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ABSTRACT

Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics.
The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes
mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is
projected that these numbers will increase by 12% over the next two decades, while GDM affects up to
30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have
varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited
to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and
pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are
some common markers associated with their development. For instance, gut barrier impairment and
inflammation associated with an unbalanced gut microbiota and their metabolites may be common
factors in diabetes development and progression. Here, we summarize the microbial signatures that
have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite
profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent
advances relating to promising preventive and therapeutic interventions focusing on the targeted
modulation of the gut microbiota to alleviate T1D, T2D and GDM.
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1. Introduction o . . . .
degrees of insulin resistance in peripheral tissues

due to variable B-cell loss,” while, in T1D, insulin
resistance can be observed in patients with poor

Diabetes mellitus or simply diabetes is a chronic
disease characterized by high levels of glucose in

the blood (hyperglycemia), which is associated with
increased life-long risks to several systems in the
body through microvascular complications.
Despite having fundamentally different pathogen-
esis, both major forms of diabetes, namely type 1
(T1D) and type 2 diabetes (T2D), are characterized
by the loss of functional pancreatic B-cells, which
are responsible for the production and secretion of
insulin, i.e., the main hormone involved in the
regulation of the glucose levels in the blood.
While T1D onsets involves significant loss of f3-
cells due to autoimmune attack, T2D results from
mild-to-moderate B-cell loss due to metabolic
stress." T2D is also characterized by varying

glycemic control or due to intensive insulin
therapy.3 Gestational diabetes mellitus (GDM) is
also a complex metabolic disorder that may result
from an underlying B-cell dysfunction.* Of note,
besides T1D, T2D and GDM, there are more than
50 subcategories of diabetes described, including
monogenic forms of diabetes and the latent auto-
immune diabetes of adults (LADA), highlighting
the heterogeneity of etiology and presentations of
this metabolic condition.

According to the International Diabetes
Federation, diabetes affects approximately 537 mil-
lion adults between 20-79 years, and it is expected
that this number will rise to 643 million by 2030
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and 783 million by 2045.° T2D is estimated to
account for 90% of overall diabetes cases, with
T1D constituting around 5-10%. Alarmingly,
both the prevalence and incidence of T1D and
T2D have been increasing yearly.® The prevalence
of GDM varies worldwide but it is also increasing
and now impacts 1-30% of women during
pregnancy.” Based on these figures, it is urgent
that new strategies to address the development
and progression of diabetes are found.

Despite their different etiologies, increasing evi-
dence suggests that T1D, T2D and GDM share
common elements with respect to their develop-
ment and progression. The onset of disease arises
from a complex interaction between genetic and
environmental factors, where the genetic back-
ground may modulate disease susceptibility and
environmental factors may act as triggers for dis-
ease development.®’ Interestingly, while the rela-
tionship between T2D and diet is well established
and constitutes one pillar of intervention
strategies,'’ the relationship between TID and
non-genetic environmental factors is yet to be
fully understood."" However, given that only 10%
of genetically predisposed individuals develop
T1D," increasing prevalence suggests that envir-
onmental changes might impact T1D develop-
ment. Moreover, as in T2D, factors like diet and
gut microbiota have been proposed as modulators
of T1D pathophysiology.'>'* Links between T2D
and GDM have also been proposed, as GDM can
result from high levels of glucose in the blood, and
T2D can be developed as a consequence of GDM.
Moreover, both diseases may be linked to preexist-
ing metabolic alterations, such as those associated
with pre-diabetes.”

In the last couple of decades, it has become
increasingly apparent that the gut microbiota has
a significant impact on human health. A growing
body of evidence indicates that bacteria, archaea,
viruses, fungi, and their metabolites, have a direct
effect on the human body. Negative impacts on
these communities of microorganisms and the
metabolites they produce, referred to by some as
gut dysbiosis, have been associated with a variety of
health conditions, both localized and systemic. The
immune system has also been linked to most of
these conditions, as imbalances amongst the gut
microbiota can be accompanied by increased

intestinal permeability and translocation of bacter-
ial products that induce local and systemic
inflammation."> Examples of such conditions
include metabolic syndrome,'®'” irritable bowel
syndrome (IBS),'®" inflammatory bowel disease
(IBD),?° colorectal cancer,’! rheumatoid arthritis,**
and conditions related to the nervous system, such
as autism,”>** Parkinson’s disease,”” Alzheimer’s
disease,”® multiple sclerosis*” and depression.***’

Notably, impaired pancreatic function has been
associated with gut microbiota dysbiosis.
Furthermore, it has been suggested that disruption
of a proposed microbiota-pancreas axis could con-
tribute to the development and progression of
acute and chronic pancreatitis and pancreatic duc-
tal adenocarcinoma.’®>* Moreover, diabetes has
also been associated with gut microbiota dysbiosis,
which suggests that targeted approaches to modu-
late the gut microbiota could impact the develop-
ment and progression of such pancreatic
conditions.>

Here, we summarize the current knowledge
relating to the relationship between the etiology
of diabetes and the gut microbiota, with an empha-
sis on gut microbiota-associated metabolites. We
also discuss the potential for the use of different
strategies, focusing on targeted modulation of the
gut microbiota, as a prevention and therapeutic
options in these metabolic conditions.

2. The pancreatic function and diabetes
aetiology/pathogenesis

The pancreas is a glandular organ located behind
the stomach in the abdominal cavity, divided into
head, body and tail, and has a lobular structure that
includes numerous secretory vesicles.>* It can be
histologically and functionally divided into the
exocrine and endocrine pancreas. The former con-
sists of acinar and ductal cells that are involved in
the production and secretion of digestive enzymes,
while the latter is formed by an endocrine secretory
tissue known as the islets of Langerhans or simply
pancreatic islets. These structures are comprised of
several endocrine cells, namely a-, -, §-, pancrea-
tic polypeptide, and e-cells, which produce and
secrete several hormones involved in blood glucose
regulation.”® The two main hormones involved
in the control of glucose homeostasis are insulin



and glucagon, produced and secreted by - and a-
cells, respectively.”> While insulin regulates blood
glucose levels by facilitating cellular glucose uptake
during postprandial hyperglycemia, glucagon sti-
mulates hepatic glucose release through elevated
glycogenolysis and gluconeogenesis and by inhibi-
tion of glycogenesis and glycolysis when the glu-
cose levels are low in the bloodstream (e.g., during
fasted states).

Numerous articles have extensively reviewed
and discussed the etiology and pathogenesis of
T1D, T2D, and GDM. Therefore, in the present
review, we will just briefly describe the main points
involved in the etiology and pathogenesis of these
forms of diabetes; we refer readers to the following
reviews on the topic.>”*7 42

2.1. Type 1 diabetes

T1D is an autoimmune disease characterized by
the destruction of insulin-producing, pancreatic
B-cells. The exact etiology and pathological
mechanisms leading to the autoimmune assaults
are not fully understood, but it is believed to
involve a complex dialogue between the p-cells
and the invading immune cells, which culminates
in islet inflammation and progressive p-cell dys-
function and death.*’ This dialogue is mainly
determined by a combination of genetic and
environmental factors. In genetically predisposed
individuals, environmental triggers, such as viral
infections or exposure to certain dietary factors,
may initiate an autoimmune response, which
leads to the activation of immune cells, particu-
larly T cells, that mistakenly target, attack, and
destroy B-cells.**** The continuous destruction
of B-cells ultimately results in insulin deficiency,
leading to hyperglycemia.*® T1D is also associated
with the presence of autoantibodies against -cells
antigens, commonly known as islet autoantibo-
dies, that can be detected in the blood before the
onset of clinical symptoms and are used as mar-
kers for the risk of developing T1D.** In addition
to genetics and environmental factors, stochastic
events may also play a role in T1D etiology. It has
been suggested that the random generation and
distribution of T-cell and B-cell receptors as well
as epigenetic modifications may be some of the
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stochastic factors involved in the development of
T1D 47,48

2.2. Type 2 diabetes

T2D pathogenesis involves several mechanisms
that lead to impaired insulin secretion and func-
tion, including glucolipotoxicity (i.e., excess of glu-
cose and long-chain free fatty acid levels in the
plasma), oxidative stress (i.e., excessive production
of reactive oxygen species and/or a deficiency in
antioxidant defense systems), and endoplasmic
reticulum stress (i.e., the endoplasmic reticulum
protein folding capacity is overwhelmed). These
mechanisms are involved in the development of
insulin resistance in splanchnic and peripheral tis-
sues as well as B-cell failure and may contribute to a
chronic, low-grade inflammation observed in some
tissues (e.g., adipose tissue and pancreas) during
T2D progression.*

Insulin resistance occurs when insulin-sensitive
tissues (e.g., liver, adipose tissue, and skeletal mus-
cle) become progressively less responsive to insu-
lin, resulting in reduced glucose uptake and
suppression of endogenous (primarily hepatic) glu-
cose production. When faced with constant hyper-
glycemia due to impaired insulin action, the body
usually increases B-cell mass and P-cell secretory
capacity (which is already abnormal at this stage) to
compensate for the elevated insulin demand.”
Although this compensation may initially maintain
normoglycaemia, p-cell function and mass gradu-
ally decrease over time due to the constant stresses
to  which they are submitted (e.g,
glucolipotoxicity).”">* Simultaneously, inappropri-
ate secretion and/or responses to glucagon and
incretin hormones, such as glucagon-like peptide-
1 (GLP-1) and glucose-dependent insulinotropic
polypeptide (GIP), may contribute to abnormal
glucose levels, particularly in the post-prandial
period.”>>* It is well known that obesity and life-
style factors, such as sedentary behavior and high
caloric diet, can further exacerbate these
mechanisms.>”®

