Maia Kikvadze¹, Javier Valera⊚², Concepción Obón⊚³, Rafael Ocete⊚⁴, Carlos Álvar Ocete⊚⁴, Shengeli Kikilashvili⁵, David Maghradze⊚¹.⁵, Diego José Rivera-Obón⊚⁵, and Diego Rivera⊚²*

Wild grapevines of Georgia and their relationship with local cultivars: a Bayesian analysis of seed morphology

Affiliations

- ¹Faculty of Agrarian Sciences and Biosystems Engineering, Georgian Technical University, Tbilisi, Georgia.
- ²Departamento de Prehistoria, Arqueología, Historia Antigua, Historia Medieval y Ciencias y Tecn. Historiográficas, Facultad de Letras, Campus de la Merced, Murcia, Spain.
- ³Departamento de Biología Aplicada, EPSO, Universidad Miguel Hernández de Elche, Alicante, Spain.
- ⁴Tirgo, La Rioja, Spain.
- ⁵Faculty of Viticulture and Winemaking. Caucasus International University, Tbilisi, Georgia.
- ⁶ENS Paris-Saclay, Gif-sur-Yvette, France.
- ⁷Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Murcia, Spain.

Correspondence

Maia Kikvadze: m.kikvadze70@gmail.com, Javier Valera: javier.valera.martinez@gmail.com, Concepción Obón: cobon@umh.es, Rafael Ocete: ocete@us.es, Carlos Álvar Ocete: carlos_ocete@hotmail.com, Shengeli Kikilashvili: shengeli.kikilashvili@ciu.edu.ge, David Maghradze: david.maghradze@gmail.com, Diego José Rivera-Obón: dieguitojos@gmail.com, *Diego Rivera: drivera@um.es

Summary

The wild grapevines of Georgia and the South Caucasus in general are of great interest because of their relationship to the history of grapevine cultivation. Grape seeds provide information of interest about the characteristics and origin of the plant that produces them. The use of classical morphometric techniques, together with the use of combined domestication indices, multivariate analysis and Bayesian inference, applied to the study of grape seeds, have made it possible to detect a high level of domestication in the wild populations analyzed, possibly due to the presence of feral individuals and others of hybrid origin. This may pose a problem for the conservation of local autochthonous populations of wild grapevine and at the same time makes these mixed populations a reservoir of genes of interest for the improvement of cultivated grapevine or the recovery of ancient varieties nowadays predisposed in cultivation.

Keywords

Ampelography, grapevine, biodiversity, genetic resources, agrobiodiversity, *Vitis vinifera*, Caucasus, feral, hybrid

Introduction

The South Caucasus region is located between the Black and Caspian Seas and extends over several countries, notably Armenia, Azerbaijan and Georgia, being an important refuge area for numerous wild relatives of cultivated fruit species such as sweet chestnut, walnut and grapevine (Aradhya *et al.*, 2017; Huglin and Schneider, 1986; Krebs *et al.*, 2019; Ramishvili, 1988; Ramishvili, 2001; Vavilov, 1931).

Vitis (Vitaceae) includes over 70 species, which extend in the northern hemisphere across North America, Europe, North Africa and Asia. Vitis vinifera L. is traditionally grown from Central Asia and the South Caucasus zone to a wide range of Western Europe and the Mediterranean basin (Arnold et al., 1998). Vitis vinifera was also introduced in distant territories such as Australia, South America and South Africa. The Caucasus houses an extremely high grapevine diversity, both wild and cultivated (Haxthausen, 1856; Kolenati, 1846; Negrul, 1938; Vavilov, 1926) and it is part of the grapevine's "Fertile Triangle" or "Vavilov's Triangle" (Robinson et al., 2013). The wild grapevine of the Caucasus was a widespread plant in Georgia but after the invasion of phylloxera and fungal diseases in the 19th century the number of plants sharply decreased. However, in Georgia the typical wild Vitis sylvestris C.C. Gmel. ("Usurvazi", "Krikina", "Tkisvazi" in Georgian) is still found, described and protected (Maghradze, 2008).

The South Caucasus region has been postulated as the cradle of viticulture and winemaking (McGovern, 2003; 2004, McGovern et al., 2017; McGovern et al., 1995; Zohary and Hopf, 2000). Results of archaeological studies of the Shulaveris group (Dangreuli Gora, Imiri, Gadachrili Gora) indicate the high level of viticulture and winemaking development in southern Georgia in the 6th to the 4th millennium B.C (Glonti, 2010). Cultural layers of the Shulaveris-Gora settlements, where pips of cultural Vitis vinifera were found, were 14C dated to 7942, 7624 and 7607 calendar years before present (Kvavadze et al., 2007). By the end of the 2nd millennium B.C and the beginning of the 1st millennium B.C., a huge progress was made in terms of grape cultivation proved by the discovery of bronze vine cutting knifes, hatchets and other tools. Kolkhetian wines were mentioned by Homer in the "Iliad" (Glonti 2010). The finding of McGovern et al, (2017) pointed

to Georgia in the South Caucasus as an initial point of European winemaking.

Based on the wild grape's selection and due to the ancient history of viticulture and winemaking, Georgians created a large diversity of autochthonous varieties with diverse agronomical and enological aptitudes: the number of the local varieties is ca. 600 (Ketskhoveli *et al.*, 1960; Ujmajuridze *et al.* 2018). They originated in the different provinces of the country, namely: Kakheti, Kartli, Imereti, Racha, Lechkhumi, Samegrelo, Guria, Adjara, Abkhazeti (Ramishvili, 2001). The varieties were described by the methods of ampelography (Staroselskii, 1893; Cholokashvili, 1939; Ketskhoveli *et al.*, 1960; Del Zan *et al.*, 2009; Maghradze *et al.*, 2012, 2017), molecular genetics (Imazio *et al.*, 2013; De Lorenzis *et al.*, 2015a) and their enological qualities were recorded (Ketskhoveli *et al.*, 1960).

The selection of specific phenotypes characterized the transition from wild grapevine to cultivars. This process implies changes within the reproductive system, which guarantees a high productive grade, together with drastic changes in the grape dimensions, its sugar and acidity content, the bunch shape and dimensions, the number and shape of seeds and a more attractive color (Rivera and Walker, 1989; Jacquat and Martinoli, 1999; Zohary and Hopf, 2000, Arroyo-García et al., 2006; This et al. 2006, Rivera et al., 2007; Maghradze et al. 2021). Vitis vinifera L. cultivars are classified according to the final product for which they have been selected, into wine grapes, table grapes and raisins. In fact, numerous V. vinifera cultivars produce table grapes, and, much more, grapes for wine production. The biogeographical groups of grapevine cultivars were defined by A.M. Negrul (1938, 1946), and later by Troshin et al. (1990).

Dioecious Vitis sylvestris C.C. Gmelin (V. vinifera subsp. sylvestris (C.C. Gmelin) Hegi) is supposed to be the ancestor of hermaphrodite cultivated grapevine (Crespan, 2004; Rossetto et al., 2002; Sefc et al., 2003; This et al., 2004; Zohary and Hopf, 2000). Wild grapevine is a typical representative of the South Caucasian flora. It grows sporadically in woods, forests, lowlands and riverbanks up to 1,200 m a.s.l (Ocete et al., 2018). Eyriés (1841) indicated that grapevine grows in the gullies and plains of South Caucasus as in their primitive homeland. Smilax, Hedera, Vitis, and Lonicera are abundant lianas in the narrow species-rich forest edge along the lowland waterways passing through the Pichora system of Georgia. Wild grapevine shows some correlation with Pterocarya fraxinifolia, Diospyros lotus or Quercus hartwisiana forests (Denk et al. 2001; Ocete et al., 2018). Some other wild Vitis species of American origin such as Vitis riparia, Vitis rupestris or Vitis berlandieri, were introduced in Eurasia during the 19th century and are used as rootstock due to their resistance against Phylloxera or were used in the first breeding programs to obtain varieties resistant to grapevine downy mildew. These rootstocks or their hybrids with Eurasian grapevines became often feral in natural and semi-natural habitats and still persist there (Laguna 2003, 2004, 2006). This is a growing problem throughout the range of cultivated Vitis vinifera, due to the abandonment of some cultural practices, or even the total abandonment of cultivation, as is often done in the European Union, due to legal incentives (Calafat-Marzal et al. 2023; Wyler et al. 2023).

