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Abstract: Tomato fruit (Solanum lycopersicum L.) has a very brief storability, displaying chilling injury
(CI) when stored in cold conditions used to delay ripening. For this reason, in this study, different
concentrations (10, 50, and 100 mg LD of chlorogenic acid (ChA) were assayed to evaluate its
effectiveness in maintaining fruit quality traits and mitigating CI symptoms in tomatoes. Our results
showed that ChA treatments effectively delayed weight loss and maintained fruit firmness, with
optimal results observed at 50 mg L~!. In general, higher concentrations did not result in significant
quality improvements. Additionally, ChA-treated tomatoes exhibited reduced values in malondi-
aldehyde (MDA) content and electrolyte leakage (EL), indicating improved membrane integrity
and reduced oxidative damage. ChA treatments also maintained a higher total phenolic content
(TPC) during storage, with significant levels of individual polyphenols such as rutin, neochlorogenic
acid, and p-coumaric acid, suggesting enhanced antioxidant capacity and better preservation of
fruit quality. This is the first time the potential of ChA to reduce CI has been evaluated in any fruit
species, and its impact in tomato ripening is shown to uphold fruit quality during cold storage,
prolonging the storability of tomatoes. In particular, we highlight its natural origin and effectiveness
as a postharvest treatment.
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1. Introduction

Tomato (Solanum lycopersicum L.) is a commonly consumed fruit, highly valued for its
nutritional benefits (including vitamins, carotenoids, and phenolic compounds) and with
economic relevance for growers [1]. However, its postharvest storability is notably brief,
presenting a significant challenge for both the agricultural industry and consumers. This
limited shelf life is largely attributed to the rapid processes of ripening and senescence that
accelerate after harvesting. For this reason, in general, storage and transportation of fruit
and vegetables occur under refrigeration to delay metabolism and ripening. However, cold
storage (below 10-12 °C) leads to tomato chilling injury (CI), resulting in discoloration,
surface softening, and shrinkage [2,3]. This physiopathy promotes fungal infections, result-
ing in decay. Different studies have proposed increasing tomato storability by controlling
ethylene production using 1-methylcyclopropene (1-MCP) [4,5], polyamines [6], and nitric
oxide [7]. Physical technologies such as postharvest LED lighting [3] and irradiation [9]
or physical barriers such as plastic films for modified-atmosphere packaging [10], active
packaging [11], or edible coatings [12] are also able to control ethylene and tomato fruit
ripening. On the other hand, plant-origin substances such as plant hormones [13,14] and
elicitors [15,16] have been employed to increase the tomato shelf life. Plant-based treat-
ments have increased the interest in this regard. These treatments are sustainable, safe
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for consumption, and offer additional benefits such as enhancing the antioxidant prop-
erties. Among these natural compounds, polyphenols are particularly notable for their
crucial roles in plant secondary metabolism, involvement in defense mechanisms, and
maintenance of the cellular antioxidant status [17].

Additionally, polyphenols have antioxidant properties that benefit both human health
and the quality of the fruit during storage. Among polyphenols, flavonoids like quercetin,
naringenin, and rutin, and chlorogenic acid (ChA) as a phenolic acid compound, are the
most important phenolic compounds found in tomatoes [18]. ChA is one of the most
extensively studied polyphenols due to its diverse biological functions. This phenolic
acid is widely distributed in numerous fruits and vegetables, and in tomatoes, its content
varies significantly during ripening and senescence processes. Research has demonstrated
that the ChA content in tomatoes decreases markedly as the fruit matures [19]. Initially,
tomatoes exhibit appreciable levels of this compound, but these levels decline as postharvest
ripening progresses. This reduction can affect the antioxidant capacity of the fruit, which
in turn influences its firmness and resistance to diseases during storage. Specifically, ChA
has shown antimicrobial and antioxidant activities, suggesting its potential for use as a
postharvest treatment to extend the tomato shelf life [20]. Additionally, some polyphenols,
including ChA and rutin, have been associated with the stimulation of growth regulators
such as auxins [21].

