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SUMMARY

BACET1 is the major drug target for Alzheimer’s dis-
ease, but we know surprisingly little about its normal
function in the CNS. Here, we show that this protease
is critically involved in semaphorin 3A (Sema3A)-
mediated axonal guidance processes in thalamic
and hippocampal neurons. An active membrane-
bound proteolytic CHL1 fragment is generated by
BACE1 upon Sema3A binding. This fragment relays
the Sema3A signal via ezrin-radixin-moesin (ERM)
proteins to the neuronal cytoskeleton. APH1B-y-
secretase-mediated degradation of this fragment
stops the Sema3A-induced collapse and sensitizes
the growth cone for the next axonal guidance cue.
Thus, we reveal a cycle of proteolytic activity under-
lying growth cone collapse and restoration used by
axons to find their correct trajectory in the brain.
Our data also suggest that BACE1 and y-secretase
inhibition have physiologically opposite effects in
this process, supporting the idea that combination
therapy might attenuate some of the side effects
associated with these drugs.

INTRODUCTION

Beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1)
and y-secretase are responsible for the generation of amyloid-
beta (AB) peptide from AB precursor protein (APP) in Alzheimer’s
disease (AD) (De Strooper et al., 1998; Vassar et al., 1999).
Remarkably little is known about the physiological functions
of these proteases, and a major clinical trial with y-secretase
inhibitors has dramatically failed for unexplained reasons (De
Strooper, 2014). Whereas optimism about the tractability of

BACE1 in the clinic prevails, Bace?™~ mice show complex

cognitive and behavioral phenotypes, suggesting the existence
of other important substrates besides APP (Dominguez et al.,
2005; Harrison et al., 2003; Laird et al., 2005; Savonenko et al.,
2008; Willem et al., 2006). One BACE1 substrate, neuregulin-1
type lll, has been implicated in myelination (Hu et al., 2006; Wil-
lem et al., 2006) and muscle spindle development (Cheret et al.,
2013), but this observation cannot fully explain the complex
cognitive phenotypes in Bace1 '~ adult mice. Recently, a long
list of potential BACE1 substrates was discovered, several of
which are involved in axonal guidance, neurite outgrowth, and
synapse formation (Kuhn et al., 2012; Zhou et al., 2012).
Although now most of the physiological substrates of BACE1
are likely identified, it should be mentioned that, for none of
the substrates, including neuregulin-1 type I, it is known how
BACE1 processing is exactly linked to function, i.e., whether it
ends a signaling function, whether any of the fragments are
involved in function, or whether the BACE1 processing is only
important for the turnover and membrane shedding of the
substrates. Additionally, we do not know whether BACE1 and
v-secretase are active in similar physiological pathways. This
question is especially important when considering combinatory
therapies. To address those questions, we focus here on the pro-
cessing of the neural cell adhesion molecule close homolog of L1
(CHL1). CHL1 is of particular interest because both Ch/7~~ and
Bace1~'~ mice present abnormal axonal guidance of hippocam-
pal mossy fibers and olfactory sensory neurons in adult brain (Cao
etal., 2012; Hitt et al., 2012; Rajapaksha et al., 2011). Additionally,
both mice show impaired cognitive function, aberrant emotional
reactivity, and defective sensorimotor coordination (Dominguez
et al., 2005; Montag-Sallaz et al., 2002; Pratte et al., 2003).
Abnormal projections of thalamocortical circuits are associ-
ated with the lack of response of Ch/7~/~ thalamic neurons to
semaphorin 3A (Sema3A) (Schlatter et al., 2008; Wright et al.,
2007). Sema3A is an axonal guidance molecule that belongs to
the class lll secreted semaphorins known to induce growth
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cone collapse in culture and to affect axon guidance, neuronal
migration, and synapse formation in diverse brain circuits (Bag-
nard et al., 2001; Sahay et al., 2005; Wright et al., 2007). Sema3A
binds to the neuropilin 1 (NRP1)/plexin A receptor, which recruits
CHL1 (Wright et al., 2007). How exactly the extracellular binding
of Sema3A induces intracellular cytoskeleton alterations and
growth cone collapse remains elusive. In the present study, we
show that the consecutive processing of CHL1 by BACE1 and
APH1B-vy-secretase regulates growth cone collapse and recov-
ery. The CHL1CTFB produced in the course of this process
links Sema3A binding to actin alterations via its interactions
with ERM (ezrin, radixin, and moesin) proteins. APH1B-y-secre-
tase is needed to degrade this fragment and to prepare the
growth cone for a new round of axonal pathfinding. Thus,
BACE1 and y-secretase work co-operatively but in an opposite
way in this signaling pathway.