Pallas (1799–1801), a German naturalist at the service of Empress Catherine II of Russia, reported the presence of countless wild grapevine populations in South Caucasus. There were several individuals with large stems, some of them with the thickness of a ship's mast; their branches climbed the surrounding trees. Bunches of grapes were harvested by the inhabitants of the region, sometimes, when the entire grape became raisin after winter frost, in the spring season. The history of the wild grapevine in Georgia is divided in two periods: first until the mid-19th century and, second, since the 1860s until nowadays, when Oidium, Plasmopara and Phylloxera, together with industrial and urban expansion, destroyed spontaneous development of wild grapevine populations. In the early 21st century fifty Georgian populations of wild grapevine were analyzed, whose sizes varied from 1 to 20 plants (mean c. 4). According to the number of plants the populations were classified as "Very bad" (64 %) or "Bad" (24 %) and only 12 % as "Regular" Despite being so widespread in the past, V. sylvestris is now included in the "Red Book of Georgia" since 1982 for in-situ preservation. Only few populations are available in the protected areas of Georgia and the activities for preservation of V. sylvestris in other areas are not satisfactory (Chkhartishvili and Maghradze, 2012).

The close association of Georgian wild grapevines with Georgian cultivated accessions strongly supports their involvement in the initial domestication of grapevine (Riaz *et al.*, 2018).

Kolenati (1846) recognized, based on the indumentum of the abaxial surface of leaves, at least, two types of wild grapevine in the Caucasus:

- Vitis sylvestris subsp. subsp. anebophylla (Kolen.) Vassilcz.
 Published as V. vinifera var. anebophylla Kolen., in page 286-7 with long-petiolate leaves, over three inches long, glabrous or with a tomentose or araneous felt. The cluster is lax, and the habit of this grapevine is slender, and due to widely spaced branches, less crowded but more entwined.
- Vitis sylvestris subsp. trichophylla (Kolen.) Vassilcz. Published as V. vinifera var. trichophylla Kolen., in page 287 with short-petiolate leaves, rarely over two inches long, with short, straight, setose hairs on the abaxial surface, especially on the leaf veins, which are most closely connected to the epidermis. The cluster is dense, and the entire habit is compact.

In parallel, Kolenati (1846): 288, 294, 314) classifies the cultivated vineyards of South Caucasus, following their origin from either one or another of the above two wild sorts, into *V. vinifera* var. *anebophylla* Kolen., (pages 294-314) and *V. vinifera* var. *trichophylla* Kolen., (pages 314-335). It is important to mention that POWO (2024) attributes variety rank to both taxa, but Kolenati (1846) worried about their likely status as subspecies and repeatedly uses the German term "Unterart" when mentioning them, which must be translated by subspecies or even he used directly the Latin term "subspecies".

Georgia became even more relevant for understanding wild grapevine diversity after the choice of a neotype for *Vitis sylvestris* by Ferrer-Gallego *et al.* (2019) who designated the specimen collected in Georgia (Alazani River basin, Jumaskure, 41°21.588′ N, 46°35.934′ E) by Ia Pipia, which is pre-

served in the Herbarium of the Institute of Botany, Ilia State University (TBI barcode TBI1052417!).

Molecular studies point to the possibility that the Caucasian grapevines and those of Western Europe and the Mediterranean have different wild ancestors and relatives, with the domesticated grapevines in the South Caucasus being older (Arroyo-García *et al.*, 2006). The grapevine cultivation and domestication seem to have occurred between the 7th and 4th millennium B.C., in an area comprised between the Black Sea and Iran, notably South Caucasus (Châtaignier, 1995; Valera *et al.*, 2022 and 2023; Zohary and Hopf, 2000).

Several names circulate for those South Caucasus wild grapevines such as *Vitis caucasica* Vavilov or *V. trichophylla* (Kolen.) Vass., however an alternative view is to include all of them within a highly polymorphic *V. sylvestris* (Sosnovszky, 1974). Ramishvili investigated wild grapevines of Georgia in the second half of the 20th century (1956-1988). According to R. Ramishvili (1988), there are three types of wild grapevines in Georgia: 1. true *V. sylvestris*; 2. feral populations of *V. vinifera* cultivars; and 3. intermediate forms between these two types, named as "*V. vinifera* ssp. *silvesatis* Ram."

Leaf length, which varies from 4 to over 15 cm, allow to distinguish four wild grapevine types but leaf hairy cover discriminate two types: *typica* Negr. (leaves with hairs) and *aberrans* Negr. (without hairs) (Musayev, 2014). However, Ekhvaia and Akhalkatsi (2010), who described on morphological grounds three somewhat overlapping groups of wild grapevines (West, South and East Georgian), remark that different types of indumenta can occur in the same population and in very different combinations with the rest of characters. This variability had already been described by Kolenati (1846).

Vitis vinifera seeds present a characteristic morphology, nevertheless they are highly polymorphic. Moreover, they are still identifiable after carbonization, mineralization or strong dehydration or waterlogging. The use of biometric ratios is a powerful approach within the taxonomic study of genus Vitis although the measurement of the seeds is often imprecise because of the fact that the stalk is often broken. Stummer (1911) proposed a morphometric index as the quotient seed breadth/seed length and described the domesticated grapevine seeds as bigger, longer, and with longer stalk. On the other hand, the wild grapevine pips were described as smaller, rounded, and with short stalks (Buxó, 1997; Valera et al., 2023; Zohary and Hopf, 2000).

The identification of grapevine seeds using morphological characters has been under constant review (Levadoux, 1956; Terpó, 1976; Smith and Jones, 1990; Mangafa and Kotsakis 1996). In addition, in the last years linear discriminant analysis and elliptic descriptors method by Fourier Transform were added (Bouby *et al.*, 2013; Bouby *et al.*, 2021; Orrù *et al.*, 2012; Pagnoux *et al.*, 2014; Terral *et al.*, 2010,).

A great proportion of grapevine seed samples do not fit clearly into the categories defined by the Stummer's index and other formulas proposed to delimit the wild grapevine from cultivars (Smith and Jones, 1990; Mangafa and Kotsakis 1996; Valera *et al.*, 2023). This is due to the gradual nature

of the transition between typically wild populations and domesticated cultivars. This gradation is associated both with the existence of hybrid swarms between wild and cultivated populations and with the different degree of transformation operated in cultivars, which makes some of them morphologically indistinguishable from the wild ones. In addition, introduced Amerindian and Asian species, occasionally became feral, their hybrids with *V. vinifera*, further complicating the situation.

We analyzed the morphology of grape seeds of various categories (cultivated, wild and feral) from Georgia and other regions with the following overarching aims:

- To determine the possible existence of morphological pointers for introgression processes and the existence of hybrid swarms in wild and cultivated grapevine populations in Georgia.
- 2. To discriminate wild from feral individuals living both in natural habitats.
- 3. To detect those "primitive" cultivars which more closely resemble wild Georgian grapevines.
- 4. To assess in terms of probability the relationships of ancient Georgian grapevine seeds with wild or domesticated grapevine.

Material and Methods

Plant material

Thirty-five accessions of Georgian grapes were included in this research (Table 1): 15 accessions a priori represent *Vitis vinifera* Georgian autochthonous varieties and cultivars from various vinicultural regions of the Country; 15 are wild grapevine accessions belonging to *Vitis sylvestris*; 5 are feral from natural habitats but otherwise having ampelographic characters of cultivated *Vitis vinifera*. These seeds were analyzed within an ensemble of 782 *Vitis* seed samples at the Laboratory of Ethnobotany and Archaeobotany of the Murcia University (Spain) in order to have a wider framework (Supplementary Table 1).