Despite the potential benefits of ChA, its direct application to extend storability has not
been extensively studied. Previous studies have evaluated the use of polyphenol extracts
and chlorogenic acid in different fruits, showing promising results in reducing senescence
and improving postharvest quality [22-26]. However, ChA has not been tested in tomatoes
for this specific purpose, and to date, no research has evaluated exogenous ChA in relation
to cold tolerance in vegetable products. Therefore, a natural plant substance, ChA, was
studied to determine its potential in enhancing resistance to CI and reducing senescence in
tomatoes, which formed the main objectives of the present study.

2. Results and Discussion
2.1. Chlorogenic Acid Impact on Weight Loss Fruit Softening and Chilling Injury Incidence

Tomato weight loss arises during the refrigerated period and subsequent shelf life, as
expected across all evaluated fruit batches (Figure 1A). However, we observed a significant
(p < 0.05) ChA impact, reducing the progression of this parameter, with ChA-treated
tomatoes (21 + 3) showing similar values to control batches (14 + 3). Despite this delay,
no dose-dependent effect was observed, as all ChA-treated batches displayed a similar
pattern of weight loss evolution. Specifically, after being refrigerated for 2 weeks and then
kept at 20 °C for 3 days, the fruit batches treated with ChA showed reduced weight loss as
compared to untreated control batches. Similarly, this trend was observed in fruit firmness,
where ChA-treated fruit exhibited a delayed evolution as compared to control fruit values
throughout the study (Figure 1B). At 0 + 3 days into the experiment, there was a notable
dose-dependent effect, although this effect diminished over the course of the experiment
among the highest concentrations applied. ChA at 10 mg L~! displayed the lowest impact,
considering the average values obtained between the ChA-treated batches. On the other
hand, ChA did not completely inhibit CI (Figure 1C), but it did significantly (p < 0.05)
mitigate this disorder by around 30-40% after cold storage throughout this study.
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Figure 1. Weight loss (%) (A), fruit firmness (N mm~ 1) (B), and chilling injury symptoms (C) of control
tomato (Solanum lycopersicum L.) fruit and treated with different chlorogenic acid concentrations and
maintained at 8 °C and subsequently for 3 days at 20 °C. Different lowercase letters denote significant
differences (p < 0.05) among treatments on the same sampling day. Data are the mean =+ SE (1 = 3).

Fruit weight loss in tomatoes and other fresh produce can result in shriveling after a
water loss of between 3 and 5% [27]. However, ChA was effective in delaying this parameter,
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maintaining visual properties for a longer duration. Additionally, positive effects were
observed in fruit firmness throughout the storage period, as fruit with lower water loss
remained firmer. Weight loss is primarily due to the transpiration process, which can be
enhanced by higher metabolism and a reduction in the integrity of the plant tissues, making
the fruit softer [28]. In this sense, ChA postharvest treatments have demonstrated a positive
impact on delaying fruit weight loss and maintaining fruit firmness. For example, ChA
applied as an edible coating delayed fruit softening and weight loss in a dose-dependent
manner in apricots [29] and lychee [25]. In lychee, 50 mg L~! was identified as the optimal
concentration, similar to apricots, while 100 mg L1 was proposed as the ideal concentration
to maintain fruit firmness and reduce weight loss in apples [30]. Our results, in agreement
with other authors [24], suggest that chlorogenic acid could maintain cellular integrity
in tissues, thereby reducing transpiration. This effect is mainly due to the effect of ChA
regulating senescence-related enzyme activities and increasing the antioxidant balance in
plant cells, thus preventing oxidation and the disassembly of membrane tissues [30,31].
As far as we know, ChA has never been evaluated as a postharvest technology to increase
cold tolerance during storage in any fruit species. However, different authors have applied
different polyphenol extracts or substances [22,25] to reduce the browning impact in lychee
fruit and in pummelo fruit [26] since polyphenols can reduce oxidation processes. In fact,
new composite coatings on cherry tomatoes have been linked to a higher polyphenol
content, which correlates with a reduced CI impact, lower weight loss, and slower fruit
softening evolution [32,33]. Accordingly, it is reasonable to assume that these factors
could explain why CI in tomato fruit was delayed during storage. In this context, in
potatoes, a higher polyphenol content of ChA and caffeic acid has been associated with CI
protection [34]. This is consistent with our results in ChA-treated fruit; for this fruit, the
effects on different parameters related to CI, such as MDA and EL, are explained below.