2.3. Gestational diabetes mellitus

GDM is characterized by any degree of hyperglyce-
mia that is first identified during pregnancy, even
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though there is a lack of consensus about which
glucose levels should be recognized as GDM and
treated.””> GDM is the most common medical com-
plication during pregnancy and encompasses both
cases of undiagnosed T2D identified early in preg-
nancy as well as true GDM that develops later.”
Major risk factors are maternal overweight and obe-
sity, family history of T2D, later age in pregnancy,
nonwhite ethnicity and history of giving birth to
large infants.””® GDM is associated with various
complications and risks, such an increased risk of
developing T2D for both the mother and the fetus
later in life.”>*” Furthermore, offspring exposed to
GDM in utero may also be at increased risk for
cardiovascular risk factors, obesity, hypertension
and dyslipidaemia later in life.”®

During pregnancy, there is a heightened likeli-
hood for women to release pro-inflammatory cyto-
kines, including but not limited to interleukin 6
(IL-6), tumor necrosis factor-a (TNF-a), inter-
feron-y a (IFNy), and C-reactive protein (CRP).
This increase in cytokine levels, coupled with ele-
vated levels of placental lactogen, progesterone,
and estrogen, can significantly amplify insulin
resistance and glucose intolerance.” Additionally,
the inflammatory response is linked to hyperglyce-
mia-induced oxidative stress.°” This not only leads
to various pathophysiological complications but
also closely correlates with insulin resistance, caus-
ing diminished glucose absorption in peripheral
tissues and heightened glucose production in the
liver.®!

3. The gut microbiome

Humans are considered to be superorganisms, as
we need an associated microbiota to maintain an
state of health.”> We can find diverse microbial
communities in the human body, but those inha-
biting the gut, and, more specifically, the colon, are
considered the most abundant in number and
diversity, accounting for 70% of total numbers
(gut microbiota) and approximately eight million
genes (metagenome of the gut microbiome).*® The
gut microbiota comprises bacterial, archaeal, viral
and eukaryotic species that co-exist through com-
plex ecological relationships.®* While the taxo-
nomic composition of the gut microbiota varies
both between and within individuals, there is a

level of redundancy in its functional metabolic
potential that has been associated with resilience
against acute stressors and ecological stability.®”

3.1. Gut microbiota

Amongst the two prokaryote domains present in
the gut microbiome, the highest volume of infor-
mation and level of characterization relates to
Bacteria. First communities in the gut become
established at birth, influenced in part by delivery
mode, and continue to increase in abundance and
complexity during the next 1-3 years as milk and
solid food are incorporated.®® These communities
remain relatively stable throughout adulthood,
mainly shaped by lifestyle and diet, and their diver-
sity decreases later in life. This loss in microbial
diversity has been associated with negative health
impacts, and many studies have aimed to charac-
terize the microbiota of humans with above-aver-
age lifespans and elucidate the degenerative
mechanisms that might have a gut origin. For
instance, it has been reported that these centenar-
ians might present a distinctive gut microbiota
composition containing certain metabolic path-
ways that limit the outgrowth of bacterial groups
associated with inflammation processes.®”*®

The main bacterial phyla represented in the
human gut are the Bacillota, previously referred
to as Firmicutes, in a proportion of approximately
64% under physiological conditions, Bacteroidota
(former Bacteroidetes, approx. 23%),
Pseudomonadota (former Proteobacteria, aprox.
8%), Actinomycetota (former Actinobacteria,
aprox. 3%) and Verrucomicrobiota (former
Verrucomicrobia, aprox. 3%).°>’° Their distribu-
tion is not constant across the digestive tract, as
they depend on the ecological micro-environments
derived from the gut geography. In addition, their
abiotic regulators, namely water activity, gas com-
position, pH and the presence of molecules with
antimicrobial activity secreted by the human cells
or by other members of the gut microbiota (e.g.,
bile salts or antimicrobial peptides), also modulate
their distribution.”' Thus, the microbiota of the
small intestine is dominated by facultative anae-
robes capable of growing in the presence of oxygen
and bile salts, like some Bacillota and, more speci-
fically, lactobacilli and Pseudomonadota.



Longitudinal progression through the intestine sees
a reduction in oxygen levels, accompanied by an
increase in bacterial density and diversity. Finally,
in the colon, bacterial composition is dominated by
anaerobes and bacteria with fermentative metabo-
lism capable of catabolizing substrates reaching the
final part of the intestine that have resisted host
digestion, such as dietary fibers.””

Transversally, we can find heterogeneous com-
munities in the lumen or in the secreted mucus
layer attached to the epithelium. This mucus layer
is key for the maintenance of gut homeostasis and
its structure will determine the bacterial commu-
nities inhabiting within.”®> In the small intestine,
the mucus layer is strongly attached to the epithe-
lium, while in the colon we can differentiate an
inner layer attached to epithelium, denser and less
populated, and an outer layer in contact with the
lumen, less dense and exhibiting greater bacterial
diversity. The characterization of the transversal
bacterial communities remains a challenge, as
most studies rely on fecal samples. Arguably, the
most reliable data for the analyses of these com-
munities come from human colon biopsies, which
have previously identified the presence of
Akkermansia muciniphila, a species within the phy-
lum Verrucomicrobiota. This mucin-degrader bac-
teria improves gut barrier integrity and is
associated with positive health outcomes, the
growth of which is promoted by dietary polyphe-
nols and fermented foods.”

Bacterial populations are influenced by other
groups coexisting in the gut, although elucidation
of these relationships and population dynamics is
in its infancy.”>’® Bacterial population structure
has been shown to correlate with altered fungal
composition in certain conditions, such as in aut-
ism spectrum disorder and cystic fibrosis, where
the abundance of Candida spp. was increased.””””®
Saccharomyces, Malassezia, and Candida are the
fungal genera most commonly present in the feces
of healthy humans.””** The viral component of the
gut microbiome is receiving increased attention,
with the most abundant members including
CrAss-like phage, Microviridae, Siphoviridae,
Myoviridae and Podoviridae.*' "*> Archaea, despite
being abundant in nature, are not well character-
ized in the gut, as most extraction methods are
based on bacteria and universal primers for archaea
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do not cover all lineages,** although shotgun
sequencing could be an alternative to overcome
this limitation. Most of their functions and their
role in health and disease remain to be addressed,
but some groups, such as the order
Methanobacteriales, have been identified as impor-
tant for population dynamics. This order is con-
sidered ubiquitous in the human gut and one
particular species, namely Methanobrevibacter
smithii, is believed to be the dominant methanogen
in this ecosystem, with a prevalence of more than
90%.%> Functionally, Methanobacteriales decrease
partial pressures of H,, increasing the energetic
efficiency of primary fermenters.*® Other archaea
of the order Methanomassiliicoccales use methy-
lated amines, such as trimethylamine (TMA), in
methane production.®”

Overall, these microbial groups will produce
metabolites that will trigger effects in the human
host beyond the gut.*® These microbial metabolites
include bacterial compounds such as neurotrans-
mitters, endocrine hormones, quorum-sensing
molecules, biogenic amines, bile-derived mole-
cules, branched-chained amino acids, vitamins,
antimicrobials, short-chain fatty acids (SCFAs),
and bacterial components such as lipopolysacchar-
ide (LPS).*

3.2. The gut barrier

The intestinal mucosa is also known as “gut bar-
rier”. This highly specialized mucosa is involved in
the digestion and absorption of nutrients in the
intestine as well as in the homeostasis of the gut
microenvironment that ensures the coexistence
and bidirectional communication with the gut
microbiota.”” When the gut barrier is impaired,
due to, for instance, infection or inflammation,
molecules and translocation of microorganisms
that usually would not be able to come across it,
experience an increased efflux known as “intestinal
permeability” or “leaky gut”.”" An increased intest-
inal permeability was originally associated not only
with a number of local disorders, including IBD,
IBS and celiac disease, but with other systemic
conditions.”>”?

The key element of the gut barrier is the epithe-
lium, where the mucosa gets in contact with the
lumen. This epithelium is formed by a single layer
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of cells that are replaced every 4-5 days and shed
into the lumen.”* The epithelium is shaped into
small protuberances named villi that increase the
absorption surface, and invaginations named
crypts where the stem cells are located.”® These
stem cells differentiate into cell types with absorp-
tive or secretory functions. Absorptive cells include
microfold cells (or M cells), which are involved in
the immune response in the gut, and enterocytes,
the most numerous cell type and whose main func-
tion is absorbing nutrients.” The secretory cells are
enteroendocrine cells, which secrete hormones and
enzymes due to the intestinal stimulations; Paneth
cells, with antimicrobial and immunomodulatory
function in the form of proteins and peptides;
goblet cells, responsible for the production of the
mucus layer; and tuft cells, less studied but with
immunomodulatory functions.”