RESULTS

BACE1 Is Required for Sema3A-Induced Growth Cone
Collapse in Thalamic Neurons

CHL1 is well known as a subunit of the Sema3A receptor, NRP1/
plexin A (Wright et al., 2007). Sema3A induces growth cone
collapse of thalamic neurons and is crucial for thalamocortical
axon pathfinding (Bagnard et al., 2001; Wright et al., 2007). To
investigate the participation of BACE1 in this process, we stud-
ied the effect of Bace 1 genetic deletion and inhibition on directed
Sema3A-mediated thalamic axonal outgrowth. Thalamic ex-
plants were co-cultured with Sema3A-secreting aggregates of
COS-1 cells, and the response to Sema3A was evaluated by
the axonal growth pattern on the proximal (P) and distal (D)
side of the thalamic explant toward the COS-1 aggregate (Fig-
ure 1A1). In WT thalamic explants, axons grew primarily from
the distal side of the Sema3A-secreting aggregate, indicating
strong sensitivity to this repellant (Figures 1A2 and 1B). Surpris-
ingly, Bace1~'~, Chl1~/~, and BACE1-inhibitor-treated thalamic
explants showed comparable proximal and distal axonal growth
in this assay (Figures 1A4-1A6 and 1B). Thus, BACE1 and CHLA1
are both required for directed Sema3A-mediated axonal growth
of thalamic neurons. Note that the P/D ratio measured for WT
axons growing in the presence of non-transfected COS-1 aggre-
gated is slightly higher than 1 (Figure 1B). This phenomenon
was observed before and associated with possible unknown
attractive forces between the COS cells and the growing axons
(Romi et al., 2014).

Next, we treated primary cultures of thalamic neurons with
Sema3A-Fc and visualized growth cones using phalloidin stain-
ing (Figures 1C and 1D). The robust growth cone collapse in WT
neurons was abolished after treatment with the BACE1 inhibitor
(CIV) or after genetic deletion of BACE1 expression, suggesting
an essential role for BACE1 in Sema3A-induced growth
cone collapse (Figures 1C and 1D). In contrast, BACE1 was
not needed for semaphorin 3F (Sema3F)-induced growth cone
collapse (Figure 1E), which is mediated by neuropilin 2 indepen-
dently of CHL1 (Sahay et al., 2003).

In BACE1-inhibitor-treated (CIV) and Bace? ™~ thalamic neu-
rons, proteolytic shedding of CHL1 was reduced (Figures S1A-
S1D), whereas NRP1 and plexin A expression was not affected
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(Figure S1A2). Because CHL1 is also cleaved by ADAM8 and other
metalloproteases at different cleavage sites (Naus et al., 2004), we
wondered whether blocking this processing would have similar ef-
fects to BACET1 inhibition on the Sema3A-induced growth cone
collapse. Although a comparable decrease in the levels of CHL1
soluble fragments was seen in thalamic neurons treated with the
metalloprotease inhibitor GM6001 and with the BACE1 inhibitor
CIV (Figure 1F), GM6001 had no effect on Sema3A-mediated
growth cone collapse (Figure 1G). Therefore, BACE1, which is
located in presynaptic endosomal compartments together with
CHL1 (Hitt et al., 2012), is specifically required for Sema3A-medi-
ated growth cone collapse in thalamic neurons.