2.2. Effect of Chlorogenic Acid on Malondialdehyde Content and Electrolyte Leakage

MDA is a major product obtained after lipid peroxidation, standing as a crucial marker
of metabolic breakdown. An increase in this aldehyde has been directly associated with
increased membrane permeability [35] and directly related to CI intensity, as previously
reported in climacteric fruits such as tomato [36] and in non-climacteric fruits, increasing
EL [37,38]. In this sense, management is necessary with different postharvest technologies
such as calcium, elicitors, or 1-MCP. Tomato fruit treated with ChA showed a delayed
evolution as compared to untreated batches at day 7 during cold storage plus an additional
period of 3 days at 20 °C (Figure 2A).

It is important to highlight that the effectiveness of ChA on MDA levels exhibited a
dose-dependent manner, especially after two weeks of cold storage. The positive effect of
the various ChA concentrations applied was evident, with lower MDA levels associated
with higher cell membrane integrity, making the cells less susceptible to damage by reactive
oxygen species (ROS). Similarly, Fan et al. [39] found that applying ChA to pitaya fruit helps
to maintain the quality of fresh-cut red pitaya. This effect was linked to the preservation
of the antioxidant activity levels, reducing oxidation. On the other hand, a reduction in
unsaturated fatty acids can influence the alteration of membrane lipids, reducing cold
tolerance in different fruit species [40,41]. In this sense, changes in the lipid composition
during membrane damage led to decompartmentalization and EL [42]. Regarding EL,
a dose-dependent effect between the ChA concentration applied and the positive effect
of reducing EL was generally observed throughout the entire experiment (Figure 2B).
Control fruit showed increased ion efflux, displaying significantly higher values compared
to ChA-treated fruit, especially during the first two weeks of storage. The reduced EL in
ChA-treated fruit could explain the positive effect on CI observed previously, as several
authors have confirmed in different studies [43,44] in which the lower EL was related to
a higher level of polyphenol content, in consensus with our study, as we will describe in
Section 2.5.
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Figure 2. Malondialdehyde (MDA) content (pmol kgfl) (A) and electrolyte leakage (EL) (%) (B),
in control tomato (Solanum lycopersicum L.) fruit or treated with chlorogenic acid at different con-
centrations, maintained at 8 °C and subsequently for 3 days at 20 °C. Different lowercase letters
denote significant differences (p < 0.05) among treatments on the same sampling day. Data are the
mean + SE (n = 3).

2.3. Effect of Chlorogenic Acid on Respiration and Ethylene Production

After refrigerated storage, the respiration and ethylene production of tomatoes exhib-
ited a declining trend throughout the experiment for all treated batches evaluated (Figure 3).
However, different results (p < 0.05) were obtained between the higher concentrations in
ChA-treated groups and the control fruit, with the latter generally showing higher average
values for these metabolic parameters.
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Figure 3. Respiration rate (mg CO, kg~! h™!) (A) and ethylene production (nL g~ h=1) (B), in control
tomato (Solanum lycopersicum L.) fruit or treated with chlorogenic acid at different concentrations,
maintained at 8 °C and subsequently for 3 days at 20 °C. Different lowercase letters denote significant
differences (p < 0.05) among treatments on the same sampling day. Data are the mean =+ SE (1 = 3).

