisms.37,38

2.3. Gestational diabetes mellitus

GDM is characterized by any degree of hyperglyce
mia that is first identified during pregnancy, even 
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though there is a lack of consensus about which 
glucose levels should be recognized as GDM and 
treated.55 GDM is the most common medical com
plication during pregnancy and encompasses both 
cases of undiagnosed T2D identified early in preg
nancy as well as true GDM that develops later.55 

Major risk factors are maternal overweight and obe
sity, family history of T2D, later age in pregnancy, 
nonwhite ethnicity and history of giving birth to 
large infants.7,56 GDM is associated with various 
complications and risks, such an increased risk of 
developing T2D for both the mother and the fetus 
later in life.55,57 Furthermore, offspring exposed to 
GDM in utero may also be at increased risk for 
cardiovascular risk factors, obesity, hypertension 
and dyslipidaemia later in life.58

During pregnancy, there is a heightened likeli
hood for women to release pro-inflammatory cyto
kines, including but not limited to interleukin 6 
(IL-6), tumor necrosis factor-α (TNF-α), inter
feron-γ a (IFNγ), and C-reactive protein (CRP). 
This increase in cytokine levels, coupled with ele
vated levels of placental lactogen, progesterone, 
and estrogen, can significantly amplify insulin 
resistance and glucose intolerance.59 Additionally, 
the inflammatory response is linked to hyperglyce
mia-induced oxidative stress.60 This not only leads 
to various pathophysiological complications but 
also closely correlates with insulin resistance, caus
ing diminished glucose absorption in peripheral 
tissues and heightened glucose production in the 
liver.61

3. The gut microbiome

Humans are considered to be superorganisms, as 
we need an associated microbiota to maintain an 
state of health.62 We can find diverse microbial 
communities in the human body, but those inha
biting the gut, and, more specifically, the colon, are 
considered the most abundant in number and 
diversity, accounting for 70% of total numbers 
(gut microbiota) and approximately eight million 
genes (metagenome of the gut microbiome).63 The 
gut microbiota comprises bacterial, archaeal, viral 
and eukaryotic species that co-exist through com
plex ecological relationships.64 While the taxo
nomic composition of the gut microbiota varies 
both between and within individuals, there is a 

level of redundancy in its functional metabolic 
potential that has been associated with resilience 
against acute stressors and ecological stability.65

3.1. Gut microbiota

Amongst the two prokaryote domains present in 
the gut microbiome, the highest volume of infor
mation and level of characterization relates to 
Bacteria. First communities in the gut become 
established at birth, influenced in part by delivery 
mode, and continue to increase in abundance and 
complexity during the next 1–3 years as milk and 
solid food are incorporated.66 These communities 
remain relatively stable throughout adulthood, 
mainly shaped by lifestyle and diet, and their diver
sity decreases later in life. This loss in microbial 
diversity has been associated with negative health 
impacts, and many studies have aimed to charac
terize the microbiota of humans with above-aver
age lifespans and elucidate the degenerative 
mechanisms that might have a gut origin. For 
instance, it has been reported that these centenar
ians might present a distinctive gut microbiota 
composition containing certain metabolic path
ways that limit the outgrowth of bacterial groups 
associated with inflammation processes.67,68

The main bacterial phyla represented in the 
human gut are the Bacillota, previously referred 
to as Firmicutes, in a proportion of approximately 
64% under physiological conditions, Bacteroidota 
(former Bacteroidetes, approx. 23%), 
Pseudomonadota (former Proteobacteria, aprox. 
8%), Actinomycetota (former Actinobacteria, 
aprox. 3%) and Verrucomicrobiota (former 
Verrucomicrobia, aprox. 3%).69,70 Their distribu
tion is not constant across the digestive tract, as 
they depend on the ecological micro-environments 
derived from the gut geography. In addition, their 
abiotic regulators, namely water activity, gas com
position, pH and the presence of molecules with 
antimicrobial activity secreted by the human cells 
or by other members of the gut microbiota (e.g., 
bile salts or antimicrobial peptides), also modulate 
their distribution.71 Thus, the microbiota of the 
small intestine is dominated by facultative anae
robes capable of growing in the presence of oxygen 
and bile salts, like some Bacillota and, more speci
fically, lactobacilli, and Pseudomonadota. 
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Longitudinal progression through the intestine sees 
a reduction in oxygen levels, accompanied by an 
increase in bacterial density and diversity. Finally, 
in the colon, bacterial composition is dominated by 
anaerobes and bacteria with fermentative metabo
lism capable of catabolizing substrates reaching the 
final part of the intestine that have resisted host 
digestion, such as dietary fibers.72

Transversally, we can find heterogeneous com
munities in the lumen or in the secreted mucus 
layer attached to the epithelium. This mucus layer 
is key for the maintenance of gut homeostasis and 
its structure will determine the bacterial commu
nities inhabiting within.73 In the small intestine, 
the mucus layer is strongly attached to the epithe
lium, while in the colon we can differentiate an 
inner layer attached to epithelium, denser and less 
populated, and an outer layer in contact with the 
lumen, less dense and exhibiting greater bacterial 
diversity. The characterization of the transversal 
bacterial communities remains a challenge, as 
most studies rely on fecal samples. Arguably, the 
most reliable data for the analyses of these com
munities come from human colon biopsies, which 
have previously identified the presence of 
Akkermansia muciniphila, a species within the phy
lum Verrucomicrobiota. This mucin-degrader bac
teria improves gut barrier integrity and is 
associated with positive health outcomes, the 
growth of which is promoted by dietary polyphe
nols and fermented foods.74

Bacterial populations are influenced by other 
groups coexisting in the gut, although elucidation 
of these relationships and population dynamics is 
in its infancy.75,76 Bacterial population structure 
has been shown to correlate with altered fungal 
composition in certain conditions, such as in aut
ism spectrum disorder and cystic fibrosis, where 
the abundance of Candida spp. was increased.77,78 

Saccharomyces, Malassezia, and Candida are the 
fungal genera most commonly present in the feces 
of healthy humans.79,80 The viral component of the 
gut microbiome is receiving increased attention, 
with the most abundant members including 
CrAss-like phage, Microviridae, Siphoviridae, 
Myoviridae and Podoviridae.81–83 Archaea, despite 
being abundant in nature, are not well character
ized in the gut, as most extraction methods are 
based on bacteria and universal primers for archaea 

do not cover all lineages,84 although shotgun 
sequencing could be an alternative to overcome 
this limitation. Most of their functions and their 
role in health and disease remain to be addressed, 
but some groups, such as the order 
Methanobacteriales, have been identified as impor
tant for population dynamics. This order is con
sidered ubiquitous in the human gut and one 
particular species, namely Methanobrevibacter 
smithii, is believed to be the dominant methanogen 
in this ecosystem, with a prevalence of more than 
90%.85 Functionally, Methanobacteriales decrease 
partial pressures of H2, increasing the energetic 
efficiency of primary fermenters.86 Other archaea 
of the order Methanomassiliicoccales use methy
lated amines, such as trimethylamine (TMA), in 
methane production.87

Overall, these microbial groups will produce 
metabolites that will trigger effects in the human 
host beyond the gut.88 These microbial metabolites 
include bacterial compounds such as neurotrans
mitters, endocrine hormones, quorum-sensing 
molecules, biogenic amines, bile-derived mole
cules, branched-chained amino acids, vitamins, 
antimicrobials, short-chain fatty acids (SCFAs), 
and bacterial components such as lipopolysacchar
ide (LPS).89

3.2. The gut barrier

The intestinal mucosa is also known as “gut bar
rier”. This highly specialized mucosa is involved in 
the digestion and absorption of nutrients in the 
intestine as well as in the homeostasis of the gut 
microenvironment that ensures the coexistence 
and bidirectional communication with the gut 
microbiota.90 When the gut barrier is impaired, 
due to, for instance, infection or inflammation, 
molecules and translocation of microorganisms 
that usually would not be able to come across it, 
experience an increased efflux known as “intestinal 
permeability” or “leaky gut”.91 An increased intest
inal permeability was originally associated not only 
with a number of local disorders, including IBD, 
IBS and celiac disease, but with other systemic 
conditions.92,93