The paracellular integrity of this layer is main-
tained by different cell structures. Gap junctions,
desmosomes and adherent junctions are lateral
connections between cells, whereas tight junctions
are protein complexes apically located that control
the diffusion of water, ions and small compounds
and prevent the passage of bigger molecules.””
Tight junctions include different transmembrane
proteins, such as occludins, claudins, junctional
adhesion molecules, tricellulin and intracellular
scaffold proteins (e.g., zonula occludens).”®

Gut barrier integrity is important in the devel-
opment of some pancreatic disorders. For example,
severe acute pancreatitis is associated with gut bar-
rier impairment that ultimately can cause necrosis
and infection as well as multiple organ dysfunction
syndrome.””'?® Gut barrier integrity is strongly
influenced by bacterial metabolites, and treatment
with antibiotics and probiotics have been reported
as a strategy to alleviate the symptoms and progres-
sion of acute pancreatitis.lo0

3.3. Metabolites of gut bacteria

As mentioned above, microorganisms do not exert
their action in the gut by direct contact alone. Their
metabolism can produce compounds that can have
numerous effects on the gut, such as cross-feeding
or competition with other members of the
microbiota.'*'%* These metabolites can also inter-
act with the human host in health-promoting or

detrimental ways, e.g., vitamins produced by com-
mensals, or toxins produced by enteric pathogens,
respectively.”” Interkingdom crosstalk has also
been observed, wherein certain host receptors are
tuned to detect bacterial metabolites such as
quorum-sensing molecules, potentially to respond
to early-stage infections.'”'%* This section
describes the primary compounds produced by
gut bacteria of interest in microbe-microbe and
host-microbe interactions affecting pancreatic
function (Figure 1).

3.3.1. SCFAs

SCFAs are produced through the fermentation of
dietary fiber in the colon. The most abundant are
acetate, propionate and butyrate, with formate,
valerate and caproate featuring in lower abun-
dance. Acetate and propionate are mainly pro-
duced by members of Bacteroidota, while butyrate
is primarily synthesized by Bacillota.'”> SCFAs
reduce the pH of the intestinal tract, inhibiting
the growth of pathogens. SCFAs also play an
important role in the homeostasis of the gut bar-
rier, as they are the main source of energy for the
epithelial cells, promoting their proliferation and
differentiation and reducing apoptosis.'’® SCFAs
can enhance host defense against enteric pathogens
by stimulating the production of antimicrobial
peptides by intestinal epithelial cells, including
defensins and lysozyme as well as upregulating
mucin gene expression.'”” SCFA can also promote
the protein synthesis of tight junctions, more spe-
cifically Zo-1 and Occludin, reducing intestinal
permeability and strengthening the gut barrier
immune function.”'*® SCFAs can also disseminate
after absorption, with propionate, in particular,
being shown to act as a substrate for gluconeogen-
esis in the liver, highlighting how locally produced
metabolites in the gut can have direct systemic
effects.'”

3.3.2. Gamma-aminobutyric acid (GABA)

GABA is the main inhibitory neurotransmitter in
the brain that can modulate the gut-brain axis
communication.”**” Tt is produced by the decar-
boxylation of glutamate by bacteria in the gut,
including by species of  Lactobacillus,
Bifidobacterium and Bacteroides."'®'"" In the pan-
creas, GABA is produced and secreted by B-cells at
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Insulin Activity Chart
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Protein
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Figure 1. Metabolites produced by gut bacteria that may affect pancreatic functions. SCFA — Short chain fatty acids; GABA - gamma-
aminobutyric acid; QSM - Quorum sensing molecules; LPS - Lipopolysaccharide; EVs — Extracellular vesicles; EPS — Exopolysaccharides;

ROS - Reactive oxygen species. Figure created with Biorender.com.

concentrations as high as those found in the central
nervous system.''” Endogenous, locally secreted
GABA is known to exert auto- and paracrine
effects as well as metabolic roles in islets cells.'"
However, besides these endogenous effects, recent
evidence suggests that GABA has a strong protec-
tive and regenerative effects on the P-cells, espe-
cially in the context of massive [-cell loss.
Moreover, GABA also improves glucose tolerance
and insulin sensitivity, has immunomodulatory
and anti-inflammatory effects, and ameliorates dia-
betes in different models."'*"""”

3.3.3. Quorum-sensing molecules

Quorum-sensing molecules are compounds
secreted by bacteria for concentration-dependent
transcriptional regulation.''® While they primarily
coordinate population-level behaviors and cross-

species communications, they can also interact
with the human host, for example, through cross-
talk via G-protein-coupled bitter taste receptors
(T2Rs).'*® As well detecting bitter, sweet and
umami flavors in the mouth, T2Rs are also
expressed in the gut'*® and heart and can respond
to quorum-sensing molecules from both Gram-
negative'*' and Gram-positive bacteria.'”> T2Rs
can govern inflammatory and oxidative stress
responses'>> and, moreover, secretion of GLP-1,
which influences glucose homeostasis. Quorum-
sensing molecules also appear to exert an effect
on the integrity of the gut barrier. 3-oxo-C12-
HSL, a quorum-sensing molecule produced by
Pseudomonas aeruginosa, provokes apoptosis in
macrophages and mast cells, and disrupts tight
junctions in the gut in vitro."**'*> Conversely,
other quorum-sensing molecules appear to protect
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the gut barrier, including the putative host-mod-
ified and anti-inflammatory 3-oxo-C12:2-HSL,'*°
indole, and the competence stimulating factor pep-
tide of Bacillus subtilis."*” The types and concen-
trations of quorum sensing molecules produced in
the gut are likely to be determined by the composi-
tion of the microbiota, and more work is required
to determine biologically-relevant concentrations
and the effect of host polymorphisms on ligand
binding.

3.3.4. Extracellular vesicles

Extracellular vesicles (EVs) or membrane vesicles
are an end product of secretion from bacteria,
which package and export metabolites, possibly
mediating cell-to-cell communication, antagonism
of competitors, or nutrient sensing.128 Recent evi-
dence suggests that some of these EVs could induce
insulin resistance and impair glucose metabolism
in skeletal muscle, with possible negative implica-
tions for the pathogenesis of T2D.'* More specifi-
cally, EVs derived from Pseudomonas panacis
impaired the insulin signaling pathway in both
skeletal muscle and adipose tissue,'* although it
is not understood whether effects arise from the
vesicles themselves or the molecular cargo within.

3.3.5. Bacterial LPS

LPS is an element of the Gram-negative bacterial
outer membrane, which can induce systemic
inflammation'*° and its presence in the blood is
considered a biomarker of an impaired gut barrier.”
"1 LPS production can also increase reactive oxy-
gen species levels in the gut through activation of
host immune cells.'” It has been observed that
plasma LPS levels were increased in patients with
T2D and have been associated with the develop-
ment of diabetic retinopathy."*>'*> Moreover, a
human longitudinal study, DIABIMMUNE,
tracked the development of the gut microbiome
from birth until age three years in infants with
high-risk genetic HLA haplotypes in Northern
Europe, where early-onset T1D is common in
Finland and Estonia but is less prevalent in
Russia.'>* The authors characterized the contribu-
tion of host-microbe immune interactions to auto-
immunity and allergy and, among different
observations reported, noted that structurally and
functionally distinct LPS could exert different

effects with respect to immune stimulation and
inflammatory responses, impacting susceptibility
to immune diseases such as T1D."**

3.3.6. Exopolysaccharides

Exopolysaccharides are a diverse family of macro-
molecules composed of repeating configurations of
monosaccharides. They are key membrane compo-
nents of many bacteria and can also be secreted,
rendering them amenable to purification, and har-
nessed in the food industry to modulate sensorial
profiles of various foods."*” Specific exopolysac-
charides have been reported to exhibit anti-diabetic
properties, such as a heteropolysaccharide from
Lactobacillus plantarum RJF4, which inhibited a-
amylase activity in vitro.">® Exopolysaccharides
from L. plantarum YMLO09 has been shown to
mitigate oxidative stress in the gut through scaven-
ging of free radicals."*” Additionally, the microbial
exopolysaccharides from Leuconostoc pseudome-
senteroides XG5 delayed T1D onset in non-obese
diabetic (NOD) mice, the quintessential murine
model for T1D research, through upregulation of
GLP-1 secretion, which could be correlated with
the increase in butyric acid production in the
colon.'?®

3.3.7. Bile acids

Bile acids are produced in the liver from the
metabolism of cholesterol. Besides their primary
digestive functions, bile acids can also act as sig-
naling molecules and mediate crosstalk between
the liver and the gut. Bacteria including
Lactobacillus ~ sp.,  Bifidobacterium  sp.,
Enterobacter sp., Bacteroides sp. and Clostridium
sp. produce bile salt hydrolase enzymes that coor-
dinate the deconjugation of conjugated bile acids,
preventing their recycling through the liver and
allowing their subsequent modification into sec-
ondary bile acids."*® Bile acid concentrations and
profiles are considered influential in health and
disease, with certain bile acids capable of activat-
ing host receptors and influencing glucose home-
ostasis, such as the farnesoid X receptor'*’ and the
G-protein-coupled receptor TGR5."*! Bile acid
sequestrants have also been explored for potential
therapeutic applications.'** A particularly inter-
esting bile acid, namely tauroursodeoxycholic



acid, can increase glucose-stimulated insulin
secretion, protect B-cells against cytokine-induced
apoptosis, and reduce diabetes incidence in T1D
mouse models.'*>"'*

3.3.8. Products of protein catabolism

While carbohydrates are the preferred primary
energy source, under limiting conditions bacteria
can break down proteins into amino acids and
peptides that undergo fermentation generating
branched-chain amino acids (BCAA), amines,
indoles, phenol, hydrogen sulfide and ammonia.'*®
These compounds reduce the uptake, transport,
and oxidation of butyric acid by the gut epithelial
cells and, ultimately, impact the gut microbiota
composition by decreasing the levels of butyrate-
producing species, such as Bifidobacterium sp.,
Blautia sp. and Roseburia sp. This can result in
damage to the gut barrier function and a further
reduction in butyrate levels by suppression of pro-
ducer bacteria.