The Georgian seeds have been collected from two field collections of Georgia. Both share the vinicultural region of Inner Kartli, they share similar climate and soil types and are ca. 64 km apart one from the other:

1: Jughaura collection (FAO code GEO036) of the LEPL Scientific – Research Center of Agriculture of Georgia and named after Academician S. Cholokashvili. The collection is located in Mtskheta district of Inner Kartli province of Eastern Georgia (Maghradze *et al.* 2022) and was established in 2008. The site receives 540–590 mm of average annual precipitation (Cola *et al.* 2017). The soils are meadow brown, and have good physical properties and the ability to retain water. The content of lime increases deeper in the soil (up to 18–20%); its pH is 7.8–8.1 and the humus content is 1.40–1.65%. It is poor in nitrogen and phosphorus and contains potassium in medium amounts. The planting layout is 2.3 m (between rows) × 1.3 m (between plants). All the grapevines are grafted on Kober 5 BB (*Vitis berlandieri* × *Vi*-

Table 1: List of Vitis accessions from Georgia.

Code	Genus	species	Accession Name	Usage	Berry color	Province of Origin	Type of accession
721	Vitis	vinifera	Asuretuli Shavi*	w/t	В	Lower Kartli	Cultivar
713	Vitis	vinifera	Budeshuri Tetri	W	W	Kartli	Cultivar
708	Vitis	vinifera	Buza	W	В	Kartli	Cultivar
710	Vitis	vinifera	Chinuri	W	W	Kartli	Cultivar
717	Vitis	vinifera	Chitistvala Meskhuri	W	W	Samtskhe-Javakheti	Cultivar
707	Vitis	vinifera	Gorula	w/t	W	Kartli	Cultivar
718	Vitis	vinifera	Kartlis Tita	t	W	Kartli	Cultivar
712	Vitis	vinifera	Kharistvala Meskhuri	t	W	Samtskhe-Javakheti	Cultivar
720	Vitis	vinifera	Kishuri	t	W	Kartli	Cultivar
709	Vitis	vinifera	Kisi	w	W	Kakheti	Cultivar
714	Vitis	vinifera	Orbeluri Ojaleshi	w	В	Racha-Lechkhumi	Cultivar
719	Vitis	vinifera	Otskhanuri Sapere	w	В	Imereti	Cultivar
711	Vitis	vinifera	Meskhuri Mtsvane	W	W	Samtskhe-Javakheti	Cultivar
716	Vitis	vinifera	Rkatsiteli	W	W	Kakheti	Cultivar
715	Vitis	vinifera	Saperavi	w	В	Kakheti	Cultivar
698	Vitis	sylvestris	Samebis seri 08	W	В	Kakheti	Wild
696	Vitis	sylvestris	Meneso 01	w	В	Inner Kartli	Wild
694	Vitis	sylvestris	Nakhiduri 11	w	В	Lower Kartli	Wild
695	Vitis	sylvestris	Sabue 03	W	В	Kakheti	Wild
699	Vitis	sylvestris	Kvetari 04	W	В	Kakheti	Wild
702	Vitis	sylvestris	Nakhiduri 15	W	В	Lower Kartli	Wild
704	Vitis	sylvestris	Ninotsminda 01	W	В	Kakheti	Wild
701	Vitis	sylvestris	Chkhumi 04	W	В	Racha-Lechkhumi	Wild
706	Vitis	sylvestris	Skra 01	W	В	Inner Kartli	Wild
703	Vitis	sylvestris	Delisi 06	W	В	Inner Kartli	Wild
700	Vitis	sylvestris	Mokhva	W	В	Imereti	Wild
695	Vitis	sylvestris	Tedotsminda 15	W	В	Kartli	Wild
705	Vitis	sylvestris	Barisakhos gadasakhvevi	W	В	Inner Kartli	Wild
693	Vitis	sylvestris	Tedotsminda 25	W	В	Innet Kartli	Wild
692	Vitis	sylvestris	Ninotsminda 02	W	В	Kakheti	Wild
691	Vitis	vinifera	Dighomi 01	t	W	Innet Kartli	Feral
690	Vitis	vinifera	Naghomari 01	w	В	Racha-Lechkhumi	Feral
687	Vitis	vinifera	Ninotsminda 09	W	В	Kakheti	Feral
689	Vitis	vinifera	Tedotsminda 01	w	В	Inner Kartli	Feral
688	Vitis	vinifera	Tedotsminda 22(2)	Т	W	Inner Kartli	Feral

Codes and abbreviations: *Female variety. Usage of grapes for: w (wine), t (table), w/t (wine/table = means double uptitude grapes). Berry color as B (black, red-blue, rose), W (White and other non-colored)

tis riparia) rootstocks. The rows' direction is North to South. The pruning system is Double-Guyot (20–24 buds/vine). The Vitis vinifera subsp. sylvestris collection site (Latitude 41.90, Longitude 44.76, 513 m a.s.l.) contains 75 accessions of wild and feral grapes, collected in different natural habitats from several of Georgia's regions (Fig. 1), propagated and planted here since 2014.

2: The Skra Germplasm repository (FAO code GEO015). Collection located in village Skra, Gori District, Inner Karli province of Eastern Georgia., 640 m a.s.l. The collection was es-

tablished in 2008, in the Georgian viticulture and winemaking region of Shida Kartli by the Institute of Horticulture, Viticulture and Oenology. The distance between rows is 2.5 m and the distance between grapevines is 1.5 m. All the grapevines are grafted on Kober 5 BB (Vitis berlandieri × Vitis riparia) rootstocks. The rows' direction is North to South. The scheme of pruning is double Guyot system with 12-16 winter buds/ vine.

Accessions were collected in different locations in the provinces of Georgia (Table 1, Fig. 1)

Fig. 1: Provinces of Georgia from where grapevine accessions were analyzed.

Note: The provinces' name are marked with a green rectangle light green filled in the case of being collected accessions from there. Image: D. Maghradze.

Characters studied

Each seed was individually described according to 20 characters (Fig. 2). Eleven are quantitative: total length, breadth and thickness of the seed, breadth of the beak at the junction with the body and at the seed base, length of the beak in dorsal and in ventral view, thickness of beak at the junction, length and breadth of the chalaza scutellum, and distance from the chalaza apex to the seed apex (Rivera *et al.* 2007). Six are allometric: width/length index, width/thickness index, prism volume index, beak length/seed length index, beak width/beak length index, and chalaza width/length index.

The qualitative characters are three: Contour type (assessment of shape), with five states (ovoid, quadrangular, triangular, rounded and pentagonal), arrangement of the fossettes, with four states (parallel, furcate, convergent and divergent) and presence/absence of radial furrows.

Quantitative and qualitative characters were measured and analyzed using digital scaled images. 10 seeds of each sample were individually placed, except when the number of seeds available was inferior, on a plasticine support with a built-in scale to be photographed in dorsal, ventral and lateral view with the camera of the Samsung A40 device and measured using the open-source Fiji software (Schindelin *et al.*, 2012). All photographs were taken under the same zoom conditions. Also, scale images of fossilized and archaeological seeds from specialized literature have been used for measurements. The characters were recorded in an Excel spreadsheet where the allometric relationships were automatically calculated using algorithms.

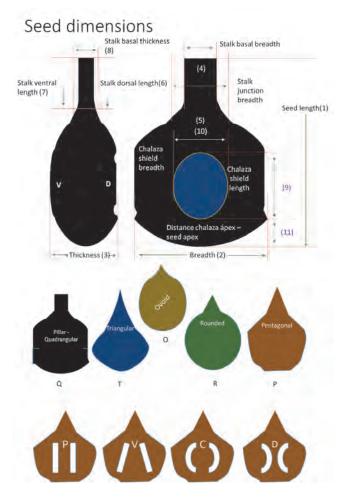


Fig. 2: Seed morphological characters.