The most concentrated ChA solutions applied resulted in lower average values for
both respiration and ethylene production. As ripening progresses, oxidative damage may
increase due to enhanced respiration, coinciding with a decrease in the internal level of ChA
in tomato fruit [19]. This relationship could explain the reduced respiration observed in
ChA-treated fruit. Additionally, the lower oxidative damage might be associated with the
previously described lower MDA content and electrolyte leakage percentage. Furthermore,
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reduced respiration and ethylene production are also linked to decreased weight loss and
maintained fruit firmness. Ethylene reduction is directly related to delayed ripening or
senescence and higher CI tolerance in climacteric [45] or non-climacteric fruits [46], aligning
with our global results. A lower ethylene production is related with a lower metabolism
and catabolic reactions. Xi et al. [47] elucidated in apples that the enzyme catalyzing the
conversion of malate to pyruvate and NADPH (substrates for respiration in tomatoes
and other fruits) was inhibited by 50 mg L~! of ChA. This inhibition could explain the
suppressed general metabolism observed after ChA applications, as Shu et al. [30] also
confirmed the increased energy balance in cells in ChA-treated apples. In this sense,
applying novel technologies focused on reducing tomato CI such as hydrogen sulfide or
methyl jasmonate as postharvest applications has shown that increasing the energy balance
is crucial to control this disorder [48,49]

2.4. Effect of Chlorogenic Acid on Fruit Color Parameters

Tomato color is a crucial factor affecting both market standards and consumer accep-
tance, making its maintenance a primary objective for producers and distributors. During
commercial postharvest, maintaining color is essential as it directly influences perceived
quality and demand. As in the present study, applying several new strategies based on
the antioxidant potential of different plant regulators and edible coatings has shown that
reducing CI during storage is widely related to the ripening process, thus delaying color
development [50-52]. In this study, several color parameters were obtained, although
only those affected by the ChA treatments are described. ChA treatment of tomatoes
significantly (p < 0.05) affected all parameters displayed in Figure 4. Regarding tomato
fruit lightness (CIE L¥), all ChA concentrations delayed this parameter after storing the
fruit for 3 days at room temperature (Figure 4A). However, these differences disappeared
over the course of the experiment, and only the 50 mg L~! concentration maintained
higher L* values after 21 days of refrigerated storage plus 3 days at 20 °C. Additionally,
the evolution of CIE b* was also delayed during storage in relation with control batches,
especially at the beginning of the experiment. All ChA concentrations exhibited a similar
delayed pattern, but no important differences were displayed (Figure 4B). ChA concen-
trations significantly delayed (p < 0.05) the intensity and color vividness (CIE Chroma*),
particularly at the highest concentrations throughout the entire experiment. These results
can be related to a delayed pattern of ethylene production, as previously described for
ChA-treated fruit [5]. Given that ethylene detection is necessary for the ongoing ripening of
tomato fruit, the slower progression of CIE L* values was associated with a reduced weight
loss pattern and a delayed postharvest ripening by Nunes and Emond [53]. These authors
described how decreased water evaporation in tomatoes helps to maintain their freshness
for extended periods. Tomatoes are rich in polyphenols but with a lower concentration
than carotenoids and mainly constitute flavonoids and phenolic acids, with ChA being
one of the predominant polyphenols [54]. Polyphenols are mainly accumulated in the
tomato skin, contributing not only to the nutritional value and health benefits but also
to tomatoes’ sensory qualities, including color stability thanks to antioxidant molecules
during ripening [54,55]. In this sense, ChA applied to nectarines as a postharvest treatment
delayed all color parameters studied at 25 and 50 mg L™}, with a more pronounced effect
observed at the higher concentration [56]. This observation aligns with the outcomes of
our research.
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Figure 4. External color evolution CIE L* (A), CIE b* (B), and CIE Chroma* (C) evaluated in control
tomatoes (Solanum lycopersicum L.) and treated with chlorogenic acid at different concentrations,
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2.5. Effect of Chlorogenic Acid on Phenolic Compounds

In tomato fruit, the most significant phenolic compounds are flavonoids and phenolic
acids. Different phenolic compounds were detected in this study (Figure S1 and Table S1).
Among the individual phenolic acids, in general, the isomers of caffeoylquinic acid (CQA)
were the most prevalent (Figure 5A-C).
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and rutin (H), evaluated in control tomatoes (Solanum lycopersicum L.) and treated with chlorogenic
acid at different concentrations, maintained at 8 °C and subsequently for 3 days at 20 °C. Different
lowercase letters denote significant differences (p < 0.05) among treatments on the same sampling
day. Data are the mean =+ SE (n = 3).