The Processing of CHL1 by BACE1 Is Required for
Sema3A-Induced Growth Cone Collapse in Thalamic
Neurons

The similarity between Bace? and Chl1 knockout growth cone
collapse phenotypes suggests that deficient BACE1 cleavage
of CHL1 results in CHL1 loss of function. First, we investigated
whether BACE1 processing of CHL1 was induced by Sema3A.
The levels of soluble CHL1 were indeed increased after 1 hr
treatment with Sema3A-Fc compared to control Fc whereas
the processing of APP by BACE1 was not affected (Figures 2A-
2D), indicating that CHL1 cleavage by BACE1 is induced by
Sema3A. Next, we investigated to what extent misprocessing
of CHL1 by BACE1 would lead to defective Sema3A-induced
growth cone collapse. As shown previously (Wright et al.,
2007), Chi1~'~ thalamic neurons displayed a deficient growth
cone collapse response to Sema3A-Fc that was rescued by
expressing full-length CHL1 (FI-Chl1) (Figures 2F and 2G). How-
ever, this rescue was not observed in the presence of BACE1 in-
hibitor (Figures 2F and 2G). Furthermore, introducing a previously
characterized processing mutation at the BACE1 cleavage site
of CHL1 (Zhou et al., 2012) (ChI1D1062H; Figure 2E) neutralized
the rescuing effect of FI-Chl1 (Figures 2F and 2G). This mutant
showed a dominant-negative effect when transfected into WT
thalamic neurons (Figures S2A and S2B) probably by replacing
WT-CHL1 in the NRP1/plexin A/CHL1 complex (Wright et al.,
2007) and supporting the conclusion that FI-CHL1 has to be
cleaved by BACET1 to play its role in this process.

CHL1CTFpB Fragment Is Required for Sema3A-Induced
Growth Cone Collapse in Thalamic Neurons

We next transfected Chi7 ™'~ neurons with CHL1 constructs en-
coding the proteolytic products generated by BACE1 processing,
i.e., the secreted CHLINTF (N-terminal fragment generated by
BACE1) or the membrane-bound CHL1CTFB (C-terminal frag-
ment generated by BACE1). Surprisingly, the collapse response
was rescued with Chl1CTF(to the same extentas FI-Chi1 (Figures
3A and 3B), whereas ChITNTFB had no effect. In Bace1™'~, FI-
Chl1 did not rescue the deficiency whereas Chl/1CTF3 expression
alone was sufficient to restore Sema3A-induced growth cone
collapse (Figures 3A and 3C). We confirmed these rescue exper-
iments in WT neurons treated with BACE1 inhibitor (Figures 3A
and S3A). These constructs had no effect on Sema3A-induced
growth cone collapse of WT neurons (Figures 3A and S3B).
Thus, membrane-bound CHL1CTFp is necessary and sufficient
for Sema3A-induced growth cone collapse in thalamic axons.
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Figure 1. BACE1 Is Required for Sema3A-Induced Growth Cone Collapse in Co-culture Explants and Thalamic Neurons
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(A and B) Analysis of axonal sensitivity to Sema3A where WT (n = 17; A2), Bace? ™~ (n = 18; A4), Chl1~’~ (n = 15; A5), and BACE1-inhibitor-treated (1 uM CIV;
n = 15; AB) thalamic explants were co-cultured with Sema3A-secreting aggregates of COS-1 cells. WT thalamic explants were also co-cultured with non-
transfected COS-1 aggregates (n = 7; A3). The level of Sema3A-induced repulsion is represented by a P/D ratio, which compares axonal growth on proximal (P)

and distal (D) side of the thalamic explant toward the COS aggregate (A1).

(C and D) Analysis of Sema3A-induced growth cone collapse in WT, BACE1-inhibitor-treated (1 uM CIV), and Bace?~/~ thalamic neurons.
(E) Quantification of Sema3F-induced growth cone collapse in WT, BACE1-inhibitor-treated (1 uM CIV), and Bace1~/~ thalamic neurons.
(F) Western blot analysis of WT thalamic neurons treated with 1 pM CIV (1) or with 50 uM GM6001 (2).