The key element of the gut barrier is the epithe
lium, where the mucosa gets in contact with the 
lumen. This epithelium is formed by a single layer 
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of cells that are replaced every 4–5 days and shed 
into the lumen.94 The epithelium is shaped into 
small protuberances named villi that increase the 
absorption surface, and invaginations named 
crypts where the stem cells are located.92 These 
stem cells differentiate into cell types with absorp
tive or secretory functions. Absorptive cells include 
microfold cells (or M cells), which are involved in 
the immune response in the gut, and enterocytes, 
the most numerous cell type and whose main func
tion is absorbing nutrients.95 The secretory cells are 
enteroendocrine cells, which secrete hormones and 
enzymes due to the intestinal stimulations; Paneth 
cells, with antimicrobial and immunomodulatory 
function in the form of proteins and peptides; 
goblet cells, responsible for the production of the 
mucus layer; and tuft cells, less studied but with 
immunomodulatory functions.96

The paracellular integrity of this layer is main
tained by different cell structures. Gap junctions, 
desmosomes and adherent junctions are lateral 
connections between cells, whereas tight junctions 
are protein complexes apically located that control 
the diffusion of water, ions and small compounds 
and prevent the passage of bigger molecules.97 

Tight junctions include different transmembrane 
proteins, such as occludins, claudins, junctional 
adhesion molecules, tricellulin and intracellular 
scaffold proteins (e.g., zonula occludens).98

Gut barrier integrity is important in the devel
opment of some pancreatic disorders. For example, 
severe acute pancreatitis is associated with gut bar
rier impairment that ultimately can cause necrosis 
and infection as well as multiple organ dysfunction 
syndrome.99,100 Gut barrier integrity is strongly 
influenced by bacterial metabolites, and treatment 
with antibiotics and probiotics have been reported 
as a strategy to alleviate the symptoms and progres
sion of acute pancreatitis.100

3.3. Metabolites of gut bacteria

As mentioned above, microorganisms do not exert 
their action in the gut by direct contact alone. Their 
metabolism can produce compounds that can have 
numerous effects on the gut, such as cross-feeding 
or competition with other members of the 
microbiota.101,102 These metabolites can also inter
act with the human host in health-promoting or 

detrimental ways, e.g., vitamins produced by com
mensals, or toxins produced by enteric pathogens, 
respectively.73 Interkingdom crosstalk has also 
been observed, wherein certain host receptors are 
tuned to detect bacterial metabolites such as 
quorum-sensing molecules, potentially to respond 
to early-stage infections.103,104 This section 
describes the primary compounds produced by 
gut bacteria of interest in microbe-microbe and 
host-microbe interactions affecting pancreatic 
function (Figure 1).

3.3.1. SCFAs
SCFAs are produced through the fermentation of 
dietary fiber in the colon. The most abundant are 
acetate, propionate and butyrate, with formate, 
valerate and caproate featuring in lower abun
dance. Acetate and propionate are mainly pro
duced by members of Bacteroidota, while butyrate 
is primarily synthesized by Bacillota.105 SCFAs 
reduce the pH of the intestinal tract, inhibiting 
the growth of pathogens. SCFAs also play an 
important role in the homeostasis of the gut bar
rier, as they are the main source of energy for the 
epithelial cells, promoting their proliferation and 
differentiation and reducing apoptosis.106 SCFAs 
can enhance host defense against enteric pathogens 
by stimulating the production of antimicrobial 
peptides by intestinal epithelial cells, including 
defensins and lysozyme as well as upregulating 
mucin gene expression.107 SCFA can also promote 
the protein synthesis of tight junctions, more spe
cifically Zo-1 and Occludin, reducing intestinal 
permeability and strengthening the gut barrier 
immune function.99,108 SCFAs can also disseminate 
after absorption, with propionate, in particular, 
being shown to act as a substrate for gluconeogen
esis in the liver, highlighting how locally produced 
metabolites in the gut can have direct systemic 
effects.109

3.3.2. Gamma-aminobutyric acid (GABA)
GABA is the main inhibitory neurotransmitter in 
the brain that can modulate the gut-brain axis 
communication.24,89 It is produced by the decar
boxylation of glutamate by bacteria in the gut, 
including by species of Lactobacillus, 
Bifidobacterium and Bacteroides.110,111 In the pan
creas, GABA is produced and secreted by β-cells at 
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concentrations as high as those found in the central 
nervous system.112 Endogenous, locally secreted 
GABA is known to exert auto- and paracrine 
effects as well as metabolic roles in islets cells.113 

However, besides these endogenous effects, recent 
evidence suggests that GABA has a strong protec
tive and regenerative effects on the β-cells, espe
cially in the context of massive β-cell loss. 
Moreover, GABA also improves glucose tolerance 
and insulin sensitivity, has immunomodulatory 
and anti-inflammatory effects, and ameliorates dia
betes in different models.114–117

3.3.3. Quorum-sensing molecules
Quorum-sensing molecules are compounds 
secreted by bacteria for concentration-dependent 
transcriptional regulation.118 While they primarily 
coordinate population-level behaviors and cross- 

species communications, they can also interact 
with the human host, for example, through cross
talk via G-protein-coupled bitter taste receptors 
(T2Rs).119 As well detecting bitter, sweet and 
umami flavors in the mouth, T2Rs are also 
expressed in the gut120 and heart and can respond 
to quorum-sensing molecules from both Gram- 
negative121 and Gram-positive bacteria.122 T2Rs 
can govern inflammatory and oxidative stress 
responses123 and, moreover, secretion of GLP-1, 
which influences glucose homeostasis. Quorum- 
sensing molecules also appear to exert an effect 
on the integrity of the gut barrier. 3-oxo-C12- 
HSL, a quorum-sensing molecule produced by 
Pseudomonas aeruginosa, provokes apoptosis in 
macrophages and mast cells, and disrupts tight 
junctions in the gut in vitro.124,125 Conversely, 
other quorum-sensing molecules appear to protect 

Figure 1. Metabolites produced by gut bacteria that may affect pancreatic functions. SCFA – Short chain fatty acids; GABA – gamma- 
aminobutyric acid; QSM – Quorum sensing molecules; LPS – Lipopolysaccharide; EVs – Extracellular vesicles; EPS – Exopolysaccharides; 
ROS – Reactive oxygen species. Figure created with Biorender.com.
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the gut barrier, including the putative host-mod
ified and anti-inflammatory 3-oxo-C12:2-HSL,126 

indole, and the competence stimulating factor pep
tide of Bacillus subtilis.127 The types and concen
trations of quorum sensing molecules produced in 
the gut are likely to be determined by the composi
tion of the microbiota, and more work is required 
to determine biologically-relevant concentrations 
and the effect of host polymorphisms on ligand 
binding.

3.3.4. Extracellular vesicles
Extracellular vesicles (EVs) or membrane vesicles 
are an end product of secretion from bacteria, 
which package and export metabolites, possibly 
mediating cell-to-cell communication, antagonism 
of competitors, or nutrient sensing.128 Recent evi
dence suggests that some of these EVs could induce 
insulin resistance and impair glucose metabolism 
in skeletal muscle, with possible negative implica
tions for the pathogenesis of T2D.129 More specifi
cally, EVs derived from Pseudomonas panacis 
impaired the insulin signaling pathway in both 
skeletal muscle and adipose tissue,129 although it 
is not understood whether effects arise from the 
vesicles themselves or the molecular cargo within.