Indole and its derivatives are substances gener-
ated through the transformation of tryptophan
(Trp), an aromatic essential amino acid that must
be acquired through diet, by the gut bacteria. Upon
ingestion, a fraction of Trp is used for protein
synthesis, while the rest undergoes metabolic path-
ways within the host organism (e.g. the kynurenine
and serotonin pathways) or via intestinal microbes
through different metabolic pathways, leading to
the production of indole and its derivatives. Indole
compounds interact with nuclear receptors, control
gut hormones, and regulate the biological effects of
bacteria activities.'*” Many in vitro and in vivo
studies have reported increased expression of
tight junctions, reduced intestinal permeability
and regulation of proinflammatory cytokine pro-
duction in the presence of these molecules.'*® It has
been reported that some of these derivatives, such
as indolepropionic acid, are associated with lower
risk of T2D development,'*’ suggesting promising
therapeutic applications and leading to the synth-
esis of indole analogues with antidiabetic
properties.15 0

3.3.9. Betaines

Betaines are a varied group of compounds contain-
ing a positively charged nitrogen atom connected
to three methyl groups. Some betaines are derived
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from protein metabolism, while others come from
diet, or are by-products of gut microbiota.
Trimethylamine (TMA) is an amine compound
derived from the transformation of dietary com-
pounds (mainly choline, L-carnitine, and betaine,
present in, for instance, eggs, red meats and fish'”")
by few representatives of the gut microbiota that
encode the genes for the enzymes responsible for
such transformations, like Acinetobacter sp and
Pelobacter sp.>>'>> TMA is the precursor of tri-
methylamine N-oxide (TMAO), which has been
associated with inflammatory responses resulting
in increased cardiovascular disease risk by inducing
endothelial dysfunction and affecting the expres-
sion of tight junctions.'>> TMAO has been involved
in nephropathy in T2D patients, and it is frequently
reported in T2D studies that analyze metabolome.">*
Recent studies suggest that TMAO could be used as a
biomarker for kidney failure progression and mortal-
ity outcomes in T2D patients,"” and early detection
and monitoring could result in better outcomes for
patients.'*® Dietary TMAO regulates the expression
of genes related to the insulin signaling pathway,
gluconeogenesis, glycogen synthesis, and glucose
transport in the liver, which leads to insulin resistance
and impaired glucose tolerance in high-fat diet-fed
mice."” Additionally, TMAO also increased the
expression of the pro-inflammatory cytokine MCP-
1 while reducing the mRNA levels of the anti-inflam-
matory cytokine IL-10, causing adipose tissue
inflammation."”’

Another betaine, namely 5-aminovaleric acid
betaine (5-AVAB), a microbial metabolite that
can also be found in different foods like milk
and meat, has been proposed as a metabolic
marker."”® Increased serum levels of 5-AVAB
were positively associated with worse estimates
of obesity, glucose metabolism, and hepatic stea-
tosis after weight loss. Moreover, following weight
loss, higher levels of 5-AVAB were independently
predictive of adverse alterations in glucose meta-
bolism, suggesting this metabolite could be used
for glycemic control."™

4, The pancreatic microbiota

Outside of infection, the pancreas was once
believed to be a sterile organ.'®® However, this
view has been challenged by the recent detection
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of an associated microbiota using culture-based
methods, qPCR, and metataxonomic approaches.
Bacteria can be detected in healthy pancreatic sam-
ples, which are mainly derived from nonmalignant
tissue re-sections or organ donors.'®® However,
rates of detection are consistently higher in samples
from patients with pancreatic ductal adenocarci-
noma (qPCR detecting 16S rDNA; 15% versus
76%) and members of the phylum
Pseudomonadota are the most frequently reported.”
' Pancreatic cyst fluid has also been found to
contain a varied and diverse microbiota, particu-
larly formed by Bacteroides spp. and Fusobacterium
nucleatum.'®®> Further investigation is required,
especially given the growing consensus regarding
the pitfalls and limitations associated with applying
sequencing approaches to low-microbial biomass
samples, particularly from internal organs.

The origin of pancreatic microbiota remains to be
understood. Based on studies where bacterial inocula
was administered to mice by oral gavage, it has been
hypothesized that bacteria may reach the pancreas
from the small intestine and the stomach due to
anatomical proximity and reflux-like action of the
pancreatic duct.'*>'** This seems to be a controversial
point, as some authors reported an absence of pan-
creatic colonization after insult to gut barrier integ-
rity. Flow of pancreatic juice and bile in the
hepatopancreatic duct can inhibit bacterial migration,
while neutral to alkaline pancreatic juice stimulates
pH-taxis toward the pancreas and away from the
acidic duodenum.'® Local immune suppression in
the pancreas could prevent immune clearance of
bacteria that may translocate from the gut via mesen-
teric venous or lymphatic drainage.'**'*® This may
signify that underlying pathologies within the pan-
creas may favor the establishment of bacteria, which
would otherwise be prevented in normal physiologi-
cal conditions.'**'®” Moreover, the association with,
but not causation of, pancreatitis by Staphylococcus,
Enterococcus or Klebsiella species seems to implicate
the inflammatory environment as being important
with respect to facilitating the entry and establish-
ment of these microorganisms in the pancreas.'®>'®
Local pancreatic inflammation has been linked to
several chronic conditions, including T1D and
T2D."*"! A recent murine study demonstrated
that low doses of dextran sulfate sodium, a chemical
well known for its effect on disrupting the gut

microbiota, decreased butyrate levels in the gut and
diminished the expression levels of an antimicrobial
peptide in the pancreas that allowed the enrichment
of a pathobiont from the family Muribaculaceae in
the gut and their translocation to the pancreas.
Interestingly, this single pathobiont was enough to
trigger local inflammation, B-cell destruction, and the
development of insulin-dependent diabetes in germ-
free mice.'® This mechanistic insight may be pivotal
in understanding the gut-pancreas axis, but care
needs to be taken as such patterns have yet to be
revealed by human studies.

Gut bacterial metabolites seem to play a role in
the pancreas-gut microbiota bidirectional talk, as
highlighted in the aforementioned study through
SCFA and antimicrobial peptides. It has also been
reported that SCFAs produced by gut bacteria con-
trol the production of cathelicidin-related antimi-
crobial peptide by P-cells, which can convert
inflammatory into regulatory immune cells in pan-
creatic islets. Moreover, cathelicidin-related anti-
microbial peptide protected prediabetic NOD
mice against autoimmune diabetes.'”?

5. Gut microbiota and T1D

Although TID is considered an autoimmune dis-
ease with a strong genetic component, its develop-
ment has been associated with several
environmental factors.***> It has been recently
shown that some of these environmental compo-
nents can impact gut microbiome composition and
its production of butyrate, gut barrier impairment
and altered mucosal immunity.'”>

As T1D develops early in life, several human
epidemiological studies use cohorts of children to
determine the impact of environmental factors on
T1D etiology and development. There is some con-
troversy whether being born by C-section is a T1D
risk or not, as some studies have reported a corre-
lation between the two elements'’*'”> and others
did not."”®'”7 Additionally, there are other ele-
ments such as breastfeeding, the use of antibiotics
or the timing and mode of exposure to gluten'”®
that are debated to be linked to the establishment
and development of the first bacterial communities
in the gut of the newborn as the potential triggers



of gut barrier disruption and inflammation
later on.

One of the major studies in this vein is The
Environmental Determinants of Diabetes in the
Young (TEDDY) study, a prospective study that
includes clinical research centers in the United
States and Europe.'”” In 2018, the TEDDY study
group published two articles based on their inves-
tigation of the relationship between the human gut
microbiome and the onset of T1D in infants.'*>'®!
In the first study, initial results correlated T1D
development with the depletion of 11 bacterial
genera, including Lactococcus sp., Streptococcus
sp., Akkermansia sp. and four unclassified
Ruminococcus  sp., while enrichment of
Parabacteroides sp. was positively associated with
T1D onset (Figure 2)."®' In the second study, a
reduced abundance of the pathways involved in
butyrate production was observed in the children
that developed islet autoantibodies, along with a
higher abundance and diversity of Streptococcus
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sp., with lower relative abundance of Lactobacillus
rhamnosus and  Bifidobacterium dentium."®
Interestingly, a previous study using the TEDDY
population showed that early probiotic supplemen-
tation decreased the risk of islet autoimmunity in
children at the highest genetic risk of T1D.'®?