The primary phenolic acid in ‘Kabrera” tomato fruit was ChA (3-O-CQA) (Figure 5A),
and in lower concentration, we detected 4-O-CQA (cryptochlorogenic acid) (Figure 5C)
followed by 5-O-CQA (neochlorogenic acid) (Figure 5B). These three isomers were pre-
viously detected in tomatoes by Slimestad and Verheul [57]. They were also observed in
different cultivars of tomato fruit [58]. Other phenolic acids identified, in descending order
of concentration, included caffeic acid and ferulic acid (Figure 5D,F) at similar levels, with
p-coumaric acid (Figure 5E) having the lowest concentration. Regarding flavonoids, rutin
(Figure 5G) displayed the highest concentration, followed by quercetin (Figure 5F), which
had one of the lowest concentrations among all phenolic compounds evaluated in this
tomato cultivar. The application of ChA in tomato fruit significantly (p < 0.05) enhanced
overall levels in phenolic compounds throughout this experiment. However, 4-O-CQA
(cryptochlorogenic acid) and caffeic acid (Figure 5C,D) exhibited a delayed accumulation
pattern during storage. On the other hand, the application of immersion treatments based
on ChA showed no significant (p > 0.05) rise in ChA levels within tomato tissues after
3 days at 20 °C. We hypothesize that ChA was immediately metabolized after application,
likely affecting the accumulation observed in 5-O-CQA and the other phenolic compounds
evaluated over the same storage period.

Recent studies by several authors have reported similar concentrations of the phe-
nolic compounds evaluated in this study, such as ChA, 5-O-CQA, or 4-O-CQA in tomato
fruit [59-61]. Additionally, the levels of additional phenolic acids, such as p-coumaric, fer-
ulic, and caffeic acids [54,61,62], along with flavonoids such as quercetin and rutin [54,63],
were consistent with those reported in previous studies on tomato fruit. In addition, ChA
levels have been observed to decline throughout the ripening process, consistent with our
results [58,62]. However, while other authors observed a decreased pattern in ferulic acid
in the hybrid “BHN-589” during tomato ripening [62], our results showed an increase in
this phenolic acid over the storage time. In general, the pattern of increase or decrease
during ripening of the different phenolic compounds was similar to those found by other
authors for caffeic, p-coumaric, and ferulic acids and for the flavonoid evolution during
tomato ripening [58]. The ChA effect in increasing the different phenolic compounds
could lead to a potent effect in enhancing the antioxidant defense system in fruits by
stimulating the expression of antioxidant enzymes, as has been described in different fruit
species for polyphenol applications [17,47,64]. The levels of distinct phenolic compounds
in tomatoes can be influenced by extraction techniques, the cultivar evaluated, the ripening
stage, and methodological evaluation. These factors can explain the varying phenolic
contents reported by different authors [60,61]. Palumbo et al. [65] did not observe a clear
pattern in phenolic acids such as those studied in this research exerted by suboptimal
temperatures in nectarine, so it seems the different effects displayed by treatments in terms
of phenolic acid concentration are solely due to the treatments applied. In this sense,
a low-oxygen atmosphere reduced CI in apples by delaying the evolution of ChA and
5-O-CQA, thereby reducing the accumulation of these metabolites and their subsequent
oxidation [66]. Postharvest applications of 24-epibrassinolide in guava fruit increased the
flavonoid content under suboptimal temperatures, and this increase was related to a lower
CI [67]. This delay in phenolic acid catabolism and the increased flavonoid content were
also observed in our results.