(G) Quantification of Sema3A-induced growth cone collapse in WT and Bace1~’~ thalamic neurons treated with 50 uM GM6001.

Results are presented as mean + SEM. The scale bars represent 200 um (explants) and 5 um (growth cones). See also Figure S1.

The ERM Recruitment Domain of CHL1CTFg Is Required
for Sema3A-Induced Growth Cone Collapse in Thalamic
Neurons

ERM (ezrin, radixin, and moesin) proteins directly influence actin
dynamics in growth cone filopodia by regulating the actin poly-
merization state (Ramesh, 2004). In order to understand the
pathway by which CHL1 influences cytoskeletal growth cone dy-

namics, we mutated the known binding sites for the ERM (E)
and ankyrin (A) domains in FI-CHL1 (FI-Chl1E+A; Figure 3F)
and in CHL1CTFB (ChI1CTFBE+A) as described (Schlatter
et al., 2008). In contrast to WT FI-CHL1 and CHL1CTF8, the dou-
ble mutants were unable to rescue the Sema3A-induced growth
cone collapse response in Ch/1~/~ neurons (Figures 3D and 3E).
The ankyrin domain single mutant (Ch/1CTFGA) rescued this

Cell Reports 12, 1-10, September 1, 2015 ©2015 The Authors 3
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Figure 2. The Processing of CHL1 by BACE1 Is Required for Sema3A-Induced Growth Cone Collapse in Thalamic Neurons

(A and B) Western blot analysis of the conditioned medium and cell lysates from WT thalamic neurons in response to 5 nM Sema3A-Fc.

(C and D) Quantification of the western blot analysis for soluble CHL1 (sCHL1) and APP C-terminal fragment § (C99).

(E) Schematic representation of BACE1 cleavage site on CHL1 (GIn1061/Asp1062).

(F and G) Analysis of Sema3A-induced growth cone collapse in Ch/7~/~ thalamic neurons transfected with empty vector, FI-Chi1, and FI-Chi1 and treated with

1 uM CIV or with non-cleavable Ch/1D1062H.

Results are presented as mean + SEM. The scale bars represent 5 pm. See also Figure S2.

response, but the ERM domain single mutant (Ch/71CTFGE) was
not effective (Figures 3D and 3E). Moreover, ChITCTFpA, but
not Chl1CTFBE, rescued the defect in Bace1 ™~ neurons. Taken
together, the results suggest that ERM, but not ankyrin, binding
to CHL1CTFp is required for Sema3A-induced growth cone
collapse in thalamic neurons.

CHL1CTFp Levels Are Modulated by y-Secretase

The question arises as to how the growth cone collapse signal
emitted by CHL1CTFB generation is terminated. We found
that CHL1CTFp levels are modulated by y-secretase activity
(Figure 4A). Similar to APP CTFs, a strong accumulation of
CHL1CTFB levels was observed when primary mixed brain
neuronal cultures were treated with a +y-secretase inhibitor
(DAPT), suggesting that CHL1CTF B might be a y-secretase sub-
strate. Moreover, inhibition of y-secretase strongly enhanced the
Sema3A-induced but also the basal growth cone collapse of
thalamic neurons (Figures 4B and 4C). We next tested the y-sec-
retase inhibitor in Ch/7~/~ and Bace?~~ thalamic neuronal cul-
tures, which do not produce CHL1CTFB. Addition of the y-sec-
retase inhibitor to these neurons did not alter their growth cone
collapse response (Figure 4D). As expected, transfection of
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Chi1~/~ and Bace1~’/~ thalamic neurons with Ch/1CTF@ restored
the response toward y-secretase inhibition (Figure 4D). These
results proof that y-secretase inactivates the CHL1CTF@ signals
that regulate growth cone collapse. This evidence was validated
by live-cell imaging experiments monitoring Sema3A-induced
growth cone collapse and recovery in the presence or absence
of the y-secretase inhibitor. In these studies, Sema3A was
added to cultured WT thalamic neurons for 30 min to induce
growth cone collapse and neurite retraction and was then
removed. Within 30 min of Sema3A washout, WT thalamic
neurite growth began to recover. In contrast, neurons treated
with the y-secretase inhibitor continued to retract their neurites
(Figures 4F and 4G; Movies S1 and S2).