The previously referred to DIABIMMUNE
study reported that its initial analysis in infants
from Finland and Estonia showed a decrease in
microbial diversity and a reduction in the number
of bacterial genes in children who ultimately devel-
oped TID.'"™ Additionally, they observed a
decrease in the families Lachnospiraceae and
Veillonellaceae and an increase in the genera
Streptococcus, Blautia and Ruminococcus. The
metagenome analysis showed a higher prevalence
of genes involved in sugar transport and a lower
prevalence of the genes involved in amino acid
biosynthesis.'®> A subsequent report identified a
distinctive early microbiome in Finnish and
Estonian infants when compared to their Russian
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counterparts. Moreover, they identified several
bacteria, such as Bacteroides species, that were
notably prevalent in Finland and Estonia and
lowly abundant in Russians; these bacteria could
be producing factors, like LPS, that could poten-
tially suppress the immune system and contribute
to the development of T1D. Interestingly, the
authors showed that Bacteroides LPS was structu-
rally different from E. coli LPS and did not reduce
the incidence of autoimmune diabetes in NOD
mice.”**"**'7® Finally, a 2018 DIABIMMUNE
study showed that Bifidobacterium infantis, a bac-
terium that stimulates P-cell function, is found in
only 10% of Finnish infants in this cohort.
Moreover, the study suggests that the absence of
B. infantis could contribute to the prevalence of
inflammation-favoring microbes, which could
lead to microbiome dysfunction and, ultimately,
an increased risk of T1D.'®*

Receptors might play a crucial role in the devel-
opment of T1D. In studies conducted in NOD mice
in a very controlled environment to reduce unde-
sired microbial stimuli, it was found that the mye-
loid differentiation primary response 88 (MyD88)
adaptor protein, used by multiple toll-like recep-
tors, could be critical for T1D development, poten-
tially affecting T cells.'® MyD88 signaling could
affect gut microbiota composition and function,
which in turn modulate the immune responses
influencing the development of T1D. Therefore,
disrupting MyD88 signaling altered gut microbiota
and reduced T1D development. Moreover, normal
microbiota was able to alleviate the progression of
T1D.'®

Gut bacteria are not the only potential trigger of
T1D development. In fact, several viruses, such as
Enterovirus sp,'®® coxsackievirus B,'*”'®® and
rotavirus,'®” have been associated with T1D. It
could be hypothesized that an immature and less
diverse gut microbiota might provide an environ-
ment for these enteroviruses to inflict more
damage in the B-cells, or to foster a gut environ-
ment that promotes the translocation of microbiota
to distal organs, such as the pancreas.

Different observational studies have reported
that the gut microbiota from T1D patients is less
diverse and stable than the microbiota from
healthy subjects.'’® As for children with predia-
betes, they presented a higher relative abundance

of Bacteroides species and a decreased abundance
of Faecalibacterium prausnitzii, a bacterium
involved in butyrate production.'®’ Other SCFA-
producing species, such as Bifidobacterium adoles-
centis and Roseburia faecis, are also negatively cor-
related with the number of autoantibodies,'”®
which are markers of B-cell autoimmunity that
strongly associate with T1D development.

6. Gut microbiota and T2D

The relationship between gut microbiota and T2D
has been studied both in humans and animal mod-
els. These studies have reported compositional
changes in the gut microbiota profiles, more speci-
fically at phylum and class levels."”"'** However,
the heterogeneous nature of the available studies,
in terms of geography, diet, use of medication, etc.,
makes it difficult to identify a characteristic micro-
biota associated with T2D, even at phylum level.”
Additionally, it is unlikely that a single species is
responsible for the onset of T2D. Some studies have
identified higher proportions of opportunistic
pathogens, such as Bacteroides caccae, E. coli,
Clostridium ramosum, Clostridium symbiosum
and Eggerthella lenta.”® Other enriched nonpatho-
genic genera are Blautia, Coprococcus, Sporobacter,
Abiotrophia, Peptostreptococcus, Parasutterella and
Collinsella."”> A few groups of taxa seem to be
associated with the early stages and development
of T2D in different populations and could poten-
tially be used as biomarkers. Different reports have
identified a reduction in the number of butyrate-
producing bacteria, such as Eubacterium rectale, F.
prausnitzii, Roseburia sp., Bifidobacterium sp. and
Ruminococcus sp., along with lower numbers of the
mucin-degrading bacterium A. municiphila. It is
hypothesized that both F. prausnitzii and A. muci-
niphila could offer protection against the develop-
ment of T2D."?*71%°

A commensal bacterium that has been inversely
correlated with T2D in a Japanese cross-sectional
study is Blautia wexlerae. The genera
Bifidobacterium and Blautia show greater abun-
dance in the Japanese gut microbiome, indicating
that gut microbiota representatives vary with geo-
graphy and cultural differences and have to be
taken into consideration.'””'*® A further study in
mice orally administered with B. wexlerae showed



that there were several metabolites, such as succi-
nate, lactate, acetate, S-adenosylmethionine, acet-
ylcholine and L-ornithine, associated with its
action that altered energy metabolism and dis-
played anti-inflammatory effects under obesogenic
conditions (i.e., feeding with high-fat diet); in addi-
tion, these metabolites also altered the gut micro-
biota composition. Altogether, these B. wexlerae
effects contributed to reducing high-fat diet-
induced obesity and diabetes in mice.'*®

Other species have been connected to the devel-
opment of both obesity and T2D. The commensal
gut bacterium Dysosmobacter welbionis has been
recently associated with prebiotic response, liver
health and glucose metabolism in a human study
that involved treatment with metformin, an oral
biguanide medication used to treat T2D, and
prebiotics.'"”® The study found that D. welbionis
abundance was enriched in the subjects that
responded to treatment, being negatively corre-
lated with fasting blood glucose levels. However,
metformin did not show a direct effect on D. wel-
bionis growth, indicating a complex regulatory
connection.'” Beyond specific species, other stu-
dies have focused on the role played by gut micro-
biome in nutrient metabolism. A study compared
the gut microbiota of 272 T2D against 674 healthy
control subjects, finding lower diversity in the T2D
subjects, identifying 25 genera that were signifi-
cantly different and establishing a potential reduc-
tion in butyrate production in the T2D cohort.**
However, butyrate production was not measured
and was predicted using metabolic pathways based
on species identification, as the actual metagenome
was not studied either, limiting the impact of the
conclusions. Many studies support butyrate deple-
tion based on functional prediction from
composition,”" but establishing actual functional-
ity from gut microbiome and metabolite produc-
tion would help to understand the connection
between gut composition and host metabolism.

Despite a still unclear underlying mechanism,
their involvement in insulin resistance and the
carbohydrate metabolism of commensals is consid-
ered important in T2D.?*>*%* A multi-omics study
conducted in 306 individuals, which included a
combination of fecal metabolomics, metagenomics
and transcriptomics, indicated that fecal carbohy-
drate metabolites were altered in insulin-resistant
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patients, particularly monosaccharides fructose,
galactose, mannose and xylose, and propionate.*
Furthermore, these metabolites were also asso-
ciated with inflammation, indicating once again
the connection between gut microbiota and the
immune system.

Glucose homeostasis can be influenced by sev-
eral bacterial metabolites interacting with G-pro-
tein-coupled receptors that are pivotal in the
regulation of satiety and digestion. SCFAs can pro-
mote the secretion of GLP-1*** via binding to
GPR43 and GPR119, which are mainly expressed
in adipose tissue, the gut, and immune cells.””’
GLP-1 can modulate satiety in the brain and
enhance glucose-stimulated insulin secretion as
well as induce insulin gene expression and bio-
synthesis in B-cells.****°® Bacterial quorum-sen-
sing molecules, specifically acylated homoserine
lactones'*! and autoinducing peptides®”’ can simi-
larly activate the bitter taste receptors T2R38 and
T2R14, respectively. SCFAs also enhance glucose
uptake by increasing the expression of the glucose
transporter type 429 Propionate is associated with
GLP-1-independent enhancement of B-cell func-
tion and protection against proinflammatory cyto-
kine- and palmitate-induced islet cell apoptosis.**’
Importantly, GLP-1 functionality is mediated both
by factors influencing its production, such as pre-
biotics and bile acid chelators,*'®*'" as well as
compounds that prolong its half-life, such as dipep-
tidyl peptidase-4 (DPP4) inhibitors.*'> DPP4 is an
enzyme produced by the gut microbiota that can
interfere with the effect of GLP-1 and, along with
other isozymes (often associated with Bacteroides
sp.) can limit the response of certain individuals to
drugs to treat T2D such as metformin.*'>*'*

Similarly, peptide YY (PYY or peptide tyrosine
tyrosine) also influences glucose homeostasis and
high levels of PYY are related to insulin sensitivity.
PYY is involved in different aspects of gut function,
such as delaying gastric emptying and acid secre-
tions, as well as inflammation and cell differentia-
tion. Conversely, it also inhibits glucose-stimulated
insulin secretion by pancreatic B-cells.*"” PYY is
produced by the neuroendocrine cells in the
ileum and colon and its expression can be regulated
by gut bacteria and their metabolites, including
SCFA resulting from bacterial fermentation.”'®
Therefore, dietary choices such as consuming
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high levels of dietary fiber have been associated
with the enrichment of fiber-fermenting bacteria
such as bifidobacteria and lactobacilli, as well as
with higher levels of PPY and GLP-1 levels in
plasma.”'” Gut microbiota dysbiosis may also affect
PPY secretion. For instance, antibiotics consump-
tion has been shown to reduce PYY levels, increase
enrichment of bacteria associated with obesity and
increase food consumption.>'® Antibiotics-induced
gut dysbiosis and its relationship with T2D is,
however, not clearly defined and still controversial.
While most studies concur on the detrimental
impact of antibiotic use on gut microbiota and
the onset of T2D, some research indicates that
broad-spectrum antibiotics reduce insulin resis-
tance, inflammation, and oxidative stress.
Additionally, they lead to an increased abundance
of A. muciniphila, thereby lowering the incidence
of diabetes in mice.”'>*** Evidence suggests that
timing and length of the treatment might be a
determining factor in the outcome.””' On the
other hand, animal models have their intrinsic
limitations and, although promising, more work
is needed to ensure these therapeutic effects might
be similar in humans.