Abbreviations: P: parallel; V: furcate; C: convergent; D: divergent. Image: D. Rivera.

Morphometric indexes

Stummer's Index

Stummer (1911) proposed an index based on the allometric relationship between seed width and seed length. This index allows differentiating quite effectively the extreme forms, but intermediate values are found in both wild and cultivated populations (Table 2). Stummer's index values ranging from 0.44 to 0.53 would be exclusive to cultivars, while 0.76 to 0.83 would be unique to Austrian wild/ferals. Values between 0.53 and 0.76 were found in both cultivars and wild vines. Levadoux (1956) has shown that this index has limited validity and is not useful for distinguishing wild from cultivated vines.

Facsar-Perret's index

Perret in 1997 proposed a new index based on the allometric relationship between the length of the beak or column and the total length of the seed. Apparently, this index allows to differentiate quite effectively between wild and cultivated populations, with the border situated between 18 and 19 (Table 3). This index was previously proposed by Facsar (1970), Terpó (1976) and Facsar and Jerem (1985), with slight discrepancies with the threshold values.

Mangafa and Kotsaki's indexes

The formulae proposed by Mangafa and Kotsakis in 1996 were successfully applied to local Greek samples of, both, modern seeds, and archaeological remains. The four formulae (Table 4) are based on the combined use of relationships and constants involving variables such as seed length (L), stalk length (LS), and chalaza position (PCH).

Domestication index

Since the above indices serve the same purpose, to separate wild from domesticated forms, but their results differ from case to case, the combined use of the six indices may provide a better ability to discriminate seeds from wild from cultivated grapevines (Obón et al. 2024; Valera et al., 2024). The combined domestication or the wild index are calculated individually for each seed using [1], where NIT means indexes exceeding, above or below, the threshold value and NI means indexes considered:

$$\theta = \sum_{i=1}^{n} NIT_i / \sum_{i=1}^{n} NI_i$$
 [1]

Table 2: Stummer's index for wild and domesticated grapevine seeds¹.

Range of values	Таха
44-53	V. vinifera
54-75	Intermediate or hybrids
76-83	V. sylvestris

¹ Formula: B/L × 100.

 Θ = WI. Threshold values for recognizing a seed as wild: Stummer >75, Perret <19, Mangafa and Kotsakis F1 <-0.2, Mangafa and Kotsakis F2 <-0.2, Mangafa and Kotsakis F3 <0 and Mangafa and Kotsakis F4 <-0.9. The sum of the wild index and the domestication index values, which is complementary to the previous one, will always be equal to one.

 Θ = DI. Threshold values for recognizing a seed as domesticated are as follows: Stummer \leq 75, Perret \geq 19, Mangafa and Kotsakis F1 \geq -0.2, Mangafa and Kotsakis F2 \geq -0.2, Mangafa and Kotsakis F3 \geq 0 and Mangafa and Kotsakis F4 \geq -0.9.

Possible values of the DI, domestication index, range from 0 to 1, with intermediate values, in the present case based on six indices these are: 0.17, 0.33, 0.5, 0.67, and 0.83. Seeds with index values between 0.67 and 1, both included, would undoubtedly be domesticated seeds, and those with values between 0 and 0.33 would be wild. In the present work the value 0.5 is tentatively interpreted as wild.

We usually work with samples consisting of several seeds, which in the case of modern populations, wild or cultivated, usually come from the same cluster, although not always. There are three relevant parameters when inferring from the results of individual seeds the characteristics of the whole sample:

- The mean μ (WI), of the wild combined index values for individual seeds, ranging from 0 to 1. Similarly, is calculated μ (DI).
- The standard deviation σ (WI) of the WI index values. Similarly, is calculated σ (DI).
- The proportion of seeds within each sample exceeding the threshold, PW, proportion wild, ranging from 0 to 1.

Other useful parameters are: The Wild Sum/2 (WS/2) for each sample, which is the mean value of μ (WI) and PW; the minimum value of the DI, min (DI) and ρ (DI), the range of DI values (Rivera *et al.* in press.).

Hybridization index

The standard deviation of the DI index values has shown to be useful to distinguish hybrids and hybrid swarms from pure wild and pure domesticated populations, thus the choice of an alternative name for this as HI (Hybridization Index). Values above 0.2 of the standard deviation of DI index points to the hybrid or mixed nature of the sample (Rivera *et al.* in press).

Table 3: Facsar – Perret's index for wild and domesticated grapevine seeds¹.

Range of values	Таха
12-18	V. sylvestris
19-30	V. vinifera

 $^{^{1}}$ Formula: (LS/L) × 100. LS: stalk lengt, L: seed length.

Table 4: Mangafa and Kotsakis's indexes for wild and domesticated grapevine seeds 1.

Range of values	Taxonomic information
Range of values (Formula 1)	Seed classification
< -0.2	Wild grapes
-0.2 < × < 0.2	Wild grapes (64.7% probability to be wild)
0.2 < × < 0.8	Domesticated grapes (76.2% probability to be cultivated)
> 0.8	Domesticated grapes
Range of values (Formula 2)	Seed classification
< -0.2	Wild grapes
-0.2 < × < 0.4	Wild grapes (64.7% probability to be wild)
0.4 < × < 0.9	Domesticated grapes (76.2% probability to be cultivated)
> 0.9	Domesticated grapes
Range of values (Formula 3)	Seed classification
< 0	Wild grapes
0 < × < 0.5	Wild grapes (90.1% probability to be wild)
0.5 < × < 0.9	Domesticated grapes (63.3% probability to be cultivated)
> 0.9	Domesticated grapes
Range of values (Formula 4)	Seed classification
< -0.9	Wild grapes
-0.9 < × < 0.2	Wild grapes (90.1% probability to be wild)
0.2 < × < 1.4	Domesticated grapes (63.3% probability to be cultivated)
> 1.4	Domesticated grapes

 $^{^{1}}$ Formula 1:-0.3801 + (- 30.2 LS/L) + 0.4564 PCH- 1.386 L + 2.88 PCH/L + 9.4239 LS)

Formula 2: 0.2951 + (-12.64 PCH/L - 1.6416 L + 4.5131 PCH + 9.63 LS/L)

Formula 3:-7.491 + (1.7715 PCH + 0.49 PCH/L + 9.56 LS/L) Formula 4: 0.7509 + (-1.5748 L + 5.297 PCH – 14.47 PCH/L)

LS, stalk length; L, seed length; PCH, chalaza position.

Multivariate analysis

Variables

The data matrix consists of 782 samples (rows) and 227 columns of variables resulting of the segmentation in mutually excluding states or classes of the 20 primary variables described above, in the form of a spectrum of frequencies expressed in percentages with the following structure, from left to right: length (25 classes), width (21), thickness (9), width/length ratio (29), width/thickness ratio (10), volume (12), beak length in dorsal view (9) and in ventral view (9), beak length/seed length ratio (16), beak width at base (11), beak width (11) and beak thickness at junction with body (6), beak width/length ratio (9), chalaza shield length (18), chalaza shield width (6), chalaza width/chalaza length ratio (9), chalaza apex to seed apex distance (10), outline (5), dorsal radial grooves (2).

Data Analyses

The chi square dissimilarity index was calculated based on the above data matrix (Perrier *et al.*, 2003; Perrier and Jacque-moud-Collet, 2023). This measure expresses a value x_{ik} as its contribution to the sum x_i on all variables and is a comparison of unit profiles [2].

$$d_{ij}^{2} = \sum_{k=1}^{K} \left(\frac{x_{ik}}{x_{i.}} - \frac{x_{jk}}{x_{j.}} \right)^{2} \left(\frac{x_{..}}{x_{.k}} \right)$$
 [2]

for *j≠i*.

Where d_{ij} : dissimilarity between units i and j; i, j = 1, 2,, N (samples, rows), N = 782; k = 1, 2,, K (variables, columns).

Where $d_{ij} = 1$ means varieties, i and j differ in all variables, and $d_{ij} = 0$ means varieties i and j are identical.