APH1B-y-Secretase Is Required to Stop the
Sema3A-Induced Growth Cone Collapse

Different y-secretase complexes containing different presenilin
(PSEN1 and PSEN2) or APH1 (APH1A and APH1B) protein sub-
units exist in humans, and several evidences indicate that each
protease complex has different biochemical properties and exert
distinct biological functions (Acx et al., 2014; Fazzari et al., 2014;
Serneels et al., 2005, 2009). To investigate which y-secretase
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complexes regulate growth cone recovery after Sema3A-
induced growth cone collapse, we performed the collapse assay
in Abh1A~'~ and Aph1BC ™'~ thalamic neurons. In order to obtain
Aph1A-and Aph1BC-deficient neurons, the neurons from condi-
tional knockout mice, Aph1A™ and Aph1BC"" were trans-
fected with pCMV-GFP-ires-Cre. We observed that Aph1B~/~
thalamic neurons show an exacerbation of Sema3A-induced
and basal growth cone collapse whereas Aph71A~'~ neurons
present a normal response to Sema3A (Figure 4E). Therefore,
APH1B-y-secretase complexes are responsible for the recovery
of the growth cone after Sema3A-induced growth cone collapse.

Different Dose-Dependent BACE1 Inhibition Effects on
AB Levels and Sema3A-Induced Growth Cone Collapse
We wondered what our findings imply for the safe use of BACE1
inhibitors in patients and whether a therapeutic window can
be defined. Thus, we performed dose response analysis of
BACE1 activity and Sema3A-iduced growth cone collapse
upon BACET1 inhibition. Effects on AB were already significant
at the lowest concentration used (0.003 uM CIV; Figure 5A),
whereas in the growth cone collapse assay, they only became
significant at 100-fold higher concentration (0.3 uM CIV; Fig-
ure 5B), suggesting the existence of a safe therapeutic window
for BACE1 inhibition.

DISCUSSION

How deficient proteolytic activity of BACE1 can result in axonal
guidance phenotypes in the adult brain is unknown. To further
understand the physiological function of BACET1 in this context,
we focused on the processing of CHL1 and its role in axonal
guidance and growth cone collapse (Schlatter et al., 2008;
Wright et al., 2007). We show here that thalamic brain explants,
thalamic neurons, and hippocampal neurons, when treated with
B-secretase inhibitor or when derived from Bace1~~ animals, do
not longer respond to Sema3A (Figures 1 and S4). Wild-type
CHL1, but not a cleavage-resistant mutant (Ch/1D71062H,
Zhou et al., 2012), was able to rescue Chi1~/~ deficits (Figure 2)
whereas a membrane-bound carboxy-terminal fragment of
CHL1 (CHL1CTFB) was necessary and sufficient to restore
Sema3A-induced growth cone collapse in Bacel™~ and
Chl1~~ neurons (Figure 3). This unequivocally demonstrates
that BACE1 cleavage of CHL1 is necessary for this process.
The binding of Sema3A to the NRP1/plexin A receptor in com-
plex with CHL1 induces BACE1 cleavage of CHL1 (Figure 2),
allowing a signal to be transmitted to the actin cytoskeleton.
Intriguingly, we found that the signal is ended by APH1B-y-sec-
retase processing of CHL1CTFp (Figure 4). This cleavage closes
the cycle and prepares the growth cone for another round of
pathfinding.