The endocannabinoid (eCB) system is another
metabolic pathway involved in glucose homeostasis
that is affected by bacterial metabolites in T2D.**?
The eCB system regulates peripheral glucose and
lipid metabolism by influencing the metabolic
activities of adipose tissue, the liver, the endocrine
pancreas and the gastrointestinal tract.*>***
Evidence shows that altered crosstalk between the
eCB system and the gut microbiome can result
in a variety of health implications such as
gastrointestinal, neuroinflammatory and metabolic
disorders.””> An expanded concept of eCB system
includes endocannabinoids (like anandamide
(AEA) and 2- arachidonoylglycerol (2-AG) and
endocannabinoid-like mediators, like palmitoy-
lethanolamide, which is associated with Trp meta-
bolism in the colon and with protective effects
against neuroinflammation.””® Supplemented A.
muciniphila was associated with increased levels
of 2-AG and associated acylglycerols, improving
gut barrier function and reducing inflammation.**’”
Endocannabinoids have been positively associated
with a-diversity and with SCFA-producing
bacteria (Bifidobacterium, Coprococcus, and

Faecalibacterium) and butyrate, while negatively
associated with Collinsella, and the proinflamma-
tory cytokines TNF-a and IL-6. These findings
suggesting that SCFA are regulators of the eCB
system and partially exert their anti-inflammatory
activity via this pathway.**®

As previously mentioned, BCAAs can impair the
gut barrier and reduce the number of butyric acid
producers, two risk factors associated with T2D
onset.””” Amino acid metabolism has been sug-
gested as one of the key predictors of T2D devel-
opment. More specifically, three BCAAs and three
aromatic amino acids were positively associated
with T2D: leucine, isoleucine, and valine as
BCAAs, and phenylalanine, tyrosine and
tryptophan.”*” High BCAA plasma levels are char-
acteristic of insulin resistance and are correlated
with the presence of Bacteroides vulgatus and
Prevotella copri.*>

Peroxisome Proliferator-Activated Receptors
(PPAR) activation has also been linked to T2D,
wherein activation of these receptors regulates the
transcription of genes involved in inflammation
responses; more specifically, n-3 fatty acids were
reported to promote insulin sensitivity’>' whereas
the TMAO upregulated PPARy.>*?

7. Gut microbiota and GDM

Research indicates substantial alterations in the
composition of the gut microbiota in pregnant
women. Some taxons have been associated with
GDM, namely phyla Bacillota, Bacteroidota,
Pseudomonadota, and family Lentisphaerae.*
Twenty-seven genera were enriched in GDM,
among them seven genera from Pseudomonadota
(including Citrobacter, Burkholderia, Acidibacter,
and Bilophila) and four genera (Acidothermus,
Granulicella, Bryobacter, and Solibacter) belonging
to phylum Acidobacteria, which was positively cor-
related with glucose blood levels.** Particularly in
the last trimester, there is a notable reduction in
bacteria crucial for metabolic regulation, accompa-
nied by an increase in Proteobacteria and
Actinomycetes, contributing to an inflammatory
condition.””* Furthermore, the quantity of accu-
mulated fat and stored nutrition is contingent on
the gut microbiota condition and composition.
Imbalances often result in the formation of easily



digestible monosaccharides and activation of lipo-
protein lipase through the hydrolysis of undigested
polysaccharides, causing excessive storage of hepa-
tic origin substances like triglycerides.***
Consequently, dysfunctions in microflora homeos-
tasis of any kind can directly contribute to GDM
and disturbances in SCFA levels and composition,
leading to disorders in energy metabolism, eating
patterns, or blood glucose homeostasis.*’

Despite having these changes mostly character-
ized during the second and third trimester of preg-
nancy, a recent study with 394 pregnant women
showed that metabolomic and inflammatory bio-
markers associated with developing GDM could be
detected during the first trimester.”® Specifically,
the GDM group showed elevated levels of proin-
flammatory cytokines (interleukin (IL)-4, IL-6, IL-
8, granulocyte-macrophage colony-stimulating fac-
tor and tumor necrosis factor-a), and a significant
reduction of two branched SCFAs, namely isovale-
rate and isobutyrate.”® Microbiologically, the a-
diversity between the GDM and non-GDM indivi-
duals was not significantly different, but it was
found that Prevotella was underrepresented in the
GDM group.”® An interesting further application
of this study was the development of a predictive
model using a machine learning approach, which
was capable of accurately predict GDM develop-
ment later in pregnancy based on the studied
parameters.

8. Gut microbiota and insulin resistance

Insulin resistance is widely recognized as the pri-
mary factor underlying the development of different
types of diabetes mellitus. Many studies describe the
co-occurrence between development of diabetes and
changes in gut microbiota composition and gut
metabolites. Establishing causality between these
changes to identify gut microbiota as the origin of
insulin resistance can be more challenging. Animal
models have been used to study the development of
insulin resistance after receiving gut microbiota
from other individuals with diabetes,”®**> and the
improvement after receiving gut microbiota from
healthy phenotype.”*® This approach identified
host changes previously reported in the literature
and in the current review, such as loss of species
like A. muciniphila, impairment of intestinal
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integrity or increased intestinal permeability asso-
ciated to development of insulin resistance.”*’
Moreover, the above-discussed gut microbiota
metabolites (e.g., LPS, SCFAs, bile acids, BCAAs)
have been suggested to be significant contributors
to insulin resistance.”>® However, it has been possi-
ble to identify bacterial signatures associated with
insulin resistance and insulin sensitivity recently.**
These were further associated with a distinct pattern
in microbial carbohydrate metabolism and impact-
ing host inflammatory cytokines. Interestingly, the
researchers did not find just a group of bacteria but
four associations in the patients, including (1)
Lachnospiraceae (Blautia and Dorea), (2)
Bacteroidales (Bacteroides, Parabacteroides and
Alistipes) and Faecalibacterium, (3) Actinobacteria
and a non-clustering one (4). These differences also
correlated with differences in clinical markers, indi-
cating that there is not a one-answer-fits-all in this
area. The study identified species associated with
insulin sensitivity (Alistipes, and several species
from Bacteroides, Bifidobacterium and
Ruminococcus). Moreover, their experiments
showed that supplementation with species identified
in insulin sensitivity (Alistipes indistinctus, Alistipes
finegoldii and  Bacteroides thetaiotaomicron)
improved insulin signalling and resistance in mice,
maintaining the pattern of carbohydrate consump-
tion and metabolite production.*** This indicates,
once more, that is the activity of the given micro-
organisms what needs to be characterized and not
just their presence or absence, therefore needing
integrative -omics studies. This study has been of
particular importance as it has been able to associate
insulin resistance, metabolic syndrome and levels of
fecal monosaccharides, and it has attracted a lot of
attention.”*' Their clinical implications involve the
potential supplementation of these species promot-
ing insulin sensitivity to reduce insulin resistance.
Despite there seems to be common changes (gut
dysbiosis and changes in the gut metabolome that
generate gut barrier impairment and inflammation
and ultimately insulin resistance and subsequent
physiological consequences), a common mechan-
ism in the development of insulin resistance in
TI1D, T2D and GDM is still unknown.
Establishing detailed analyses of common changes
and causality would be highly beneficial toward the
description of the main pathways and mechanisms
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underlying the onset and development of diabetes.
This information would help to develop therapeu-
tical strategies to target such pathways in an afford-
able and safe manner, minimizing side effects.
However, there is still a lack of consensus in certain
aspects, from specific taxa involved in changes to
which pathways are involved in the modulation of
the immune system via the gut microbiome.***
Therefore, more research is needed to clarify
these areas.

9. Therapeutic options for treating diabetes
mellitus based on gut microbiota modulation

Understanding the relationships between the gut
microbiota, their metabolites and pancreatic phy-
siology would allow therapeutic interventions tar-
geting the microbial communities in the gut. There
are different strategies focusing on modulating the
microbiome that have been already applied; others
are still under development, but show promising
results as a less invasive and more efficient inter-
ventions for improving diabetes treatment
prospects.”*? In this section, we provide an over-
view of some of these methods (Table 1).