2.6. Effect of Chlorogenic Acid on Total Polyphenol Content Total Soluble Solids and Titratable
Acidity throughout Storage

TPC levels were significantly different (p < 0.05) between treated batches only at the
beginning of the experiment, with higher TPC levels in ChA-treated fruit (Figure 6A).
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TPC in each sample increased, reaching levels comparable to findings reported by other
researchers for tomatoes [68—70]. Initially, control fruit batches exhibited a delayed pattern
in TPC, but at the conclusion of this study, both control batches and treated fruit with ChA at
50 mg L~! reached the highest TPC values (293.44 + 4.50 and 274.09 + 3.81 mg GAE kg~ !,
respectively), with no significant differences found between them (p > 0.05). Moreover,
TPC levels in all ChA-treated samples were lower as compared to control fruit reaching the
final storage period.

In accordance with our results, TPC increased during ripening in tomatoes, as observed
by different authors. [19,68]. In line with our findings, although the level of antioxidant
substances such as ChA and caffeic acid decreased during the experiment, rutin remained
quite stable, with higher values throughout the entire period in ChA-treated fruit. How-
ever, other highly antioxidant polyphenolic compounds, such as 5-O-CQA, 4-O-CQA, or
p-coumaric acid, showed greater levels in ChA-treated tomatoes only in the initial period
of the experiment, with these differences disappearing or showing reduced levels relative
to control batches in the final period of storage. These varying patterns may be due to the
various functions of specific polyphenols in plants. In tomato fruit, a higher level of TPC
has been related to reduced CI after postharvest treatments such as LED lighting [8], UV
irradiation [70], hot water treatments [71], and applications with elicitors [67,72]. Moreover,
a higher TPC content indicates a higher level of ripening in tomato fruit, suggesting a de-
layed ripening pattern in ChA-treated fruit likely due to lower respiration and metabolism,
as previously described in this study. On this matter, when total soluble solids (TSS) and
titratable acidity (TA), which are metabolism substrates, increased and decreased, respec-
tively, during the experiment, ChA postharvest treatments delayed TSS accumulation and
total organic acid catabolism significantly (p < 0.05). This effect is consistent with delayed
ripening, primarily due to lower respiration and ethylene production, as observed in previ-
ous tomato studies [4,73], and these metabolic changes happen during the normal ripening
process of tomatoes, as previously documented [74]. ChA could contribute to an optimal
energy balance in cells, as has been proven for apples [30], reducing excessive breakdown
of substrates [23]. In this sense, higher levels of TSS and TA observed in various fruit
species after different postharvest treatments have been associated with lower incidences
of CIL. This effect could be related to the sugars and organic acid contents (such as ascorbic
and citric acid), since a cryoprotectant impact of these substances has been observed at
increased concentrations [75-77].

3. Materials and Methods
3.1. Plant Material and Experimental Design

Tomatoes (Solanum lycopersicum L.) were hand-picked from a commercial orchard
in Aguilas (Murcia, Spain) in a green matured color. On the same day, 300 tomatoes
without visual damage or disease were brought to the laboratory, where they were sorted
for a consistent size. Following this process, the tomatoes were divided into groups
per treatment, with 5 fruits per replicate (n = 3) for each sampling date. Distilled water
immersions (10 min) were used as the control treatment. For ChA treatments, the tomatoes
were immersed in 10, 50, and 100 mg L~! solutions for 10 min. In all ChA solutions and
control dips, Tween 20 (0.05%) was added. After treatment, tomatoes were allowed to air
dry at 20 °C for 1 h prior to being kept at 8 °C and 90% RH for 28 days, followed by an
additional period of 3 days at 20 °C for later assessments.