3.3.5. Bacterial LPS
LPS is an element of the Gram-negative bacterial 
outer membrane, which can induce systemic 
inflammation130 and its presence in the blood is 
considered a biomarker of an impaired gut barrier.
131 LPS production can also increase reactive oxy
gen species levels in the gut through activation of 
host immune cells.132 It has been observed that 
plasma LPS levels were increased in patients with 
T2D and have been associated with the develop
ment of diabetic retinopathy.130,133 Moreover, a 
human longitudinal study, DIABIMMUNE, 
tracked the development of the gut microbiome 
from birth until age three years in infants with 
high-risk genetic HLA haplotypes in Northern 
Europe, where early-onset T1D is common in 
Finland and Estonia but is less prevalent in 
Russia.134 The authors characterized the contribu
tion of host-microbe immune interactions to auto
immunity and allergy and, among different 
observations reported, noted that structurally and 
functionally distinct LPS could exert different 

effects with respect to immune stimulation and 
inflammatory responses, impacting susceptibility 
to immune diseases such as T1D.134

3.3.6. Exopolysaccharides
Exopolysaccharides are a diverse family of macro
molecules composed of repeating configurations of 
monosaccharides. They are key membrane compo
nents of many bacteria and can also be secreted, 
rendering them amenable to purification, and har
nessed in the food industry to modulate sensorial 
profiles of various foods.135 Specific exopolysac
charides have been reported to exhibit anti-diabetic 
properties, such as a heteropolysaccharide from 
Lactobacillus plantarum RJF4, which inhibited α- 
amylase activity in vitro.136 Exopolysaccharides 
from L. plantarum YML009 has been shown to 
mitigate oxidative stress in the gut through scaven
ging of free radicals.137 Additionally, the microbial 
exopolysaccharides from Leuconostoc pseudome
senteroides XG5 delayed T1D onset in non-obese 
diabetic (NOD) mice, the quintessential murine 
model for T1D research, through upregulation of 
GLP-1 secretion, which could be correlated with 
the increase in butyric acid production in the 
colon.138

3.3.7. Bile acids
Bile acids are produced in the liver from the 
metabolism of cholesterol. Besides their primary 
digestive functions, bile acids can also act as sig
naling molecules and mediate crosstalk between 
the liver and the gut. Bacteria including 
Lactobacillus sp., Bifidobacterium sp., 
Enterobacter sp., Bacteroides sp. and Clostridium 
sp. produce bile salt hydrolase enzymes that coor
dinate the deconjugation of conjugated bile acids, 
preventing their recycling through the liver and 
allowing their subsequent modification into sec
ondary bile acids.139 Bile acid concentrations and 
profiles are considered influential in health and 
disease, with certain bile acids capable of activat
ing host receptors and influencing glucose home
ostasis, such as the farnesoid X receptor140 and the 
G-protein-coupled receptor TGR5.141 Bile acid 
sequestrants have also been explored for potential 
therapeutic applications.142 A particularly inter
esting bile acid, namely tauroursodeoxycholic 
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acid, can increase glucose-stimulated insulin 
secretion, protect β-cells against cytokine-induced 
apoptosis, and reduce diabetes incidence in T1D 
mouse models.143–145

3.3.8. Products of protein catabolism
While carbohydrates are the preferred primary 
energy source, under limiting conditions bacteria 
can break down proteins into amino acids and 
peptides that undergo fermentation generating 
branched-chain amino acids (BCAA), amines, 
indoles, phenol, hydrogen sulfide and ammonia.146 

These compounds reduce the uptake, transport, 
and oxidation of butyric acid by the gut epithelial 
cells and, ultimately, impact the gut microbiota 
composition by decreasing the levels of butyrate- 
producing species, such as Bifidobacterium sp., 
Blautia sp. and Roseburia sp. This can result in 
damage to the gut barrier function and a further 
reduction in butyrate levels by suppression of pro
ducer bacteria.

Indole and its derivatives are substances gener
ated through the transformation of tryptophan 
(Trp), an aromatic essential amino acid that must 
be acquired through diet, by the gut bacteria. Upon 
ingestion, a fraction of Trp is used for protein 
synthesis, while the rest undergoes metabolic path
ways within the host organism (e.g. the kynurenine 
and serotonin pathways) or via intestinal microbes 
through different metabolic pathways, leading to 
the production of indole and its derivatives. Indole 
compounds interact with nuclear receptors, control 
gut hormones, and regulate the biological effects of 
bacteria activities.147 Many in vitro and in vivo 
studies have reported increased expression of 
tight junctions, reduced intestinal permeability 
and regulation of proinflammatory cytokine pro
duction in the presence of these molecules.148 It has 
been reported that some of these derivatives, such 
as indolepropionic acid, are associated with lower 
risk of T2D development,149 suggesting promising 
therapeutic applications and leading to the synth
esis of indole analogues with antidiabetic 
properties.150

3.3.9. Betaines
Betaines are a varied group of compounds contain
ing a positively charged nitrogen atom connected 
to three methyl groups. Some betaines are derived 

from protein metabolism, while others come from 
diet, or are by-products of gut microbiota. 
Trimethylamine (TMA) is an amine compound 
derived from the transformation of dietary com
pounds (mainly choline, L-carnitine, and betaine, 
present in, for instance, eggs, red meats and fish151) 
by few representatives of the gut microbiota that 
encode the genes for the enzymes responsible for 
such transformations, like Acinetobacter sp and 
Pelobacter sp.152,153 TMA is the precursor of tri
methylamine N-oxide (TMAO), which has been 
associated with inflammatory responses resulting 
in increased cardiovascular disease risk by inducing 
endothelial dysfunction and affecting the expres
sion of tight junctions.153 TMAO has been involved 
in nephropathy in T2D patients, and it is frequently 
reported in T2D studies that analyze metabolome.154 

Recent studies suggest that TMAO could be used as a 
biomarker for kidney failure progression and mortal
ity outcomes in T2D patients,155 and early detection 
and monitoring could result in better outcomes for 
patients.156 Dietary TMAO regulates the expression 
of genes related to the insulin signaling pathway, 
gluconeogenesis, glycogen synthesis, and glucose 
transport in the liver, which leads to insulin resistance 
and impaired glucose tolerance in high-fat diet-fed 
mice.157 Additionally, TMAO also increased the 
expression of the pro-inflammatory cytokine MCP- 
1 while reducing the mRNA levels of the anti-inflam
matory cytokine IL-10, causing adipose tissue 
inflammation.157

Another betaine, namely 5-aminovaleric acid 
betaine (5-AVAB), a microbial metabolite that 
can also be found in different foods like milk 
and meat, has been proposed as a metabolic 
marker.158 Increased serum levels of 5-AVAB 
were positively associated with worse estimates 
of obesity, glucose metabolism, and hepatic stea
tosis after weight loss. Moreover, following weight 
loss, higher levels of 5-AVAB were independently 
predictive of adverse alterations in glucose meta
bolism, suggesting this metabolite could be used 
for glycemic control.159

4. The pancreatic microbiota

Outside of infection, the pancreas was once 
believed to be a sterile organ.160 However, this 
view has been challenged by the recent detection 
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of an associated microbiota using culture-based 
methods, qPCR, and metataxonomic approaches. 
Bacteria can be detected in healthy pancreatic sam
ples, which are mainly derived from nonmalignant 
tissue re-sections or organ donors.160 However, 
rates of detection are consistently higher in samples 
from patients with pancreatic ductal adenocarci
noma (qPCR detecting 16S rDNA; 15% versus 
76%) and members of the phylum 
Pseudomonadota are the most frequently reported.
161 Pancreatic cyst fluid has also been found to 
contain a varied and diverse microbiota, particu
larly formed by Bacteroides spp. and Fusobacterium 
nucleatum.162 Further investigation is required, 
especially given the growing consensus regarding 
the pitfalls and limitations associated with applying 
sequencing approaches to low-microbial biomass 
samples, particularly from internal organs.

The origin of pancreatic microbiota remains to be 
understood. Based on studies where bacterial inocula 
was administered to mice by oral gavage, it has been 
hypothesized that bacteria may reach the pancreas 
from the small intestine and the stomach due to 
anatomical proximity and reflux-like action of the 
pancreatic duct.163,164 This seems to be a controversial 
point, as some authors reported an absence of pan
creatic colonization after insult to gut barrier integ
rity. Flow of pancreatic juice and bile in the 
hepatopancreatic duct can inhibit bacterial migration, 
while neutral to alkaline pancreatic juice stimulates 
pH-taxis toward the pancreas and away from the 
acidic duodenum.165 Local immune suppression in 
the pancreas could prevent immune clearance of 
bacteria that may translocate from the gut via mesen
teric venous or lymphatic drainage.160,166 This may 
signify that underlying pathologies within the pan
creas may favor the establishment of bacteria, which 
would otherwise be prevented in normal physiologi
cal conditions.160,167 Moreover, the association with, 
but not causation of, pancreatitis by Staphylococcus, 
Enterococcus or Klebsiella species seems to implicate 
the inflammatory environment as being important 
with respect to facilitating the entry and establish
ment of these microorganisms in the pancreas.168,169 

Local pancreatic inflammation has been linked to 
several chronic conditions, including T1D and 
T2D.170,171 A recent murine study demonstrated 
that low doses of dextran sulfate sodium, a chemical 
well known for its effect on disrupting the gut 

microbiota, decreased butyrate levels in the gut and 
diminished the expression levels of an antimicrobial 
peptide in the pancreas that allowed the enrichment 
of a pathobiont from the family Muribaculaceae in 
the gut and their translocation to the pancreas. 
Interestingly, this single pathobiont was enough to 
trigger local inflammation, β-cell destruction, and the 
development of insulin-dependent diabetes in germ
free mice.166 This mechanistic insight may be pivotal 
in understanding the gut-pancreas axis, but care 
needs to be taken as such patterns have yet to be 
revealed by human studies.