These pairwise dissimilarities can be represented in a multidimensional space, but in order to obtain meaningful graphic representation of these relationships in a two-dimensional plane, we used cluster analysis.

Cluster analysis is a term used to name a set of numerical techniques in which the main purpose is to divide the objects of study into discrete groups. These groups are based on the characteristics of the objects (Kovach, 2007). We used the minimum variance clustering (Ward's method) that focuses on determining how much variation is within each cluster. In this way, the clusters will tend to be as distinct as possible, since the criterion for clustering is to have the least amount of variation (Kovach, 2007). Ward's method produces a single tree. For the graphic representation, we opted for the software Figtree version 1.4.4. (Rambaut, 2018).

The use of distance-based trees to allocate archaeological seed samples is not new. Pagnoux *et al.* (2015) assigned archaeological grape seeds to the groups defined by UPGMA cluster analysis; the tree is based on Mahalanobis distances among comparison grapevine wild individuals and cultivars. Rivera *et al.* (2014) tentatively allocated archaeological *Phoenix* seed samples using a method based on the Ward's tree.

Allocation of samples to categories and taxa

Bayes-Laplace theorem

For the interpretation of unknown-origin seed samples, we adopted a Bayesian approach. We try to answer the question: What is the conditional probability that a seed or seed sample of unknown adscription belongs to a determined *Vitis* taxon Θ_i given that it presents the domestication index value x_j and/or it belongs to the cluster y_j ? The framework is based on the knowledge provided by hundreds of comparison samples (ca. 600) whose taxonomic identity we "a priori" know in each case not only from the morphology of the seeds but also from the study of the grapevine plant from which the sample was collected. This allows us to construct a discrete joint probability function $p(X,\Theta)$ that assigns a posterior probability value to each particular combination of a *Vitis* taxon and a domestication index value or of a *Vitis* taxon and a Ward's tree cluster.

The Bayes' rule [1] allows to approximate the answer.

$$p(\theta|x) = p(x|\theta)p(\theta)/p(x)$$
 [1]

Where $p(\theta|x)$ is the posterior probability distribution for the parameter θ given a single observed value of the variable $X=x_j$, in our case the degree of domestication, which is represented by the domestication index value, which ranges from 0 (clearly wild) to 1 (cultivar with fully domesticated traits).

When considering the Bayes' rule in terms of individual probabilities formula [1] can be read as [2]

$$posterior\ probability = \frac{likelihood\ x\ prior\ probability}{marginal\ likelihood}$$
[2]

Given a value for the data, for instance $X=x_4$ and a specific value for the parameter Θ (*Vitis* taxa), such as, $\Theta=\vartheta_3$, we get [3]

$$p(\theta_3 \mid x_4) = p(x_4 \mid \theta_3) p(\theta_3) / p(x_4)$$
 [3]

In [3], both likelihood $p(x_4 \mid \theta_3)$ and marginal likelihood $p(x_4)$ are values that can be calculated on the basis of the joint distribution generated from the comparison samples. The prior probability $p(\theta_3)$ can also be calculated as the sum of probabilities of this taxon given the distribution of all x values, also on the sample data alone. But the very nature of the prior allows the inclusion of data on regional prevalence of the different taxa from other well-established sources of evidence. In this study we have paid attention in the case of domesticated grapevines to the geographical variation in the proportions of the different $Vitis\ vinifera\ "proles"$ and, in the case of the rest to the ratio $V.\ sylvestris/V.\ caucasica$. Further we pay attention to the low relevance of the fossil vines, introduced as an outgroup, and treated as such.

Application to the Georgian seeds question

The identification process in all cases is based on using a frame of comparison that is based on the availability of an extensive set of seed samples previously identified not only by the morphology of their seeds but by a whole set of taxonomic characters obtained from the analysis of the plants as a whole. In a Bayesian concept, the elaboration of this framework and the selection of the set of samples is part of our prior knowledge. And it generates "a priori" probabilities, related to the joint distribution of the parameters and the sampled variables, which constrict our results. Following within the Bayesian approach, we can advance in our evaluation of the probabilities of the different mutually exclusive and exhaustive hypotheses by considering all the available "a priori" evidence on the relative frequencies of the hypotheses. Especially considering time and space constraints. For example, it is much less likely to find seeds of an American grapevine species in a European Neolithic site than that of Vitis sylvestris seeds. A careful elaboration of the "a priori" distribution of probabilities based on solid and logically coherent evidence is as fundamental as a clear definition of the different hypotheses and of the variable(s) to be considered.

The "a priori" or "prior" probabilities applied are based on the assumption that at least, 90% of the grapevines in the territory are cultivated and only 10% are wild. If we were to assume different proportions, the following probabilities would somewhat differ. Most of the old Georgian local varieties, according to the classification of Negrul (1946), belong to the Black Sea ecological-geographic group of varieties Proles Pontica Subproles Georgica Negr., and a small number belongs to the Oriental ecological-geographic group Proles Orientalis Subproles Caspica Negr. (Chkhartishvili 2008). However, based on the Georgian cultivars present in international repositories, notably The Institute for Grapevine Breeding Geilweilerhof, Germany, and those described in the Ampelographia SSSR (Baranov et al. 1946; Frolov-Bagreev et al. 1953-1956) we detected a higher proportion of *Proles Orientalis* in the fraction as follows:

- Oriental cultivars. Proles Orientalis Negrul, divided into Subproles Antasiatica, 0.18 and Subproles Caspica, 0.30.
- Western and Mediterranean cultivars in a broad sense.
 Proles Pontica Negrul, 0.33 and Proles Occidentalis Negrul, 0.07
- Varieties with intermediate characteristics resulting from hybridization between the previous groups, 0.02.
- Vitis sylvestris, we include the variability inherent to western wild grapevines that do not descend from cultivated plants, 0.002.
- Feral grapevines, which are descended from cultivated plants and although they show partial reversion to ancestral characters, they conserve traits derived from domestication, 0.01.
- Wild grapevines from the Caucasus or other eastern regions, their probability is small, but we do not rule them out. They are divided into direct hybrids of wild Caucasian grapevines with cultivars 0.03; purely Caucasian feral varieties, 0.02 or wild Caucasian grapevines, 0.03.

- American grapevine species, we should not rule out that an American vine could be present in the Caucasus in form of escaped or feral individuals or populations, 0.01.
- Eastern Asian grapevine species, they are unlikely but given the ancient connection facilitated by the Silk Road it is not impossible their presence even in recent times, 0.01.
- Finally, fossils that are extremely unlikely, but we do not rule out the survival of a living fossil, 0.00001.

In the Bayesian method, we can sequentially combine the evidence resulting from the study of several variables by concatenating results in which the posterior probability distribution of the first analysis will be used as the a priori distribution for the second and so on (Rivera et al. 2020). In the present study, we combine the results of the morphometric indices summarized in the domestication index for each of the seeds as a starting analysis and then use the results of the multivariate analysis in terms of the assignment of each of the samples to one or another of the 13 clusters.

Results

The morphological differences between the seeds of wild grapevines from the Caucasus and those from Western Europe are negligible, except that the former are slightly more voluminous as a result of greater length, width and thickness, but to a lesser degree (Table 5). The mean value of the domestication index, on the other hand, is significantly higher in the former, 0.41, compared to 0.29. Consequently, the wild index is higher in wild Western European populations (0.71) than in Caucasian populations (0.53), inversely the domestication index is lower, 0.29 and 0.43 respectively.

The above allows the following reading: wild Caucasian populations show a higher degree of introgression with domesticated populations, hence the higher average domestication value, which seems to confirm what we see below:

Among the Caucasian wild samples there is more heterogeneity both within and between samples, leading to higher hybridization index values μ (HI) = 0.19, compared with μ (HI) = 0.12 in the Western European wild grapevines (cf. Rivera *et al.* in press).