9.1. Dietary interventions

9.1.1. Diet
The structure and composition of the gut micro-
biota are mainly shaped by birth mode, lifestyle and
dietary habits. In the case of T1D, dietary interven-
tions have been conducted at early stages with
preventive objectives. FINDIA, a double-blind
clinical trial conducted in Finland, studied the
impact of bovine insulin-free cow’s milk formula,
a whey-based hydrolyzed formula and a whey-
based formula from the study group that had the
bovine insulin removed.*** The study showed that
the intake of bovine-free formula during the first 6
months was associated with a reduction in the
incidence of islet cell autoantibodies by age three.
Moreover, the children who developed autoantibo-
dies showed an increased abundance of Bacteroides
and a decreased abundance of Bifidobacterium.
Other studies that focused on the effect of glu-
ten-free diet in improving the insulin response did
not reach conclusive outcomes, as some interven-
tions showed improvement while others did not.'”®

The removal of gluten from the diet was associated
with enhanced gut barrier function, a reduction of
the inflammation parameters and an improvement
in insulin response, although it did not reduce the
number of islet cell autoantibodies.'”**¢"*%>
There is increasing evidence that certain dietary
styles, like the Western diet, which is character-
ized by highly processed foods and fats, might be
associated with poor health outcomes. The study
of the gut microbiota linked to this diet has high-
lighted the enrichment of taxonomic groups asso-
ciated with inflammation.”®> On the other hand,
the consumption of foods containing high dietary
tibers and polyphenols, such as the Mediterranean
diet, has been associated with the presence of
bacterial groups related to lower biomarkers of
inflammation and frailty due to the production
of SCFAs. Moreover, the consumption of these
foods has been reported to improve the gut barrier
function®****> as well as postprandial glucose
metabolism and insulin sensitivity.”*® Other stu-
dies found that patients receiving a diet with a
high content of fiber showed augmented levels of
SCFA-producing bacteria, reduced glycated
hemoglobin (HbAlc), and increased GLP-1
levels.**”*°® A recent study showed that supple-
menting NOD mice with extra virgin olive oil
resulted in reduced insulitis and delayed T1D
onset. In addition, extra virgin olive oil caused a
shift in the composition of fecal microbes, elevating
the Bacteroidota/Bacillota ratio and fostering the
growth of bacteria that produce SCFAs like
Lachnoclostridium and Ruminococcaceae UCG-
005. Finally, supplementation with extra virgin
olive oil led to augmented levels of beneficial
serum metabolites, such as unsaturated fatty acids
and triterpenoids, which exhibited a positive corre-
lation with the increased SCFA-producing bacteria
and a negative correlation with disease indicators.**
NOD mice were also used to evaluate the effects
of specialized diets designed to release large
amounts of acetate and/or butyrate in the colon,
individually and in combination.”*® The acetate-
enriched diet decreased the frequency and number
of autoreactive diabetogenic T cells and altered B
cell differentiation, while butyrate enhanced per-
ipheral T regulatory cells. Interestingly, when acet-
ate- and butyrate- diets were combined, it was
found they acted synergistically, suggesting
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different mechanisms of action. Additionally,
improvements in gut barrier integrity and IL-22
and IL-21 cytokine profiles were noted.”*” In
terms of changes in gut microbial taxa, an
increased number of Bacteroides was noted follow-
ing consumption of the acetate-enriched diet.
Moreover, the acetate-enriched microbiota showed
protection against diabetes in mice who received it.
Opverall, SCFA-enriched diets showed benefits that
could translate into potential effective interven-
tions to humans.

Fermented foods have recently attracted atten-
tion because of their reported health benefits, such
as alleviation and prevention of metabolic disor-
ders, cognitive improvement, or immune
enhancement.””°"*”> Many important studies con-
ducted in animal models have described the bene-
ficial effects of dairy and vegetable fermentations on
T2D biomarkers.>>*>* However, clinical trials in
humans show moderate improvements in T2D bio-
markers (e.g., glycemic control), with yogurt being
most consistently associated with protective
effects.””* To understand the extent of the antidia-
betic benefits of fermented foods, it would be impor-
tant to increase the recruitment numbers and conduct
randomized placebo-controlled trials to limit poten-
tial bias in the experimental design of the studies.

Obesity and central adiposity are accepted as
being involved in T2D development, and dietary
interventions should be carefully considered. For
example, popular diet programs which restrict car-
bohydrate intakes and substitute them with protein
over time could result in gut barrier damage and
related sequelae, due to increasing concentrations
of nitrogen compounds and BCAA that will limit
the protective effect of butyrate.””*

The use of herbs as part of the millennial tradi-
tional Chinese medicine (also known as botanical
medicine or phytomedicine), has been proven effec-
tive in modulating the gut microbiota and control-
ling the onset and progression of T2D. These
combinations of medicinal herbs are a rich source
of fiber and phytochemical compounds that favor
the growth of beneficial bacteria and the production
of beneficial metabolites.””> Clinical trials have been
conducted to assess the effectiveness of these treat-
ments alone or in combination with Western hypo-
glycemic pharmacology.”’® Results showed that the
use Shenqi Jiangtang granules (a widely-used

treatment for T2D composed of ginseng, ginseno-
sides, Astragalus, Ophiopogon japonicus, raspberry,
trichosanthin, Rehmannia glutinosa, poria, medlar,
Alisma, Schisandra, and yam) might not only
improve levels of fasting blood glucose, postprandial
blood glucose and HbAlc, but also reduced the risk
of developing long-term resistance of the islet func-
tion in comparison with just using hypoglycemic
treatments.””® Similar effects were obtained with
Jilinda.””” Meta-analyses conducted on several clin-
ical trials concluded that higher numbers of partici-
pants would be needed to clarify the seemingly
contradictory outcomes of different studies. On the
other hand, several recent studies show that Shenqi
Jiangtang granules and Jilinda boosted the antidia-
betic effects when combined with other hypoglyce-
mic compounds.”’*?*" Other studies showed that
these changes associated with the use of traditional
Chinese medicine were also positively and negatively
correlated with changes in the gut microbiota,
including increased abundance of SCFA-producing
bacteria Bacteroides, Faecalibacterium,
Lactobacillus, Roseburia, and Bifidobacterium, and
with the decline in abundance of some opportunistic
pathogenic bacteria such as Enterococcus and
Enterobacter.”® An insight into the mechanisms of
the mulberry leaf water extract, also traditionally
used to alleviate T2D showed that its supplementa-
tion reduced the circulating levels of AEA, 2-AG and
LPS, improved intestinal permeability and glucose
and lipid metabolism imbalances. These changes
were correlated with changes in Acetatifactor,
Anaerovorax, Bilophila, Colidextribacter,
Dubosiella, Oscillibacter and Rikenella, among
others, involved in the LPS, AEA and/or 2-AG eCB
metabolites.”* More studies, however, are needed
with larger sample sizes and intervention length and
strategies to get further consensus in these gut
microbiota-associated changes.

Of note, there is less evidence of metataxo-
nomics changes in gut microbiota related to
GDM studies. As GDM is considered a transient
stage, many interventions involve diet manage-
ment, but the studies about this subject are mostly
observational. Very few studies have been con-
ducted to characterize how the diet impacts the
gut microbiota structure. In the case of GDM,
short-term diet management was associated with
the change in the Bacillota/Bacteroidota.*’



9.1.2. Prebiotics, probiotics, synbiotics

More targeted dietary interventions are being
developed using probiotics, prebiotics or synbio-
tics. Prebiotics are defined as “a substrate that is
selectively utilized by host microorganisms confer-
ring a health benefit”.*** Consumption of prebio-
tics is typically linked to the production of SCFAs
that reduce inflammation and improve gut barrier
integrity. Initially, most prebiotics were of carbo-
hydrate origin, although the beneficial compound
library has since expanded to include polyphenols
and polyunsaturated fatty acids. Carbohydrate-
based prebiotics are mostly constituted by inulin,
fructo-oligosaccharides and galacto-oligosacchar-
ides that are resistant to the enzymatic digestion
in the human small intestine and, therefore, do not
increase sugar content in the blood.”®* Yet, they
will be degraded by lactobacilli and bifidobacteria
in the colon, promoting the growth of these bac-
teria while supplying SCFAs to colonic cells.
Prebiotics are reported to have clinical beneficial
outcomes in the control of glycemic index in T2D,
leading to reduction of HbA;. and fasting blood
glucose levels.”*® However, inter-individual varia-
tion makes it difficult to generalize a population-
level recommended dose. On a positive note, the
type of fiber does not seem to be determinant for
their glycemic control effect, but the amount needs
to be higher than 35 g/day.**° %

The use of probiotics has also been reported to
improve T2D glycemic control associated with an
improvement of gut barrier integrity.”>® Probiotics
are defined as “live microorganisms that, when admi-
nistered in adequate amounts, confer a health benefit
on the host”.*’" Probiotics have been shown to reduce
the levels of circulating LPS, fasting blood glucose,
insulin resistance, and HbA1c levels.””>**® In T1D, a
study supplementing probiotics to a cohort of chil-
dren reported a reduction in islet autoimmunity.'®
Species included in probiotic treatments were not
homogeneously provided but mainly contained
Lactobacillus and Bifidobacterium species.