Gut bacterial metabolites seem to play a role in 
the pancreas-gut microbiota bidirectional talk, as 
highlighted in the aforementioned study through 
SCFA and antimicrobial peptides. It has also been 
reported that SCFAs produced by gut bacteria con
trol the production of cathelicidin-related antimi
crobial peptide by β-cells, which can convert 
inflammatory into regulatory immune cells in pan
creatic islets. Moreover, cathelicidin-related anti
microbial peptide protected prediabetic NOD 
mice against autoimmune diabetes.172

5. Gut microbiota and T1D

Although T1D is considered an autoimmune dis
ease with a strong genetic component, its develop
ment has been associated with several 
environmental factors.44,45 It has been recently 
shown that some of these environmental compo
nents can impact gut microbiome composition and 
its production of butyrate, gut barrier impairment 
and altered mucosal immunity.173

As T1D develops early in life, several human 
epidemiological studies use cohorts of children to 
determine the impact of environmental factors on 
T1D etiology and development. There is some con
troversy whether being born by C-section is a T1D 
risk or not, as some studies have reported a corre
lation between the two elements174,175 and others 
did not.176,177 Additionally, there are other ele
ments such as breastfeeding, the use of antibiotics 
or the timing and mode of exposure to gluten178 

that are debated to be linked to the establishment 
and development of the first bacterial communities 
in the gut of the newborn as the potential triggers 
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of gut barrier disruption and inflammation 
later on.

One of the major studies in this vein is The 
Environmental Determinants of Diabetes in the 
Young (TEDDY) study, a prospective study that 
includes clinical research centers in the United 
States and Europe.179 In 2018, the TEDDY study 
group published two articles based on their inves
tigation of the relationship between the human gut 
microbiome and the onset of T1D in infants.180,181 

In the first study, initial results correlated T1D 
development with the depletion of 11 bacterial 
genera, including Lactococcus sp., Streptococcus 
sp., Akkermansia sp. and four unclassified 
Ruminococcus sp., while enrichment of 
Parabacteroides sp. was positively associated with 
T1D onset (Figure 2).181 In the second study, a 
reduced abundance of the pathways involved in 
butyrate production was observed in the children 
that developed islet autoantibodies, along with a 
higher abundance and diversity of Streptococcus 

sp., with lower relative abundance of Lactobacillus 
rhamnosus and Bifidobacterium dentium.180 

Interestingly, a previous study using the TEDDY 
population showed that early probiotic supplemen
tation decreased the risk of islet autoimmunity in 
children at the highest genetic risk of T1D.182

The previously referred to DIABIMMUNE 
study reported that its initial analysis in infants 
from Finland and Estonia showed a decrease in 
microbial diversity and a reduction in the number 
of bacterial genes in children who ultimately devel
oped T1D.183 Additionally, they observed a 
decrease in the families Lachnospiraceae and 
Veillonellaceae and an increase in the genera 
Streptococcus, Blautia and Ruminococcus. The 
metagenome analysis showed a higher prevalence 
of genes involved in sugar transport and a lower 
prevalence of the genes involved in amino acid 
biosynthesis.183 A subsequent report identified a 
distinctive early microbiome in Finnish and 
Estonian infants when compared to their Russian 

Figure 2. Examples of different gut microbial signatures (family, genus and species levels) positively or negatively correlated with T1D, 
T2D and GDM at. Viruses in T1D are associated with exposure at earlier stages of development or related to gut dysbiosis. Some 
common traits, like depletion of SCFA-producing taxa, are correlated with impairment of gut barrier function and pro-inflammatory 
outcomes, a shared observation in T1D, T2D and GDM. Figure created with biorender.com.
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counterparts. Moreover, they identified several 
bacteria, such as Bacteroides species, that were 
notably prevalent in Finland and Estonia and 
lowly abundant in Russians; these bacteria could 
be producing factors, like LPS, that could poten
tially suppress the immune system and contribute 
to the development of T1D. Interestingly, the 
authors showed that Bacteroides LPS was structu
rally different from E. coli LPS and did not reduce 
the incidence of autoimmune diabetes in NOD 
mice.134,134,178 Finally, a 2018 DIABIMMUNE 
study showed that Bifidobacterium infantis, a bac
terium that stimulates β-cell function, is found in 
only 10% of Finnish infants in this cohort. 
Moreover, the study suggests that the absence of 
B. infantis could contribute to the prevalence of 
inflammation-favoring microbes, which could 
lead to microbiome dysfunction and, ultimately, 
an increased risk of T1D.184

Receptors might play a crucial role in the devel
opment of T1D. In studies conducted in NOD mice 
in a very controlled environment to reduce unde
sired microbial stimuli, it was found that the mye
loid differentiation primary response 88 (MyD88) 
adaptor protein, used by multiple toll-like recep
tors, could be critical for T1D development, poten
tially affecting T cells.185 MyD88 signaling could 
affect gut microbiota composition and function, 
which in turn modulate the immune responses 
influencing the development of T1D. Therefore, 
disrupting MyD88 signaling altered gut microbiota 
and reduced T1D development. Moreover, normal 
microbiota was able to alleviate the progression of 
T1D.185

Gut bacteria are not the only potential trigger of 
T1D development. In fact, several viruses, such as 
Enterovirus sp,186 coxsackievirus B,187,188 and 
rotavirus,189 have been associated with T1D. It 
could be hypothesized that an immature and less 
diverse gut microbiota might provide an environ
ment for these enteroviruses to inflict more 
damage in the β-cells, or to foster a gut environ
ment that promotes the translocation of microbiota 
to distal organs, such as the pancreas.

Different observational studies have reported 
that the gut microbiota from T1D patients is less 
diverse and stable than the microbiota from 
healthy subjects.178 As for children with predia
betes, they presented a higher relative abundance 

of Bacteroides species and a decreased abundance 
of Faecalibacterium prausnitzii, a bacterium 
involved in butyrate production.181 Other SCFA- 
producing species, such as Bifidobacterium adoles
centis and Roseburia faecis, are also negatively cor
related with the number of autoantibodies,190 

which are markers of β-cell autoimmunity that 
strongly associate with T1D development.

6. Gut microbiota and T2D

The relationship between gut microbiota and T2D 
has been studied both in humans and animal mod
els. These studies have reported compositional 
changes in the gut microbiota profiles, more speci
fically at phylum and class levels.191,192 However, 
the heterogeneous nature of the available studies, 
in terms of geography, diet, use of medication, etc., 
makes it difficult to identify a characteristic micro
biota associated with T2D, even at phylum level.70 

Additionally, it is unlikely that a single species is 
responsible for the onset of T2D. Some studies have 
identified higher proportions of opportunistic 
pathogens, such as Bacteroides caccae, E. coli, 
Clostridium ramosum, Clostridium symbiosum 
and Eggerthella lenta.70 Other enriched nonpatho
genic genera are Blautia, Coprococcus, Sporobacter, 
Abiotrophia, Peptostreptococcus, Parasutterella and 
Collinsella.193 A few groups of taxa seem to be 
associated with the early stages and development 
of T2D in different populations and could poten
tially be used as biomarkers. Different reports have 
identified a reduction in the number of butyrate- 
producing bacteria, such as Eubacterium rectale, F. 
prausnitzii, Roseburia sp., Bifidobacterium sp. and 
Ruminococcus sp., along with lower numbers of the 
mucin-degrading bacterium A. municiphila. It is 
hypothesized that both F. prausnitzii and A. muci
niphila could offer protection against the develop
ment of T2D.194–196