One thing we must not forget is the presence in the European and Caucasus wild populations of American grapevine species and their interspecific hybrids and those hybrids with *Vitis vinifera*, which have been used as rootstocks since the end of the 19th century (Levadoux 1956, Laguna 2003, 2004 and 2006). The seeds of American grapevine species tend to show a greater similarity to those of *Vitis sylvestris*, so that introgressions with European wild grapevines would lead to a reinforcement in the parameters analyzed of the wild traits.

The maximum value reached by the hybridization index is around 0.5. This index presents in feral grapevines the average value of 0.07 in the Caucasus and 0.11 in Western Europe, which would suggest that in both cases the feral grapevines are basically cultivars growing in natural habitats. In natural hybrids (wild × cultivar) the hybridization index values μ (HI) = 0.26 (maximum 43) for Caucasian populations and μ (HI) = 0.21 (maximum 34) for Western European populations.

The multivariate analysis considers the variability contributed by the set of characters analyzed (Fig. 2), including also those considered in the various indices. In this way we obtain a seed classification (Fig. S1) that can be compared with that obtained from the indices.

The samples from Georgia were allocated to clusters 3, 4, 5, 8, and 9 in the Ward's minimum variance tree (Fig. S1). Clusters 3 to 5 include predominantly cultivars while clusters 8 and 9 do contain wild grapevines.

The combined analysis of the domestication index values and cluster assignment through the joint distribution of those values with the different previously identified comparison samples allows us to approximate the identification of the Georgian samples to be verified, as previously indicated using the Bayesian conditional probability approach considering the alternative research hypotheses. Some examples of the different seed types can be found in Fig. 3. The results are presented in Supplementary Table 2 and summarized in Fig. 4.

Concerning archaeobotanical materials we had access to the analysis of images from one Georgian sample: Grape pips from Shulaveri Gora (Georgia) c. 6000 BC (Tbilisi Archaeological Museum) (Maghradze et al. 2020) that we compared with those from Bronze Age levels of Norabak site in the area

Table 5: Morphological characterization of *Vitis sylvestris* seeds from South Caucasus and Western Europe.

		L	В	т	Stummer's Index	LCH	ВСН	WI	DI
South Caucasus (60 seeds/6 SI)	Maximum	6.1	4.7	3.8	1.0	1.6	1.5	1.00	1.00
	Mean	4.9	3.8	2.7	0.8	1.0	0.9	0.53	0.47
	Minimum	3.7	3.1	2.0	0.6	0.6	0.6	0.00	0.00
		L	В	т	Stummer's Index	LCH	ВСН	WI	DI
Western Europe (180 seeds/28 SI)	Maximum	5.9	4.5	3.8	1.0	1.8	1.7	1.00	1.00
	Mean	4.8	3.6	2.7	0.8	1.1	0.9	0.71	0.29
	Minimum	3.4	2.5	1.8	0.6	0.5	0.3	0.00	0.00

| Fig. 3: Selected grapevines seed samples wild and cultivated from Georgia.

Digital Microscopy Images, Background: 1 millimeter orange graph paper. Samples and DI values of the ensemble of the sample: A, 687 Ninotsminda DI= 0.33-1; B 689 Tedotsminda DI= 0.33-1; C, 698 Samebis Seri DI= 0.33-0.67; D, Kvetari; E, 700 Mokhva DI=0.33-1; F, 706 Skra DI= 0.17-0.83; G, 710 Chinuri DI=1; H, 716 Rkatsiteli DI=1. Further information in Table 6.

of Lake Sevan (Armenia) (Hovsepyan, 2017) and Neolithic Aratashen and Aknashen sites in Armenia (Hovsepyan and Willcox 2008). While those from Shulaveri Gora presented a domestication index between 0.67 and 1 and a relatively high probability of being feral or hybrid, what is surprising, the seeds from Neolithic Aratashen area, despite their domestication rate being 0.67, slightly above the threshold, presented high probabilities of being wild (0.58) or hybrid (0.30) with V. sylvestris or even with an Asian species, this is consistent with the identification made by Hovsepyan and Willcox (2008). Although the Sulaveri sample is allocated close (Fig. S1) to one determined as feral from La Algaida de San Lucar (Spain) by Rivera et al. (in press), it is part of cluster 3 where we also find modern cultivars from Georgia. The seed from Norabak Bronze Age Site (Hovsepyan, 2017), presents a DI value of 1, suggesting a fully domesticated cultivar.

Discussion

Categories within Georgian wild and cultivated grapevine resulting of seeds analysis

During our study, in most cases, the probability values obtained for each individual seed allowed them to be clearly assigned to one of the alternative groups, with a predominance of more or less pure wild grapevines and those of the *Proles Pontica* cultivars. However, as can be seen in Supplementary Table 2, there were frequent cases suggesting a more or less direct hybrid origin of the sample.

Table 6 summarizes the heterogeneity detected within samples and the coincidence or not with the a priori classification of accessions. Nine among the 15 cultivars are reallocated as such. However, the remaining six show heterogeneity suggesting primitiveness or hybridization. Overall feral accessions show a similar pattern of heterogeneity suggesting more hybridization or primitiveness than mere escaped cultivars. In the case of the fifteen samples of wild accessions, a high intra-sample heterogeneity has been detected, which may be an intrinsic feature of Caucasian wild grapevines, but may also be due to various levels of introgression with cultivated landraces. Overall our results confirm the observations made by Ramishvili (1988) on the Georgina populations of wild grapevine. It is worth mentioning the Kvetari 04 sample which shows traits that bring it closer to wild populations from Western Europe and wild Asian and American species.

This is complicated by the fact that in some samples the heterogeneity detected was so high that it assigned some seeds to clearly wild groups, others to hybrids or to domesticated ones, which would confirm the hybrid or mixed character of the individual sample (Fig. 4 samples denoted with stars).

This led us to recognize further a categorization system based on probabilities and domestication index as follows.

Domesticated cultivars:

 Domesticated grapevines likely cultivars of *Proles Pontica* (*Pontica* probability 0.58-0.89) (DI (Domestication index) = 1).

- Domesticated grapevines likely resulting from modern cultivars of *Proles Pontica* introgressed with *Proles Orientalis* and *Occidentalis* (*Pontica* 0.52-0.75, *Caspica* 0.09-0.25, *Occidentalis* 0.11-0.12) (DI = 0.67-0.83).
- 3. Domesticated grapevines likely modern cultivars of *Proles Orientalis* hybridized with *Proles Pontica* (*Pontica* 0.35, *Antasiatica* 0.27, *Caspica* 0.29). (DI = 0.93-1).

Hybrid grapevines:

- 1. Hybrid grapevines likely of *Proles Pontica* with wild Caucasian (Wild Caucasian probability 0.06, *Pontica* 0.37, Caucasian hybrid 0.26, Caucasian feral 0.1). (DI = 0.83).
- 2. Hybrid grapevines likely descendant from *Proles Pontica* cultivars (Wild Caucasian probability 0.03, *Pontica* 0.33, Caucasian hybrid 0.27, Other hybrids 0.1). (DI = 0.62-0.75).

Wild grapevines pure, introgressed or hybridized:

Wild hybrid grapevines likely introgressed with *Proles Pontica* domesticated cultivars (Wild Caucasian probability 0.25, Pontica 0.13, Caucasian hybrid 0.35, other hybrids 0.12) (DI = 0.5-0.55).

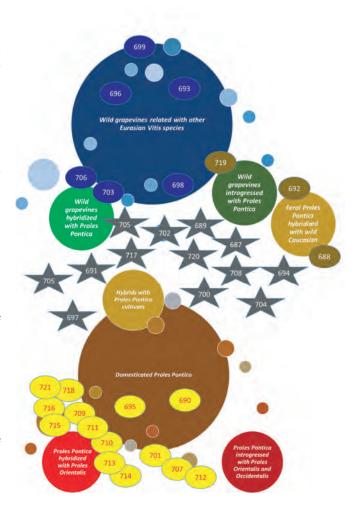


Fig. 4: Allocation of the different Georgian samples of wild and domesticated grapevines to the main groups.