The requirement for BACE1 in this process is exquisitely spe-
cific. Although CHL1 can be cleaved by metalloproteases (Fig-
ure 1), metalloprotease inhibitors had no effect on Sema3A-
induced growth cone collapse, suggesting that only BACE1 is
cleaving CHL1 in the appropriate cellular compartment for this
signaling event to occur. Sema3A induces growth cone collapse
by dynamic remodeling of actin filaments; however, how this link
is established remained unclear (Takahashi et al., 1999; Tamag-

none et al., 1999). Here, we show that the interaction between
CHL1CTFB and ERM proteins is needed for Sema3A-induced
growth cone collapse. ERM proteins are known to directly influ-
ence actin dynamics in growth cone filopodia by regulating the
actin polymerization state (Ramesh, 2004).

Additionally, we observed that APH1B-y-secretase inhibition
caused an exacerbation of the growth cone collapse. Although
the physiological functions of APH1B and APH1A-y-secretase
complexes are not yet fully discovered, several observations
indicate that each complex exerts distinct functions. Aph1A~/~
mice display an embryonic lethal phenotype resembling the
Notch1-null mice phenotypes, whereas Aph1B~/~ mice survive
until adulthood, are fertile, and display a rather normal pheno-
type (Serneels et al., 2005). Specific inactivation of the APH1B-
y-secretase in a mouse model of AD led to improvements of
AD-related phenotypes without any Notch-related side effects
(Serneels et al., 2009). APH1B-y-secretase complexes favor
the generation of longer AP peptides and therefore are consid-
ered to play a major role in AD pathology (Acx et al., 2014).
More recently, we showed that APH1B-y-secretase complexes
regulate hippocampal dendritic spine formation via NRG1 pro-
cessing (Fazzari et al., 2014). To date, no axonal guidance func-
tions have been linked to APH1B and APH1A-y-secretase com-
plexes. To understand whether the exacerbation of the collapse
was dependent on CHL1, we tested the y-secretase inhibitor in
Chl1~'~ and Bace1~’~ thalamic neuronal cultures and performed
genetic rescue experiments expressing CHL1CTFB. In Chi1~/~
and Bacel~’~ neurons, the effect of y-secretase inhibitors was
gone, whereas transfection with Ch/1CTF{ restored the effect
(Figure 4). These results confirm that the effect of y-secretase in-
hibition on growth cone collapse is dependent on CHL1CTF§.

Thus, our work reveals how BACE1 and y-secretase act
together to regulate growth cone collapse and recovery, a pro-
cess crucial for axonal pathfinding. Temporal separation of the
two cleavage processes, needed to provide the active signal
by cleaved CHL1, is probably achieved by subcellular trafficking
of the NRP1/plexin A receptor in complex with CHL1 upon
Sema3A binding toward the endocytic compartment. Sema3A
binding is known to induce endocytosis of NRP1 (Fournier
etal., 2000; Mintz et al., 2008), which might bring CHL1 into early
endosomes, where BACE1 is available to cleave. Upon cleav-
age, CHL1CTFB may alter actin polymerization through ERM
signaling either in the endosome or after recycling to the plasma
membrane, resulting in growth cone collapse and neurite retrac-
tion. Subsequent y-secretase activity serves to terminate the
signal and sensitizes the growth cone for the next axonal guid-
ance cue (see graphical abstract). It is intriguing that two prote-
ases, B- and y-secretase, so closely involved in the pathogen-
esis of AD, also appear to coordinately regulate a physiological
process of axonal guidance. Although the functional role of
Sema3A and CHL1 in the adult brain is not clearly established,
it is tempting to speculate that the continued release and expres-
sion of these molecules in hippocampus and olfactory bulb,
where synaptic plasticity is highly dynamic, is important for mod-
ulation and maintenance of brain circuits in adult CNS (Pozas
et al., 2001; Sahay et al., 2005). Genetic deficiency of BACE1
and CHL1 affects circuitry in the adult olfactory bulb and/or hip-
pocampus (Cao et al., 2012; Hitt et al., 2012; Rajapaksha et al.,
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Figure 3. CHL1CTFpB Fragment and Its ERM Recruitment Domain Are Required for Sema3A-Induced Growth Cone Collapse in Thalamic
Neurons

(A) Representative images of Ch/1~/~, Bace1~~, BACE1 inhibitor-treated (1 uM CIV), and WT growth cones co-transfected with GFP and empty vector, FI-Chl1,
ChI1NTFg, or Chl1CTFg in response to 5 nM Sema3A-Fc.