A commensal bacterium that has been inversely 
correlated with T2D in a Japanese cross-sectional 
study is Blautia wexlerae. The genera 
Bifidobacterium and Blautia show greater abun
dance in the Japanese gut microbiome, indicating 
that gut microbiota representatives vary with geo
graphy and cultural differences and have to be 
taken into consideration.197,198 A further study in 
mice orally administered with B. wexlerae showed 
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that there were several metabolites, such as succi
nate, lactate, acetate, S-adenosylmethionine, acet
ylcholine and L-ornithine, associated with its 
action that altered energy metabolism and dis
played anti-inflammatory effects under obesogenic 
conditions (i.e., feeding with high-fat diet); in addi
tion, these metabolites also altered the gut micro
biota composition. Altogether, these B. wexlerae 
effects contributed to reducing high-fat diet- 
induced obesity and diabetes in mice.198

Other species have been connected to the devel
opment of both obesity and T2D. The commensal 
gut bacterium Dysosmobacter welbionis has been 
recently associated with prebiotic response, liver 
health and glucose metabolism in a human study 
that involved treatment with metformin, an oral 
biguanide medication used to treat T2D, and 
prebiotics.199 The study found that D. welbionis 
abundance was enriched in the subjects that 
responded to treatment, being negatively corre
lated with fasting blood glucose levels. However, 
metformin did not show a direct effect on D. wel
bionis growth, indicating a complex regulatory 
connection.199 Beyond specific species, other stu
dies have focused on the role played by gut micro
biome in nutrient metabolism. A study compared 
the gut microbiota of 272 T2D against 674 healthy 
control subjects, finding lower diversity in the T2D 
subjects, identifying 25 genera that were signifi
cantly different and establishing a potential reduc
tion in butyrate production in the T2D cohort.200 

However, butyrate production was not measured 
and was predicted using metabolic pathways based 
on species identification, as the actual metagenome 
was not studied either, limiting the impact of the 
conclusions. Many studies support butyrate deple
tion based on functional prediction from 
composition,201 but establishing actual functional
ity from gut microbiome and metabolite produc
tion would help to understand the connection 
between gut composition and host metabolism.

Despite a still unclear underlying mechanism, 
their involvement in insulin resistance and the 
carbohydrate metabolism of commensals is consid
ered important in T2D.202,203 A multi-omics study 
conducted in 306 individuals, which included a 
combination of fecal metabolomics, metagenomics 
and transcriptomics, indicated that fecal carbohy
drate metabolites were altered in insulin-resistant 

patients, particularly monosaccharides fructose, 
galactose, mannose and xylose, and propionate.203 

Furthermore, these metabolites were also asso
ciated with inflammation, indicating once again 
the connection between gut microbiota and the 
immune system.

Glucose homeostasis can be influenced by sev
eral bacterial metabolites interacting with G-pro
tein-coupled receptors that are pivotal in the 
regulation of satiety and digestion. SCFAs can pro
mote the secretion of GLP-1204 via binding to 
GPR43 and GPR119, which are mainly expressed 
in adipose tissue, the gut, and immune cells.205 

GLP-1 can modulate satiety in the brain and 
enhance glucose-stimulated insulin secretion as 
well as induce insulin gene expression and bio
synthesis in β-cells.204,206 Bacterial quorum-sen
sing molecules, specifically acylated homoserine 
lactones121 and autoinducing peptides207 can simi
larly activate the bitter taste receptors T2R38 and 
T2R14, respectively. SCFAs also enhance glucose 
uptake by increasing the expression of the glucose 
transporter type 4.208 Propionate is associated with 
GLP-1-independent enhancement of β-cell func
tion and protection against proinflammatory cyto
kine- and palmitate-induced islet cell apoptosis.209 

Importantly, GLP-1 functionality is mediated both 
by factors influencing its production, such as pre
biotics and bile acid chelators,210,211 as well as 
compounds that prolong its half-life, such as dipep
tidyl peptidase-4 (DPP4) inhibitors.212 DPP4 is an 
enzyme produced by the gut microbiota that can 
interfere with the effect of GLP-1 and, along with 
other isozymes (often associated with Bacteroides 
sp.) can limit the response of certain individuals to 
drugs to treat T2D such as metformin.213,214

Similarly, peptide YY (PYY or peptide tyrosine 
tyrosine) also influences glucose homeostasis and 
high levels of PYY are related to insulin sensitivity. 
PYY is involved in different aspects of gut function, 
such as delaying gastric emptying and acid secre
tions, as well as inflammation and cell differentia
tion. Conversely, it also inhibits glucose-stimulated 
insulin secretion by pancreatic β-cells.215 PYY is 
produced by the neuroendocrine cells in the 
ileum and colon and its expression can be regulated 
by gut bacteria and their metabolites, including 
SCFA resulting from bacterial fermentation.216 

Therefore, dietary choices such as consuming 
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high levels of dietary fiber have been associated 
with the enrichment of fiber-fermenting bacteria 
such as bifidobacteria and lactobacilli, as well as 
with higher levels of PPY and GLP-1 levels in 
plasma.217 Gut microbiota dysbiosis may also affect 
PPY secretion. For instance, antibiotics consump
tion has been shown to reduce PYY levels, increase 
enrichment of bacteria associated with obesity and 
increase food consumption.218 Antibiotics-induced 
gut dysbiosis and its relationship with T2D is, 
however, not clearly defined and still controversial. 
While most studies concur on the detrimental 
impact of antibiotic use on gut microbiota and 
the onset of T2D, some research indicates that 
broad-spectrum antibiotics reduce insulin resis
tance, inflammation, and oxidative stress. 
Additionally, they lead to an increased abundance 
of A. muciniphila, thereby lowering the incidence 
of diabetes in mice.219,220 Evidence suggests that 
timing and length of the treatment might be a 
determining factor in the outcome.221 On the 
other hand, animal models have their intrinsic 
limitations and, although promising, more work 
is needed to ensure these therapeutic effects might 
be similar in humans.

The endocannabinoid (eCB) system is another 
metabolic pathway involved in glucose homeostasis 
that is affected by bacterial metabolites in T2D.222 

The eCB system regulates peripheral glucose and 
lipid metabolism by influencing the metabolic 
activities of adipose tissue, the liver, the endocrine 
pancreas and the gastrointestinal tract.223,224 

Evidence shows that altered crosstalk between the 
eCB system and the gut microbiome can result 
in a variety of health implications such as 
gastrointestinal, neuroinflammatory and metabolic 
disorders.225 An expanded concept of eCB system 
includes endocannabinoids (like anandamide 
(AEA) and 2- arachidonoylglycerol (2-AG) and 
endocannabinoid-like mediators, like palmitoy
lethanolamide, which is associated with Trp meta
bolism in the colon and with protective effects 
against neuroinflammation.226 Supplemented A. 
muciniphila was associated with increased levels 
of 2-AG and associated acylglycerols, improving 
gut barrier function and reducing inflammation.227 

Endocannabinoids have been positively associated 
with α-diversity and with SCFA-producing 
bacteria (Bifidobacterium, Coprococcus, and 

Faecalibacterium) and butyrate, while negatively 
associated with Collinsella, and the proinflamma
tory cytokines TNF-ɑ and IL-6. These findings 
suggesting that SCFA are regulators of the eCB 
system and partially exert their anti-inflammatory 
activity via this pathway.228

As previously mentioned, BCAAs can impair the 
gut barrier and reduce the number of butyric acid 
producers, two risk factors associated with T2D 
onset.229 Amino acid metabolism has been sug
gested as one of the key predictors of T2D devel
opment. More specifically, three BCAAs and three 
aromatic amino acids were positively associated 
with T2D: leucine, isoleucine, and valine as 
BCAAs, and phenylalanine, tyrosine and 
tryptophan.229 High BCAA plasma levels are char
acteristic of insulin resistance and are correlated 
with the presence of Bacteroides vulgatus and 
Prevotella copri.230

Peroxisome Proliferator-Activated Receptors 
(PPAR) activation has also been linked to T2D, 
wherein activation of these receptors regulates the 
transcription of genes involved in inflammation 
responses; more specifically, n-3 fatty acids were 
reported to promote insulin sensitivity231 whereas 
the TMAO upregulated PPARγ.232

7. Gut microbiota and GDM

Research indicates substantial alterations in the 
composition of the gut microbiota in pregnant 
women. Some taxons have been associated with 
GDM, namely phyla Bacillota, Bacteroidota, 
Pseudomonadota, and family Lentisphaerae.42 