Note: Represented with stars are samples that presented heterogeneous values in the different seeds analyzed within the sample enough to allocate with different probabilities these to the diverse hypothetic categories. Numbers are the three prime digits of the sample name as in Supplementary Table 2.

Table 6: Summary of the reallocation to groups of the analyzed samples.

Code	Accession Name	Usage	Berry color	Province of Origin	Type of accession	Groups	DI rang
			Pure do	mesticated cultivars			
70 9 k	(isi	W	W	Kakheti	Cultivar	PO, CA, AN	1
710	Chinuri	W	W	Kartli	Cultivar	PO, CA, AN	1
711 N	Meskhuri Mtsvane	W	W	Samtskhe-Javakheti	Cultivar	PO, CA, AN	1
713 E	Budeshuri Tetri	W	W	Kartli	Cultivar	PO, CA, AN	1
714 (Orbeluri Ojaleshi	W	В	Racha-Lechkhumi	Cultivar	PO, CA, AN	1
715 S	Saperavi	W	В	Kakheti	Cultivar	PO, CA, AN	1
716 F	Rkatsiteli	W	W	Kakheti	Cultivar	PO, CA, AN	1
71 8 k	Kartlis Tita	t	W	Kartli	Cultivar	PO, CA, AN	1
721 /	Asuretuli Shavi*	w/t	В	Lower Kartli	Cultivar	PO, CA, AN	1
	Cultivars with seed hetero	ogeneity s	uggesting intro	gression with wild indiv	viduals or per	sistence of ancestral traits	
717 (Chitistvala Meskhuri	W	W	Samtskhe-Javakheti	Cultivar	CV, PO, CH	0.33-
719 (Otskhanuri Sapere	W	В	Imereti	Cultivar	PO, CH (HY, CV)	0.5-0.8
708 E	Buza	W	В	Kartli	Cultivar	PO, CH (CH, CV, HY)	0.5-1
720 k	(ishuri	t	W	Kartli	Cultivar	PO, CH, CV	0.5-1
707 (Gorula	w/t	W	Kartli	Cultivar	PO, CA, AN, OC	0.67-
712 k	Kharistvala Meskhuri	t	W	Samtskhe-Javakheti	Cultivar	PO, CA, AN, OC	0.83-
	Wil	d with see	d morphology	corresponding to dome	esticated cult	ivars	
701 (Chkhumi 04	W	В	Racha-Lechkhumi	Wild	PO, CA, AN, OC	0.83-
695 9	Sabue 03	W	В	Kakheti	Wild	PO, CH, CF, HY	0.67-
694 N	Nakhiduri 11	w	В	Lower Kartli	Wild	PO, CH	0.67-
	Fera	l with see	d heterogeneit	y suggesting hybridizati	ion wild – cul	tivars	
688 7	Tedotsminda 22(2)	Т	W	Inner Kartli	Feral	PO, CH, CV, HY	0.33-0
	Ninotsminda 09	W	В	Kakheti	Feral	PO, CV, CH	0.33-
689 1	Tedotsminda 01	W	В	Inner Kartli	Feral	PO, CH, CV, HY, AM, ASI	0.33-
	Naghomari 01	W	В	Racha-Lechkhumi	Feral	PO, CS, OC, AN	0.67-
	Dighomi 01	t	W	Innet Kartli	Feral	PO, CH, CV	0.5-1
	Wild acce	ssions wit	h seed heterog	geneity suggesting hybri	idization wild	– cultivars	
6 92 N	Ninotsminda 02	W	В	Kakheti	Wild	PO, CH, HY, CV	0.33-0
	Nakhiduri 15	w	В	Lower Kartli	Wild	PO, CH (CF, CV; HY)	0.5-1
	Ninotsminda 01	w	В	Kakheti	Wild	PO, CV, CH	0.5-1
	Barisakhos gadasakhvevi	W	В	Inner Kartli	Wild	PO, CV, CH	0.5-1
Wild	d accessions with seed mo	rphology t	ypically will bu	ıt with slight heterogen	eity suggestii	ng hybridization wild – cult	ivars
	Tedotsminda 15	w	В	Kartli	Wild	CV, CH, PO	0.67-0
703 [Delisi 06	w	В	Inner Kartli	Wild	CV, PO, CH	0.5-0.
	Skra 01	w	В	Inner Kartli	Wild	CV (PO, CH)	0.17-0.
	Tedotsminda 25	w	В	Innet Kartli	Wild	CV (CH, PO)	0.17-0
	Samebis seri 08	w	В	Kakheti	Wild	CV (CH, PO)	0.33-0
	Meneso 01	W	В	Inner Kartli	Wild	CV, CH, PO	0.33-
	Mokhva	w	В	Imereti	Wild	CV (PO, CH)	0.33-
699 k	Wild accession with peo (vetari 04		morphology s	suggesting primitivenes: Kakheti	s and relatior Wild	ships with Asian species CV (AS	0-0.8
699 K	(Vetari 04	W	В	какпет	wiia	CV (AS	0-0

Abbreviations: AM: American species, AN: *Proles Orientalis Subproles Antasiatica* Negrul, AS: Asian species, CA: *Proles Orientalis Subproles Caspica*, CH: Caucasian hybrids, CV: Wild Caucasian, HY: Hybrids, OC: *Proles Occidentalis* Negrul, PO: *Proles Pontica* Negrul.

- 2. Wild grapevines likely hybridized with *Proles Pontica* cultivars (Wild Caucasian probability 0.28-0.44, *Pontica* 0.32-0.46, Caucasian hybrid 0.19-0.23). (DI = 0.63-0.88).
- Wild grapevines likely hybridized with other Eurasian or American species (Wild Caucasian 0.3, Caucasian hybrids 0.33, Other hybrids 0.13, American 0.13, Asian 0.11). (DI = 0.33).
- 4. Wild grapevines of the Caucasus likely related to Asian *Vitis* species (Wild Caucasian probability 0.17, Asian 0.64) (DI = 0).
- 5. Wild grapevines of the Caucasus (Wild Caucasian probability 0.52-0.85) (DI = 0.17-0.83).

Georgian wild grapevines

Vitis sylvestris as described by Gmelin (1806) is a central European wild grapevine, apart from the prelinnaean synonyms linked to Switzerland, Gmelin lists several localities of West Germany and East France around Karlsruhe and Strasbourg. The diversity of Vitis sylvestris is very high due to geographical isolation of ancient populations of Tertiary origin, but also to introgression with local cultivars. For Caucasian and west Asian wild grapevine, Negrul, proposes that Proles Occidentalis originated from the wild form aberrans, with glabrous or hairy, dissected leaves which is still found growing in the forests of Kuba District in Azerbaijan (Sosnovszky, 1974) however this is not in agreement with the fact that Proles Occidentalis cultivars present a webby hairy cover and with the molecular evidence raised by Arroyo-Garcia et al. (2006) for an independent cradle in Western Europe.

The results of the morphometric study of wild grapevine in Georgia by Ekhvaia and Akhalkatsi (2010) reveal high morphological diversity. Morphological characters such as shape of leaf blade, number of lobes, pubescence type, coloration of internodes, leaves and berry skin, leaf vein lengths and angles between them and form of petiole sinus show high variability both within and among populations. The common characters for all studied populations were fully open tip of young shoot and distribution of tendrils on the shoot with an interval after two nodes and dioecy. These characters are considered as common for wild populations of V. sylvestris. Our results from the seeds analysis shows similar diversity that we attribute not only to intrinsic diversity but to the relevant impact of continued introgression. DNA analyses confirmed the proximity of wild, feral and cultivated grapevines in Georgia (Kikvadze et al., 2023).