3.2. Postharvest Quality Traits

Tomato weight losses were evaluated as a percentage of the initial fruit weight. To
measure fruit firmness, tomatoes were tested individually using a TX-XT2i texture analyzer
equipped with a flat probe, exerting sufficient pressure to reach 5% fruit deformation in
relation to the fruit’s diameter (Stable Microsystems, Godalming, UK). Data obtained have
been reported taking into account the ratio of applied force and the distance travelled
by the probe (N mm~!) and displayed as the mean + SE. CI in tomatoes was visually
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evaluated by 9 trained assessors, who scored the surface damage on a scale of 1 to 5:
1 = not affected, 2 = 1-25% surface, 3 = 25-50% surface, 4 = 50-75% surface, and 5 >75%
surface. The malondialdehyde (MDA) content in tomato tissue was analyzed following
the method previously described [78]. A 2.5 g sample was manually grounded with a
mortar and subsequently was mixed using a 10% trichloroacetic acid solution (10 mL). After
centrifuging the mixture at 4 °C and 10,000 g for 20 min, the supernatant was obtained,
and 2 mL was mixed with 6 mL of 0.67% thiobarbituric acid and homogenized. The
samples were heated (95 °C for 20 min) and then brought to ambient temperature before
their evaluation at different wavelengths (450, 532, and 600 nm) with a spectrophotometer
(1900 UV /Vis, Shimadzu, Kyoto, Japan). These evaluation were conducted in duplicate
and reported as umol kg~

Electrolyte leakage (EL) was measured following a previously described method [79].
From each replicate, 15 disks (1 cm diameter) were obtained from the outer tomato rind
with a cork borer, after removing the interior matrix and rinsing. The disks were rinsed
3 times with deionized water for 3 min each, then immersed in deionized water (50 mL) for
1 h at room temperature and in continuous agitation. Initial electrical conductivity (C1) at
20 °C was recorded. They were subsequently heated (121 °C for 15 min) and tempered to
ambient temperature, and conductivity (C2) was recorded. EL results were obtained with
this formula: (C1/C2) x 100. The respiration rate was determined by taking 5 fruits from
each replicate and treatment, and placing them inside hermetically sealed 3.7 L containers
for 60 min. A gas sample (1 mL) was taken from the headspace in sextuplicate, then
CO, and ethylene production were measured in a Shimadzu 14B and a Shimadzu GC
2010, respectively (Shimadzu Europa GmbH, Duisburg, Germany), following the method
reported previously [80]. For CO, evaluation, the instrument contained a catarometric
detector and a 3 m stainless steel column with an inner diameter of 3.3 mm filled with
chromosorb 102. The column was maintained at a temperature of 55 °C, and the injector
and detector were set at 110 °C. For ethylene production determination, the instrument was
equipped with a flame-ionization detector and a 3 m stainless steel column (inner diameter
of 3.5 mm) packed with activated alumina of 80/100 mesh. The column was kept at 70 °C,
with the injector and detector maintained at 110 °C. The results obtained were displayed as
mg of CO, kg ' h™!, and nL g~! h™! for ethylene concentration. External tomato color was
evaluated at three different surface points around the equator of 5 fruits per replicate with
a CRC 400 colorimeter (Minolta Camera Co., Tokyo, Japan). After halving the tomatoes,
around 50 g from one half of each fruit in each replicate was squeezed through two layers
of cotton cloth, and the total soluble solids (TSS) content was evaluated in duplicate for
each replicate using a refractometer Atago PR-101 at 20 °C (Atago Co., Ltd., Tokyo, Japan).
In the same way, juice titratable acidity (TA) was also measured in duplicate using 1 mL
of diluted juice (25 mL) with an automatic titrator (785 DMP Titrino, Metrohm, Herisau,
Switzerland). TSS and TA were expressed as g per 100 g~! and g of citric acid equivalents
per 100 g~ 1, respectively.