Multiple studies affirm that probiotic consump-
tion by pregnant women with GDM can effectively
manage glycemia and glucose metabolism as well as
lower levels of VLDL cholesterol, triglycerides, and
inflammatory markers. The underlying mechan-
isms, however, remain unexplained and warrant
further investigation.” Probiotics primarily confer
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benefits by reinstating proper microflora, normal-
izing increased intestinal permeability, and regulat-
ing the secretion of pro-inflammatory mediators.***
Anti-inflammatory probiotic properties and
increased production of bacteriocins and SCFAs,
such as butyrate, propane, and acetate, influence
insulin resistance biomarkers, acting as chemical
messengers from the intestinal lumen to the rest of
the body to regulate energy metabolism and fat
tissue expansiveness.””®' For instance, butyrate,
involved in mucus secretion and supporting the
regulatory functions of T lymphocytes, fortifies the
protective barrier of the intestinal mucosa and dam-
pens inflammatory reactions.®® The antioxidant
attributes of probiotics likely result from decreased
lipid peroxidation, leading to heightened antioxi-
dant levels or interaction with enzymes, such as
glutathione s-transferase, glutathione peroxidase,
glutathione reductase, superoxide dismutase, and
catalase.”>* Probiotics may safeguard against oxida-
tive stress by secreting peptides, restoring normal
intestinal flora, and eliminating oxidizing com-
pounds or preventing their formation in the
bowel.***

Synbiotics have also been tested as a potential
supplement intervention to alleviate diabetes.*”
Synbiotics are a “mixture, comprising live microor-
ganisms and substrate(s) selectively utilized by host
microorganisms, which confers a health benefit on
the host”,”** like Lactobacillus sp. and Bifidobacterium
sp. A synbiotic containing Lactobacillus sp.,
Bifidobacterium sp., Streptococcus sp., yeast and oli-
gosaccharide was shown to reduce the abundance of
enteric pathogens and improve fasting blood glucose
and HbA, levels.”

9.2. Bacterial products

Postbiotics, defined as a “preparation of inanimate
microorganisms and/or their components that
confers a health benefit on the host”,**> have also
been identified as potential dietary supplements,
such as exopolysaccharides, GABA, supernatants
or even the inactivated microorganisms, that
could alleviate/prevent diabetes.”*” Most of the
research where these compounds have shown ben-
eficial outcomes against T2D biomarkers has been
conducted in animal models.**” Thus, more human
studies are needed in order to translate these results
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to human populations. Extracellular vesicles are
another emerging class of postbiotics which have
attracted recent attention as a potential modulator
of the gut ecosystem, including in T1D and T2D.**
For the moment, only one study has analyzed them
in regard to T2D, finding that extracellular vesicles
from A. muciniphila improve the gut barrier func-
tion and glucose tolerance in an HFD-induced T2D
animal model.””®

9.3. Clinical interventions

Other interventions targeting the gut microbiota
for treating diabetes require a more clinical
approach. This is the case of the fecal microbiota
transplantation (FMT) and the microbial transfer
therapy. FMT involves the transfer of fecal mat-
ter containing fecal microbiota from a healthy
individual to a patient with sub-optimal gut
microbiota,””®> whereas the microbial transfer
therapy is a modified version of the FMT proto-
col that requires antibiotic treatments and bowel
cleansing before the fecal transfer.”*® This strat-
egy can transfer entire microbial communities
and their metabolites and has proven effective
in the treatment of Clostridium difficile infec-
tions, inflammatory bowel disease, inflammatory
bowel syndrome, and autism spectrum disorder-
associated gastrointestinal and behavioral
disorders.”*>*”**® However, these techniques
are associated with certain challenges, such as
the requisite screening of donor samples to pre-
vent the transfer of potentially harmful elements
and the efficacy of the treatment will depend on
the microbiome of the donor.**> FMT was suc-
cessful in stopping T1D progression in a rando-
mized controlled trial by stabilizing B-cells
function and modifying plasma metabolite
levels.>*® Moreover, it was reported a reduction
of Prevotella in the small intestine that was inver-
sely related to residual B-cell function.**®
Another study reported a reduction in insulin
levels after the FMT, but once stabilized, they
were higher than before the transplant.**’ In a
90-day controlled clinical trial with diet and diet
+FMT in a T2D cohort, it was reported that both
strategies improved blood glucose and lipids levels as
well as blood pressure and body mass index.
Furthermore, the addition of FMT treatment to diet

induced changes more quickly than diet alone.””
Changes in the gut microbiota included increased
Bifidobacterium levels and decreased sulfate-reducing
bacteria levels, mainly Bilophila and Desulfovibrio.””
Another FMT study conducted in patients suffering
from metabolic syndrome reported improvements in
insulin sensitivity and reductions of HbA,., while
levels of butyrate-producing gut bacteria, more speci-
fically Roseburia intestinalis, increased.”**°" Despite
these promising results, more studies are required to
assess the applicability and scale-up of these interven-
tions before considering them as a regular treatment.

9.4. Experimental microbiome modulation
procedures with potential applications to treat
diabetes

Phage therapy is still in its infancy but already
offers promising results in targeting enteric patho-
gens that are disrupting gut equilibrium, such as C.
difficile in ulcerative colitis, invasive adherent E.
coli in Crohn’s disease or Ruminococcus gnavus,
enriched in inflammatory bowel disease.’?**%
Phage therapy has been successfully tested to treat
antibiotic-resistant infections derived from dia-
betic wounds.’***% Phages are already being devel-
oped as treatments for intestinal diseases, in the
form of phage cocktails, phage vaccines to induce
specific immune responses or phage-targeted deliv-
ery of therapeutic drugs.®” The development of
experimental phage interventions to treat T2D,
however, has only started very recently. It was
found that gavage of an MS2-P22 phage cocktail
to a mouse model of T2D, with gut dysbiosis
induced by high-fat diet and antibiotic use, reba-
lanced microbial composition by increasing
SCFAs-producing bacteria, reducing representa-
tives of opportunistic pathogens and increasing
SCFAs production.’®® Moreover, there was a
reduction in the levels of proinflammatory cyto-
kines and an improvement in the gut barrier func-
tion, indicating the potential of this strategy to
alleviate T2D symptoms.

Similarly, the use of CRISPR-Cas9 systems is
being considered as a tool to edit the gut micro-
biota and remove harmful members involved in
inflammation and dysbiosis, or even to control
gene expression and modulate the production of



metabolites of interest to maintain the gut barrier
integrity and improve T1D and T2D prospects.>*’”

Other strategies can help to understand the
molecular mechanisms underpinning the effect of
the gut microbiota metabolites in T1D and T2D.
For example, microfluidics systems in the form of
organ-on-a-chip can help to study the interactions
between gut microbiota, diet components and
human host®® and be used in the area of persona-
lized medicine.

In summary, understanding the role of the gut
microbiota and its metabolites in the interaction
between environmental and genetic predisposition
in T1D and T2D can help us design intervention
strategies and treatments to improve health
outcomes.

10. Conclusions and future directions

The gut microbiota and its metabolites are
important elements of the gut ecosystem and
contribute to the homeostasis of the human
body via the communication axis with different
organs. However, the interaction between the
gut microbiota and the immune system is cru-
cial to maintaining this homeostasis and might
be key in the development and progression of
diabetes. A better understanding of the connec-
tion between the gut microbiota and the food
will help address the impact that diet has on
diabetes etiology and will help design more tar-
geted intervention strategies to prevent the
growth of opportunistic pathogens and the ulti-
mate deterioration of the microbial commu-
nities and their metabolites in the gut.
Moreover, specific strains and compounds that
induce or secrete certain molecules could be
incorporated as supplements. However, despite
the usefulness of the identification of specific
species potentially acting as biomarkers, this is
not enough. We have observed the abundance
of studies using metataxonomics, while still very
few of them report whole metagenomics ana-
lyses. These leads to many descriptions of taxa
with biomarker potential, but a lack of consen-
sus in which are relevant. Some of them, like A.
muciniphila or Bacteroides have been described
in many studies, including reports on how they
potentially exert their activity, although it is still
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difficult to narrow these taxa as biomarkers to
monitor progression. On the other hand, meta-
genomics studies could help to unveil which
metabolic pathways are enriched at different
stages of diabetes development. Moving a step
further, transcriptomics analyses would be an
informative way of elucidating the specifics
mechanisms involved in the trigger and devel-
opment of the condition. Nevertheless, these
studies are still expensive and require extensive
resources. While it is true that the metabolomics
analyses can help to bridge that gap, we may
only obtain reliable correlations while poten-
tially missing important connections.

Many studies conducted in animal models
have shown that fermented foods and gut bac-
terial metabolites, such as postbiotics, have the
potential to prevent and alleviate T1D, T2D and
GDM conditions. However, these results are not
as clear when the studies are conducted in
humans. More double-blinded randomized pla-
cebo trials and careful experimental design are
needed to assess the range of beneficial effects of
these strategies, which would also benefit from
the metagenomics and metatranscriptomics
approaches. Moreover, incorporating Artificial
Intelligence in the form of machine learning
would boost the analyses of the massive datasets
and help to find patterns and define models to
predict the early onset of diabetes. Ideally, iden-
tifying these early signatures would translate into
targeted treatments, potentially even persona-
lized ones, that would minimize side effects.
For example, a rationale use of antibiotics to
minimize gut microbiota disruption with meta-
bolic effects downstream. Additionally, it is of
note that gut microbiota research is mostly dri-
ven by a bacteria-focus, while neglecting the role
that other groups, such as viruses and yeasts, can
play in the whole ecosystem. More studies are
needed to understand the ecological relationships
among the different biological entities in the
human gut and how they ultimately impact the
overall metabolic regulation of the human body.
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