(B and C) Quantification of Sema3A-induced growth cone collapse in Ch/1~/~ (B) and Bace? /'~ thalamic neurons co-transfected with empty vector, FI-Chi1,
ChI1NTFg, or Chl1CTFg (C).

(legend continued on next page)
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2011), and we find that Sema3A-induced growth cone collapse
is also altered in hippocampal neurons treated with BACE1 or
y-secretase inhibitors (Figure S4).

Finally, it should be noted that this work indicates a critical
function for the membrane-bound part of CHL1. The function
of this B-secretase-generated fragment is a rare example of pro-
tein “shedding,” where the membrane-bound fragment and not
the shed ectodomain is important.

The discovery of this unexpected function of BACE1 calls at
least for additional caution while testing BACE1 inhibitors in hu-
mans. Finding a safe therapeutic window (Figure 5) will be crucial
to avoid another setback in therapy because of not understood
side effects in a phase lll clinical trial for AD (De Strooper,
2014). It is also intriguing to see how BACE1 and y-secretase
have opposite effects in this process. This suggests that the
defective generation of CHL1CTFB by BACE1 inhibition can
be compensated by a clever additional dosing of y-secretase
inhibitor. The clinical relevance of this finding needs further
investigation.

mice (Serneels et al., 2005) were crossed to obtain

E14 and E18 embryos. All experiments were
approved by the ethics committee of the University of Leuven and carried
out according to the Belgian and European Union regulations.

Preparation of Primary Neuronal Cultures

Primary cultures were prepared from E14 (thalamic and mixed brain) or E18
(hippocampal) mouse embryos as described (Fazzari et al., 2014; Leyva-
Diaz et al., 2014; Wright et al., 2007; Zhou et al., 2012). See Supplemental
Experimental Procedures for further information.

Western Blot Analysis

After 48 hr in culture, the thalamic or mixed brain neuronal cultures were
treated overnight with 1 uM B-secretase inhibitor, 50 uM metalloprotease
inhibitor, or 10 uM y-secretase inhibitor. Samples were analyzed by western
blot to detect full-length or C-terminal fragments of the proteins of interest
(full-length-CHL1 [AF2147; R&D Systems], CHL1CTFs [antibody generated
by Thermo Fisher Scientific using peptide DGSFIGAYTGAKEKGSVE], APP
[B63 antibody; Annaert et al., 2001], NRP1 [AF566; R&D Systems], plexin A
[MAB5856; R&D Systems], BACE1 [D10ES5; Cell Signaling], and actin [A5441;
Sigma]). Results are presented as mean + SEM of the immunoblot band inten-
sity for each protein measured in three independent experiments. The levels of
the full-length proteins were normalized to actin levels. The bands intensity
was quantified using the AIDA image analyzer software.

(D and E) Analysis of Sema3A-induced growth cone collapse in Chl/1~/~ and Bace1 /" thalamic neurons co-transfected with GFP and empty vector, FI-Chi1,
CHL1 ERM and ankyrin double mutant (FI-Chl1E+A), Chl1CTF3, CHL1CTFB ERM and ankyrin double mutant (Ch/1CTFBE+A), CHL1CTFB ERM (Ch/1CTFgE), or

CHL1CTFB ankyrin (ChI1CTFBA).

(F) Schematic representation of CHL1 C-terminal ERM- and ankyrin-binding sites.
Results are presented as mean + SEM. The scale bars represent 5 um. See also Figure S3.
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Figure 5. BACE1
Neurons

(A) AB1_40 levels in the conditioned medium of WT thalamic neurons after
treatment with BACE1 inhibitor (0, 0.003, 0.01, 0.03, 0.1, 0.3, 1, and 3 uM CIV).
(B) Quantification of Sema3A-induced growth cone collapse in WT thalamic
neurons after treatment with BACE1 inhibitor (0, 0.03, 0.1, 0.3, 1, and 3 uM
CIV).