Twenty-seven genera were enriched in GDM, 
among them seven genera from Pseudomonadota 
(including Citrobacter, Burkholderia, Acidibacter, 
and Bilophila) and four genera (Acidothermus, 
Granulicella, Bryobacter, and Solibacter) belonging 
to phylum Acidobacteria, which was positively cor
related with glucose blood levels.42 Particularly in 
the last trimester, there is a notable reduction in 
bacteria crucial for metabolic regulation, accompa
nied by an increase in Proteobacteria and 
Actinomycetes, contributing to an inflammatory 
condition.233 Furthermore, the quantity of accu
mulated fat and stored nutrition is contingent on 
the gut microbiota condition and composition. 
Imbalances often result in the formation of easily 
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digestible monosaccharides and activation of lipo
protein lipase through the hydrolysis of undigested 
polysaccharides, causing excessive storage of hepa
tic origin substances like triglycerides.234 

Consequently, dysfunctions in microflora homeos
tasis of any kind can directly contribute to GDM 
and disturbances in SCFA levels and composition, 
leading to disorders in energy metabolism, eating 
patterns, or blood glucose homeostasis.60

Despite having these changes mostly character
ized during the second and third trimester of preg
nancy, a recent study with 394 pregnant women 
showed that metabolomic and inflammatory bio
markers associated with developing GDM could be 
detected during the first trimester.56 Specifically, 
the GDM group showed elevated levels of proin
flammatory cytokines (interleukin (IL)-4, IL-6, IL- 
8, granulocyte-macrophage colony-stimulating fac
tor and tumor necrosis factor-α), and a significant 
reduction of two branched SCFAs, namely isovale
rate and isobutyrate.56 Microbiologically, the α- 
diversity between the GDM and non-GDM indivi
duals was not significantly different, but it was 
found that Prevotella was underrepresented in the 
GDM group.56 An interesting further application 
of this study was the development of a predictive 
model using a machine learning approach, which 
was capable of accurately predict GDM develop
ment later in pregnancy based on the studied 
parameters.

8. Gut microbiota and insulin resistance

Insulin resistance is widely recognized as the pri
mary factor underlying the development of different 
types of diabetes mellitus. Many studies describe the 
co-occurrence between development of diabetes and 
changes in gut microbiota composition and gut 
metabolites. Establishing causality between these 
changes to identify gut microbiota as the origin of 
insulin resistance can be more challenging. Animal 
models have been used to study the development of 
insulin resistance after receiving gut microbiota 
from other individuals with diabetes,56,235 and the 
improvement after receiving gut microbiota from 
healthy phenotype.236 This approach identified 
host changes previously reported in the literature 
and in the current review, such as loss of species 
like A. muciniphila, impairment of intestinal 

integrity or increased intestinal permeability asso
ciated to development of insulin resistance.237 

Moreover, the above-discussed gut microbiota 
metabolites (e.g., LPS, SCFAs, bile acids, BCAAs) 
have been suggested to be significant contributors 
to insulin resistance.238 However, it has been possi
ble to identify bacterial signatures associated with 
insulin resistance and insulin sensitivity recently.239 

These were further associated with a distinct pattern 
in microbial carbohydrate metabolism and impact
ing host inflammatory cytokines. Interestingly, the 
researchers did not find just a group of bacteria but 
four associations in the patients, including (1) 
Lachnospiraceae (Blautia and Dorea), (2) 
Bacteroidales (Bacteroides, Parabacteroides and 
Alistipes) and Faecalibacterium, (3) Actinobacteria 
and a non-clustering one (4). These differences also 
correlated with differences in clinical markers, indi
cating that there is not a one-answer-fits-all in this 
area. The study identified species associated with 
insulin sensitivity (Alistipes, and several species 
from Bacteroides, Bifidobacterium and 
Ruminococcus). Moreover, their experiments 
showed that supplementation with species identified 
in insulin sensitivity (Alistipes indistinctus, Alistipes 
finegoldii and Bacteroides thetaiotaomicron) 
improved insulin signalling and resistance in mice, 
maintaining the pattern of carbohydrate consump
tion and metabolite production.240 This indicates, 
once more, that is the activity of the given micro
organisms what needs to be characterized and not 
just their presence or absence, therefore needing 
integrative -omics studies. This study has been of 
particular importance as it has been able to associate 
insulin resistance, metabolic syndrome and levels of 
fecal monosaccharides, and it has attracted a lot of 
attention.241 Their clinical implications involve the 
potential supplementation of these species promot
ing insulin sensitivity to reduce insulin resistance.

Despite there seems to be common changes (gut 
dysbiosis and changes in the gut metabolome that 
generate gut barrier impairment and inflammation 
and ultimately insulin resistance and subsequent 
physiological consequences), a common mechan
ism in the development of insulin resistance in 
T1D, T2D and GDM is still unknown. 
Establishing detailed analyses of common changes 
and causality would be highly beneficial toward the 
description of the main pathways and mechanisms 
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underlying the onset and development of diabetes. 
This information would help to develop therapeu
tical strategies to target such pathways in an afford
able and safe manner, minimizing side effects. 
However, there is still a lack of consensus in certain 
aspects, from specific taxa involved in changes to 
which pathways are involved in the modulation of 
the immune system via the gut microbiome.242 

Therefore, more research is needed to clarify 
these areas.

9. Therapeutic options for treating diabetes 
mellitus based on gut microbiota modulation

Understanding the relationships between the gut 
microbiota, their metabolites and pancreatic phy
siology would allow therapeutic interventions tar
geting the microbial communities in the gut. There 
are different strategies focusing on modulating the 
microbiome that have been already applied; others 
are still under development, but show promising 
results as a less invasive and more efficient inter
ventions for improving diabetes treatment 
prospects.243 In this section, we provide an over
view of some of these methods (Table 1).

9.1. Dietary interventions

9.1.1. Diet
The structure and composition of the gut micro
biota are mainly shaped by birth mode, lifestyle and 
dietary habits. In the case of T1D, dietary interven
tions have been conducted at early stages with 
preventive objectives. FINDIA, a double-blind 
clinical trial conducted in Finland, studied the 
impact of bovine insulin-free cow´s milk formula, 
a whey-based hydrolyzed formula and a whey- 
based formula from the study group that had the 
bovine insulin removed.244 The study showed that 
the intake of bovine-free formula during the first 6  
months was associated with a reduction in the 
incidence of islet cell autoantibodies by age three. 
Moreover, the children who developed autoantibo
dies showed an increased abundance of Bacteroides 
and a decreased abundance of Bifidobacterium.

Other studies that focused on the effect of glu
ten-free diet in improving the insulin response did 
not reach conclusive outcomes, as some interven
tions showed improvement while others did not.178 

The removal of gluten from the diet was associated 
with enhanced gut barrier function, a reduction of 
the inflammation parameters and an improvement 
in insulin response, although it did not reduce the 
number of islet cell autoantibodies.178,261,262

There is increasing evidence that certain dietary 
styles, like the Western diet, which is character
ized by highly processed foods and fats, might be 
associated with poor health outcomes. The study 
of the gut microbiota linked to this diet has high
lighted the enrichment of taxonomic groups asso
ciated with inflammation.263 On the other hand, 
the consumption of foods containing high dietary 
fibers and polyphenols, such as the Mediterranean 
diet, has been associated with the presence of 
bacterial groups related to lower biomarkers of 
inflammation and frailty due to the production 
of SCFAs. Moreover, the consumption of these 
foods has been reported to improve the gut barrier 
function264,265 as well as postprandial glucose 
metabolism and insulin sensitivity.266 Other stu
dies found that patients receiving a diet with a 
high content of fiber showed augmented levels of 
SCFA-producing bacteria, reduced glycated 
hemoglobin (HbA1c), and increased GLP-1 
levels.267,268 A recent study showed that supple
menting NOD mice with extra virgin olive oil 
resulted in reduced insulitis and delayed T1D 
onset. In addition, extra virgin olive oil caused a 
shift in the composition of fecal microbes, elevating 
the Bacteroidota/Bacillota ratio and fostering the 
growth of bacteria that produce SCFAs like 
Lachnoclostridium and Ruminococcaceae_UCG- 
005. Finally, supplementation with extra virgin 
olive oil led to augmented levels of beneficial 
serum metabolites, such as unsaturated fatty acids 
and triterpenoids, which exhibited a positive corre
lation with the increased SCFA-producing bacteria 
and a negative correlation with disease indicators.245

NOD mice were also used to evaluate the effects 
of specialized diets designed to release large 
amounts of acetate and/or butyrate in the colon, 
individually and in combination.269 The acetate- 
enriched diet decreased the frequency and number 
of autoreactive diabetogenic T cells and altered B 
cell differentiation, while butyrate enhanced per
ipheral T regulatory cells. Interestingly, when acet
ate- and butyrate- diets were combined, it was 
found they acted synergistically, suggesting 
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different mechanisms of action. Additionally, 
improvements in gut barrier integrity and IL-22 
and IL-21 cytokine profiles were noted.269 In 
terms of changes in gut microbial taxa, an 
increased number of Bacteroides was noted follow
ing consumption of the acetate-enriched diet. 
Moreover, the acetate-enriched microbiota showed 
protection against diabetes in mice who received it. 
Overall, SCFA-enriched diets showed benefits that 
could translate into potential effective interven
tions to humans.