3.3. Polyphenolic Content

To determine the polyphenol content, the remaining half of each tomato was pulver-
ized using liquid nitrogen. Then, 2 g of the frozen tomato powder was homogenized in
10 mL of a methanol (8:2) solution containing 2 mM sodium fluoride to control polyphenol
oxidase activity and avoid polyphenol breakdown. The mixture was then subjected to
centrifugation (10,000 x g at 4 °C, 15 min). Supernatants were reacted in duplicate with
a Folin—Ciocalteu solution to evaluate the total phenolic content, as has been previously
reported for plant tissues [81]. Two 200 puL aliquots (for duplicate analysis) of one extract
per replicate (n = 3) were taken for analysis. Each aliquot was combined with 300 pL of
50 mM phosphate buffer solution, 2.5 mL of Folin-Ciocalteu reagent, and 2 mL of 1 N
NayCOj3. The mixture was shaken and then incubated in a water bath at 50 °C for 5 min.
A blank sample was prepared by substituting the extract with the previously described
methanol solution. Absorbance was measured at 760 nm using a UV-1700 spectrophotome-
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ter (Shimadzu). Results were expressed in mg of gallic acid equivalents (fresh weight)
based on a gallic acid calibration curve.

For the evaluation of individual polyphenols, one sample per replicate was obtained
by extraction from 5 g of pulverized tomato in 5 mL of methanol, homogenizing for 1 min
(Ultraturrax, T18 basic, IKA, Berlin, Germany). After centrifugation at 10,000x g and 4 °C
for 15 min, samples were filtered and analyzed using an LC-MS/MS 8050 (Shimadzu, Japan).
The conditions applied are described as follows: a nebulizer flow rate and a drying gas flow
rate of 3L min~! and 10 L min !, respectively; 250 °C was the desolvation line temperature
and 400 °C was the heat block temperature of the selected ion monitoring; —35 V was the
collision energy value; and we employed a full MS scan mode ranging from 100 to 1000 1/ z.
A Mediterranea SEA18 column (10 mm length x 0.21 mm internal diameter, 2.2 um particle
size, Teknokroma, Barcelona, Spain) was used for the chromatographic separation at 40 °C.
A 0.1% formic acid solution for phase A and 0.1% formic acid in acetonitrile (ACN) for phase
B were used with deionized water for the mobile phase. The gradient elution programmed
was 0-2 min with 5% B, 2-10 min with 95% B, 10-11 min with 95% B, 11-12 min with 5%
B, and 12-16 min with 5% B, with a flow rate of 0.400 mL min—! and using an injection
volume of 10 pL. External standards facilitated the quantification of phenolic compounds.
Instrument control and data analysis were performed with the Labsolutions LCMS software
version 5.98 (Shimadzu). All analyses were performed in triplicate.

3.4. Statistical Analysis

Data obtained were the mean + SE, and those were analyzed using analysis of variance
(ANOVA) tests. Significant differences (p < 0.05) among means were identified using
Tukey’s HSD test. Treatments that differed significantly within the same sampling period
were indicated by different lowercase letters. All statistical analyses were performed using
the SPSS software package, version 22 (IBM Corp., Armonk, NY, USA).

4. Conclusions

ChA demonstrates significant potential as a new postharvest technology to maintain
tomato quality, thus increasing cold storability. Our study has showed that ChA treatments
effectively delay weight losses and fruit softening. This effect was particularly pronounced
at higher concentrations of ChA, but the optimal results were obtained at 50 mg L}, consid-
ering that higher concentrations did not result in a significant quality increase. Additionally,
ChA-treated tomatoes exhibited lower levels of malondialdehyde and electrolyte leakage,
indicating improved membrane integrity and reduced oxidative damage. These results
confirmed and explained the positive impact of ChA in reducing chilling injury symptoms.
Furthermore, the role of ChA in maintaining a higher TPC during storage suggests an
enhanced antioxidant capacity, contributing to better preservation of the fruit quality. This
is the first evidence of the potential of ChA to reduce chilling injury in any fruit species,
highlighting ChA as a sustainable and effective postharvest treatment to control disorders
during cold storage and prolong the storability of tomatoes. However, further research into
its applications across various fruit species is needed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13152055/s1, Figure S1: LC-MS/MS Chromatogram view
MRM of the phenolic acids and flavonoids detected in tomato samples at different retention times
(RT); Table S1: Phenolic compounds content (mg kg~!) evaluated in control tomatoes and treated
with chlorogenic acid at different concentration maintained at 8 °C and 3 days at 20 °C.
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