Results are presented as mean + SEM.

Inhibitor Dose Curve Response in Thalamic

Thalamic Explants in Collagen
Thalamic explants were prepared as described (Leyva-Diaz et al., 2014). See
Supplemental Experimental Procedures for more information.

Growth Cone Collapse Assay

To measure growth cone collapse, thalamic or hippocampal neurons were
plated into 8-well glass Lab-Tek IICC? chamber slide (154941/ W2495X;
Fisher Scientific) pre-coated with 0.5 mg/ml poly-L-lysine. After 48 hr, cells
were treated with either human Fc (4460-MG-100; R&D Systems), semaphorin
3A fused to human Fc (5926-S3; R&D Systems), or semaphorin 3F fused to hu-
man Fc (3237-S3-025; R&D Systems) for 30 min at 37°C. Cells were fixed with
4% paraformaldehyde (PFA) in PBS, permeabilized with 0.2% Triton X-100,
and labeled with Alexa Fluor 555-phalloidin. Growth cone morphology was
analyzed using a Zeiss ELYRA S1 (SR-SIM) super-resolution microscope.
For genetic rescue experiments, neurons were co-transfected with GFP and
the plasmids of interest (FI-Chi1, Chi1D1062H, Chl1-CTFgB, Chl1-NTF3, FI-
ChI1E+A, Chl1CTFBE+A, ChI1CTFBE, and Chl1CTFpBA; see Supplemental
Experimental Procedures). Transfections were performed using Lipofectamine
2000 reagent (11668-019; Invitrogen) according to the manufacturer’s proto-
col. After 48 hr, cells were treated overnight with 0.03, 0.1, 0.3, 1, or 3 uM
B-secretase inhibitor IV (CIV), 50 uM metalloprotease inhibitor (GM6001), or
10 uM vy-secretase inhibitor (DAPT). Only cells expressing GFP were included
in the analysis. Results are presented as mean + SEM of the percentage of
collapsed axonal growth cones from three independent experiments. In
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each experiment, we counted the number of collapsed and non-collapsed
axonal growth cones, and based on the total number of cells analyzed, the per-
centage of collapsed growth cones was determined. In Figures 1C, 1D, 4B, 4C,
and 4E (only phalloidin staining), all cells from ten different areas of each well
were analyzed. For the other experiments (genetic rescue experiments where
the different constructs were co-transfected with GFP), all GFP-positive cells
in each well were analyzed.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism software (Prism;
GraphPad Software). Results are presented as mean + SEM.
Growth Cone Collapse Assay
Two-way ANOVA was used to detect a significant difference between the
different genotypes and treatments in response to Sema3A-Fc, Sema3F-Fc,
or control Fc. Tukey’s multiple comparisons test was used to compare the
different groups. In case there was only the effect of one analyzed variable
(no interaction), the significant difference was expressed differently (#).
Western Blot Analysis
Student’s t test was used to detect a significant difference of FI-CHL1, sCHL1,
and APP protein levels between WT, BACE1-inhibitor-treated, and Bacel™/~
thalamic neurons.
Thalamic Explants
One-way ANOVA was used to detect a significant difference between the P/D
ratios of the different genotypes and treatments. Tukey’s multiple compari-
sons test was used to compare the different groups.
Live-Cell Imaging of Thalamic Neurons
Two-way ANOVA was used to detect a significant difference between the
different treatments in response to Sema3A-Fc across three different time
points. Tukey’s multiple comparisons test was used to compare the different
groups.
Growth Cone Collapse Assay BACE 1-Inhibitor Dose Curve Response
Student’s t test was used to detect a significant difference between Sema3A-
Fc and control Fc for the different doses of BACE1 inhibitor. p < 0.05 was set
as a statistically significant level. *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001, *p < 0.05, *p < 0.01, and ns is statistically not significant.

Please check Supplemental Experimental Procedures for additional
information.
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