Fermented foods have recently attracted atten
tion because of their reported health benefits, such 
as alleviation and prevention of metabolic disor
ders, cognitive improvement, or immune 
enhancement.270–273 Many important studies con
ducted in animal models have described the bene
ficial effects of dairy and vegetable fermentations on 
T2D biomarkers.252,253 However, clinical trials in 
humans show moderate improvements in T2D bio
markers (e.g., glycemic control), with yogurt being 
most consistently associated with protective 
effects.254 To understand the extent of the antidia
betic benefits of fermented foods, it would be impor
tant to increase the recruitment numbers and conduct 
randomized placebo-controlled trials to limit poten
tial bias in the experimental design of the studies.

Obesity and central adiposity are accepted as 
being involved in T2D development, and dietary 
interventions should be carefully considered. For 
example, popular diet programs which restrict car
bohydrate intakes and substitute them with protein 
over time could result in gut barrier damage and 
related sequelae, due to increasing concentrations 
of nitrogen compounds and BCAA that will limit 
the protective effect of butyrate.274

The use of herbs as part of the millennial tradi
tional Chinese medicine (also known as botanical 
medicine or phytomedicine), has been proven effec
tive in modulating the gut microbiota and control
ling the onset and progression of T2D. These 
combinations of medicinal herbs are a rich source 
of fiber and phytochemical compounds that favor 
the growth of beneficial bacteria and the production 
of beneficial metabolites.275 Clinical trials have been 
conducted to assess the effectiveness of these treat
ments alone or in combination with Western hypo
glycemic pharmacology.276 Results showed that the 
use Shenqi Jiangtang granules (a widely-used 

treatment for T2D composed of ginseng, ginseno
sides, Astragalus, Ophiopogon japonicus, raspberry, 
trichosanthin, Rehmannia glutinosa, poria, medlar, 
Alisma, Schisandra, and yam) might not only 
improve levels of fasting blood glucose, postprandial 
blood glucose and HbA1c, but also reduced the risk 
of developing long-term resistance of the islet func
tion in comparison with just using hypoglycemic 
treatments.276 Similar effects were obtained with 
Jilinda.277 Meta-analyses conducted on several clin
ical trials concluded that higher numbers of partici
pants would be needed to clarify the seemingly 
contradictory outcomes of different studies. On the 
other hand, several recent studies show that Shenqi 
Jiangtang granules and Jilinda boosted the antidia
betic effects when combined with other hypoglyce
mic compounds.278–281 Other studies showed that 
these changes associated with the use of traditional 
Chinese medicine were also positively and negatively 
correlated with changes in the gut microbiota, 
including increased abundance of SCFA-producing 
bacteria Bacteroides, Faecalibacterium, 
Lactobacillus, Roseburia, and Bifidobacterium, and 
with the decline in abundance of some opportunistic 
pathogenic bacteria such as Enterococcus and 
Enterobacter.282 An insight into the mechanisms of 
the mulberry leaf water extract, also traditionally 
used to alleviate T2D showed that its supplementa
tion reduced the circulating levels of AEA, 2-AG and 
LPS, improved intestinal permeability and glucose 
and lipid metabolism imbalances. These changes 
were correlated with changes in Acetatifactor, 
Anaerovorax, Bilophila, Colidextribacter, 
Dubosiella, Oscillibacter and Rikenella, among 
others, involved in the LPS, AEA and/or 2-AG eCB 
metabolites.283 More studies, however, are needed 
with larger sample sizes and intervention length and 
strategies to get further consensus in these gut 
microbiota-associated changes.

Of note, there is less evidence of metataxo
nomics changes in gut microbiota related to 
GDM studies. As GDM is considered a transient 
stage, many interventions involve diet manage
ment, but the studies about this subject are mostly 
observational. Very few studies have been con
ducted to characterize how the diet impacts the 
gut microbiota structure. In the case of GDM, 
short-term diet management was associated with 
the change in the Bacillota/Bacteroidota.42
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9.1.2. Prebiotics, probiotics, synbiotics
More targeted dietary interventions are being 
developed using probiotics, prebiotics or synbio
tics. Prebiotics are defined as “a substrate that is 
selectively utilized by host microorganisms confer
ring a health benefit”.284 Consumption of prebio
tics is typically linked to the production of SCFAs 
that reduce inflammation and improve gut barrier 
integrity. Initially, most prebiotics were of carbo
hydrate origin, although the beneficial compound 
library has since expanded to include polyphenols 
and polyunsaturated fatty acids. Carbohydrate- 
based prebiotics are mostly constituted by inulin, 
fructo-oligosaccharides and galacto-oligosacchar
ides that are resistant to the enzymatic digestion 
in the human small intestine and, therefore, do not 
increase sugar content in the blood.285 Yet, they 
will be degraded by lactobacilli and bifidobacteria 
in the colon, promoting the growth of these bac
teria while supplying SCFAs to colonic cells. 
Prebiotics are reported to have clinical beneficial 
outcomes in the control of glycemic index in T2D, 
leading to reduction of HbA1c and fasting blood 
glucose levels.286 However, inter-individual varia
tion makes it difficult to generalize a population- 
level recommended dose. On a positive note, the 
type of fiber does not seem to be determinant for 
their glycemic control effect, but the amount needs 
to be higher than 35 g/day.286–289

The use of probiotics has also been reported to 
improve T2D glycemic control associated with an 
improvement of gut barrier integrity.290 Probiotics 
are defined as “live microorganisms that, when admi
nistered in adequate amounts, confer a health benefit 
on the host”.291 Probiotics have been shown to reduce 
the levels of circulating LPS, fasting blood glucose, 
insulin resistance, and HbA1c levels.255,256 In T1D, a 
study supplementing probiotics to a cohort of chil
dren reported a reduction in islet autoimmunity.182 

Species included in probiotic treatments were not 
homogeneously provided but mainly contained 
Lactobacillus and Bifidobacterium species.

Multiple studies affirm that probiotic consump
tion by pregnant women with GDM can effectively 
manage glycemia and glucose metabolism as well as 
lower levels of VLDL cholesterol, triglycerides, and 
inflammatory markers. The underlying mechan
isms, however, remain unexplained and warrant 
further investigation.59 Probiotics primarily confer 

benefits by reinstating proper microflora, normal
izing increased intestinal permeability, and regulat
ing the secretion of pro-inflammatory mediators.234 

Anti-inflammatory probiotic properties and 
increased production of bacteriocins and SCFAs, 
such as butyrate, propane, and acetate, influence 
insulin resistance biomarkers, acting as chemical 
messengers from the intestinal lumen to the rest of 
the body to regulate energy metabolism and fat 
tissue expansiveness.59,61 For instance, butyrate, 
involved in mucus secretion and supporting the 
regulatory functions of T lymphocytes, fortifies the 
protective barrier of the intestinal mucosa and dam
pens inflammatory reactions.60 The antioxidant 
attributes of probiotics likely result from decreased 
lipid peroxidation, leading to heightened antioxi
dant levels or interaction with enzymes, such as 
glutathione s-transferase, glutathione peroxidase, 
glutathione reductase, superoxide dismutase, and 
catalase.234 Probiotics may safeguard against oxida
tive stress by secreting peptides, restoring normal 
intestinal flora, and eliminating oxidizing com
pounds or preventing their formation in the 
bowel.234

Synbiotics have also been tested as a potential 
supplement intervention to alleviate diabetes.290 

Synbiotics are a “mixture, comprising live microor
ganisms and substrate(s) selectively utilized by host 
microorganisms, which confers a health benefit on 
the host”,292 like Lactobacillus sp. and Bifidobacterium 
sp. A synbiotic containing Lactobacillus sp., 
Bifidobacterium sp., Streptococcus sp., yeast and oli
gosaccharide was shown to reduce the abundance of 
enteric pathogens and improve fasting blood glucose 
and HbA1c levels.70

9.2. Bacterial products

Postbiotics, defined as a “preparation of inanimate 
microorganisms and/or their components that 
confers a health benefit on the host”,293 have also 
been identified as potential dietary supplements, 
such as exopolysaccharides, GABA, supernatants 
or even the inactivated microorganisms, that 
could alleviate/prevent diabetes.247 Most of the 
research where these compounds have shown ben
eficial outcomes against T2D biomarkers has been 
conducted in animal models.247 Thus, more human 
studies are needed in order to translate these results 
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to human populations. Extracellular vesicles are 
another emerging class of postbiotics which have 
attracted recent attention as a potential modulator 
of the gut ecosystem, including in T1D and T2D.294 

For the moment, only one study has analyzed them 
in regard to T2D, finding that extracellular vesicles 
from A. muciniphila improve the gut barrier func
tion and glucose tolerance in an HFD-induced T2D 
animal model.258

9.3. Clinical interventions

Other interventions targeting the gut microbiota 
for treating diabetes require a more clinical 
approach. This is the case of the fecal microbiota 
transplantation (FMT) and the microbial transfer 
therapy. FMT involves the transfer of fecal mat
ter containing fecal microbiota from a healthy 
individual to a patient with sub-optimal gut 
microbiota,295 whereas the microbial transfer 
therapy is a modified version of the FMT proto
col that requires antibiotic treatments and bowel 
cleansing before the fecal transfer.296 This strat
egy can transfer entire microbial communities 
and their metabolites and has proven effective 
in the treatment of Clostridium difficile infec
tions, inflammatory bowel disease, inflammatory 
bowel syndrome, and autism spectrum disorder- 
associated gastrointestinal and behavioral 
disorders.243,297,298 However, these techniques 
are associated with certain challenges, such as 
the requisite screening of donor samples to pre
vent the transfer of potentially harmful elements 
and the efficacy of the treatment will depend on 
the microbiome of the donor.243 FMT was suc
cessful in stopping T1D progression in a rando
mized controlled trial by stabilizing β-cells 
function and modifying plasma metabolite 
levels.248 Moreover, it was reported a reduction 
of Prevotella in the small intestine that was inver
sely related to residual β-cell function.248 

Another study reported a reduction in insulin 
levels after the FMT, but once stabilized, they 
were higher than before the transplant.249 In a 
90-day controlled clinical trial with diet and diet  
+ FMT in a T2D cohort, it was reported that both 
strategies improved blood glucose and lipids levels as 
well as blood pressure and body mass index. 
Furthermore, the addition of FMT treatment to diet 

induced changes more quickly than diet alone.299 

Changes in the gut microbiota included increased 
Bifidobacterium levels and decreased sulfate-reducing 
bacteria levels, mainly Bilophila and Desulfovibrio.299 

Another FMT study conducted in patients suffering 
from metabolic syndrome reported improvements in 
insulin sensitivity and reductions of HbA1c, while 
levels of butyrate-producing gut bacteria, more speci
fically Roseburia intestinalis, increased.300,301 Despite 
these promising results, more studies are required to 
assess the applicability and scale-up of these interven
tions before considering them as a regular treatment.

9.4. Experimental microbiome modulation 
procedures with potential applications to treat 
diabetes

Phage therapy is still in its infancy but already 
offers promising results in targeting enteric patho
gens that are disrupting gut equilibrium, such as C. 
difficile in ulcerative colitis, invasive adherent E. 
coli in Crohn’s disease or Ruminococcus gnavus, 
enriched in inflammatory bowel disease.302,303 

Phage therapy has been successfully tested to treat 
antibiotic-resistant infections derived from dia
betic wounds.304,305 Phages are already being devel
oped as treatments for intestinal diseases, in the 
form of phage cocktails, phage vaccines to induce 
specific immune responses or phage-targeted deliv
ery of therapeutic drugs.82 The development of 
experimental phage interventions to treat T2D, 
however, has only started very recently. It was 
found that gavage of an MS2-P22 phage cocktail 
to a mouse model of T2D, with gut dysbiosis 
induced by high-fat diet and antibiotic use, reba
lanced microbial composition by increasing 
SCFAs-producing bacteria, reducing representa
tives of opportunistic pathogens and increasing 
SCFAs production.306 Moreover, there was a 
reduction in the levels of proinflammatory cyto
kines and an improvement in the gut barrier func
tion, indicating the potential of this strategy to 
alleviate T2D symptoms.

Similarly, the use of CRISPR-Cas9 systems is 
being considered as a tool to edit the gut micro
biota and remove harmful members involved in 
inflammation and dysbiosis, or even to control 
gene expression and modulate the production of 
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metabolites of interest to maintain the gut barrier 
integrity and improve T1D and T2D prospects.307

Other strategies can help to understand the 
molecular mechanisms underpinning the effect of 
the gut microbiota metabolites in T1D and T2D. 
For example, microfluidics systems in the form of 
organ-on-a-chip can help to study the interactions 
between gut microbiota, diet components and 
human host308 and be used in the area of persona
lized medicine.

In summary, understanding the role of the gut 
microbiota and its metabolites in the interaction 
between environmental and genetic predisposition 
in T1D and T2D can help us design intervention 
strategies and treatments to improve health 
outcomes.

10. Conclusions and future directions

The gut microbiota and its metabolites are 
important elements of the gut ecosystem and 
contribute to the homeostasis of the human 
body via the communication axis with different 
organs. However, the interaction between the 
gut microbiota and the immune system is cru
cial to maintaining this homeostasis and might 
be key in the development and progression of 
diabetes. A better understanding of the connec
tion between the gut microbiota and the food 
will help address the impact that diet has on 
diabetes etiology and will help design more tar
geted intervention strategies to prevent the 
growth of opportunistic pathogens and the ulti
mate deterioration of the microbial commu
nities and their metabolites in the gut. 
Moreover, specific strains and compounds that 
induce or secrete certain molecules could be 
incorporated as supplements. However, despite 
the usefulness of the identification of specific 
species potentially acting as biomarkers, this is 
not enough. We have observed the abundance 
of studies using metataxonomics, while still very 
few of them report whole metagenomics ana
lyses. These leads to many descriptions of taxa 
with biomarker potential, but a lack of consen
sus in which are relevant. Some of them, like A. 
muciniphila or Bacteroides have been described 
in many studies, including reports on how they 
potentially exert their activity, although it is still 

difficult to narrow these taxa as biomarkers to 
monitor progression. On the other hand, meta
genomics studies could help to unveil which 
metabolic pathways are enriched at different 
stages of diabetes development. Moving a step 
further, transcriptomics analyses would be an 
informative way of elucidating the specifics 
mechanisms involved in the trigger and devel
opment of the condition. Nevertheless, these 
studies are still expensive and require extensive 
resources. While it is true that the metabolomics 
analyses can help to bridge that gap, we may 
only obtain reliable correlations while poten
tially missing important connections.

Many studies conducted in animal models 
have shown that fermented foods and gut bac
terial metabolites, such as postbiotics, have the 
potential to prevent and alleviate T1D, T2D and 
GDM conditions. However, these results are not 
as clear when the studies are conducted in 
humans. More double-blinded randomized pla
cebo trials and careful experimental design are 
needed to assess the range of beneficial effects of 
these strategies, which would also benefit from 
the metagenomics and metatranscriptomics 
approaches. Moreover, incorporating Artificial 
Intelligence in the form of machine learning 
would boost the analyses of the massive datasets 
and help to find patterns and define models to 
predict the early onset of diabetes. Ideally, iden
tifying these early signatures would translate into 
targeted treatments, potentially even persona
lized ones, that would minimize side effects. 
For example, a rationale use of antibiotics to 
minimize gut microbiota disruption with meta
bolic effects downstream. Additionally, it is of 
note that gut microbiota research is mostly dri
ven by a bacteria-focus, while neglecting the role 
that other groups, such as viruses and yeasts, can 
play in the whole ecosystem. More studies are 
needed to understand the ecological relationships 
among the different biological entities in the 
human gut and how they ultimately impact the 
overall metabolic regulation of the human body.
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