However, there are still many points that archaeobotany, and biomolecular genetics, have not been able to clarify, for instance the relevant difference in the spontaneous grapevines shown by Negrul's ampelographic research: from the *Vitis sylvestris*, autochthonous of Euro-Mediterranean and Pontic Europe, we get to its aberrans variety, which is spread in the Caspian area. Are the valuable traits of the latter merely the result of a natural selection during the last Ice Age (softer in the Caspian area than in the West)? Are such traits due to para-domestication or even to residuals of ancient domestications? (Forni 2012).

A study on plastid DNA sequence variation in wild grapevine from Azerbaijan, Georgia and Armenia revealed four different haplotypes. The AAA haplotype is restricted to eastern Georgia and Azerbaijan and is also found in cultivated grapevines, the ATA haplotype is randomly distributed throughout the study area and the ATT haplotype is distributed in the southern part of the study area, from the Black Sea to the Caspian Sea. The GTA haplotype was found in the southwestern part of Georgia (Musayev and Akparov, 2013; Musayev, 2014). Twenty-two genotypes of wild grapevine together with 139 autochthonous varieties were characterized by 20 SSR markers, demonstrating that wild accessions are well distinguished from the cultivated ones (Chkhartishvili and Maghradze, 2012).

The present study leads us to highlight the need to best identify and preserve as well as possible the true native wild populations of V. sylvestris (without introgressions), and to protect them with legislation, if necessary, because this work showed that their genetic modification by hybridization can be much higher than expected.

Hybrid grapevines

A high level of admixture was shown between Armenian and Georgian cultivars and a clear connection between *Proles Pontica* and *Proles Orientalis* (De Lorenzis *et al.*, 2015b). Which is consistent with the results of our Bayesian seed morphology analysis (Fig. 4). In the study of De Lorenzis *et al.* (2019) Georgian germplasm was grouped with the genotypes from the eastern Mediterranean Sea and South Italy but appeared as unique population with well-structured genotypes. The plastidial DNA study by Prazzoli (2017) showed a remarkable geographical pattern within the domesticated populations and also that the wild vines, regardless of their origin within Georgia, shared the haplotype with the domesticated populations of western Georgia.

Domesticated Georgian grapevines

The assumed model of domestication is relevant when interpreting the relationships between wild and cultivated populations of a given species. Four theories about the domestication process exist:

- 1. Monophyletic-monospecific where cultivated grapevine populations descend from wild local populations (Obón *et al.* 2007)
- 2. Monophyletic-bispecific theory proposes that cultivated populations come from an extinct ancestor which could also be the ancestor of the wild grapevine, it supposes that cultivated grapevine and the wild one are different species (Sosnovszky, 1974).
- 3. Polyphyletic-multispecific theory defends that the local populations of the cultivated grapevine descend from independent wild ancestors. Therefore, each species of cultivated grapevine has a group of wild relatives.
- 4. Terpó (1978) proposed the hybridization between wild species of European grapevines and Central Asia as the origin of cultivated grapevine.

It is very likely that each of the above theories may encapsulate part of the complex evolutionary history of wild and cultivated grapevines in Eurasia.

De Lorenzis *et al.* (2015b) by genotyping of germplasm coming from Central Europe, Armenia, Azerbaijan, Georgia and Moldova by SSR markers identified 3 different groups, which was in agreement with the *Proles* classification proposed by Negrul (1946), by the genetic analysis using STRUCTURE and PCoA as follows:

- 1. Wine cultivars from the West (Central European Cultivars) = *Proles Occidentalis* (cultivars from Italian Peninsula, Central Europe and Iberian Peninsula)
- 2. Wine varieties from the East (Armenia, Georgia, Moldova) = *Proles Pontica* (varieties from Georgia to Balkans and the Anatolian Peninsula)
- 3. Table varieties from the East (Azerbaijan) = *Proles Orientalis* (Afghanistan, Armenia, Azerbaijan and Iran)

Over 1300 wild and cultivated grapevines collected around the Mediterranean basin and from Central Asia were tested with a set of 20 nuclear SSR markers by Riaz et al. (2018). Wild accessions from Georgia clustered with cultivated grape from the same area (*Proles Pontica*), but also with Western Europe (*Proles Occidentalis*). However, introgressions and hybridization occurring in wild populations with nearby domesticated grapevines should be further considered.

In the Vitis18kSNP assay (De Lorenzis *et al.* 2015a) cross hybridization events among native wild populations and cultivars are evidenced. Admixture proportions of wild and cultivated Georgian groups, as estimated by fast STRUCTURE, reflecting assignment probabilities of samples to each of the three groups, clearly show that domesticated G1 mainly hybridizes with domesticated G2. Furthermore, wild grapevine G3 presents a hybrid swarm mainly with G2, which is the best represented and incudes cultivars such as Rkatsiteli, Tavkeri and Zerdagi among others. This largely confirms the previous nuclear microsatellite-based results of Imazio *et al.* (2013).

Prazzoli (2017) using a set of 21 microsatellites, comprising the standard set of markers for genetic identification, analyzed plant material from the Caucasus. The phylogenetic analysis was performed by comparing accessions of V. vinifera, including Proles Pontica, Subproles Antasiatica, Subproles Caspica, Proles Occidentalis, Georgian accessions (wild and domesticated), as well as European V. sylvestris, and genotypes from Armenia, Azerbaijan, Israel, Iran and Central Asia. In addition, rootstocks were selected as outgroup. The analysis confirmed that the Caucasian accessions belonged to the V. vinifera group. The Georgian clade was divided into two different clades, one comprising most of the Georgian cultivars and the other composed of a combination of wild and cultivated genotypes, showing similarity to that of European V. sylvestris. In addition, phylogenetic analysis showed a high rate of admixture between populations, particularly within the Central Asian accessions.

Our results from the analysis of the seeds confirm the relevance of *Proles Pontica* in Georgia and, despite the higher importance we *a priori* attributed to *Proles Orientalis* during the estimation of our "initial belief" or "prior knowledge" that

represents what we believe about a situation or parameter before considering new evidence or data, its weight is much lower, which coincides with the data of other authors. Volynkin (2008) based on 160 varieties belonging to the Georgian subgroup of the ecogeographical group of the Black Sea Basin, *Proles Pontica Subproles Georgica* Negr., has shown that the mean sugar accumulation of the varieties under study varied from 14 to 24 g cm⁻³, and that no correlation exists between the level of sugar accumulation and the length and the structure of the production period, and that all these parameters are variety-specific.

Reflections from our analysis on the conservation of genetic resources

History of conservation of Georgian grape genetic resources started since 1890, when the first grape collection was established in Sakara (Zestaphoni) of Western Georgia and after two years the first ampelography of Imeretian varieties was published by Vladimir Staroselskii (Staroselskii, 1893; Maghradze, 2008). The largest number of Georgian local varieties were collected during the 30s of the 20th century, by researchers working at the Institute of Viticulture and Winemaking of Georgia – among others was A.M. Negrul, working in that time in Telavi, where in the 1930s the first state-owned collection was planted to conserve 255 Georgian local varieties. Based on that materials several grape collections of different sizes were established in Georgia during the 20th century, notably in Dighomi with 3000 accessions, including 420 local cultivars and more than 30 wild and semi-wild forms.

Today there are eight different collections in Georgia. The State collection with 1000 accessions including local and introduced foreign varieties are located in Jighaura and belongs to the Scientific-Research Center of Agriculture. Others are private ones. A total of c. 1000 accessions is conserved, including local, introduced and breeded varieties, clones, and rootstocks, and wild and semi-wild forms of grapevine (only c. 30) (Maghradze 2008).

The information obtained from the analyzed samples in the present study that came from Jigharua and Skra repositories, given the high heterogeneity detected that we connect with hybridization, and suggests the convenience of a survey of the accessions is highly recommended. But in parallel our results would reflect a function as conservatory of domesticated grapevine diversity from the part of the riparian and other natural habitats where wild grapevine grows, and thus, the convenience of further analyzing this diversity from different viewpoints, widely sampling in the field and developing an extensive program of *in situ* and *ex situ* conservation.

Conclusions

Both wild grapevines and a good part of the cultivated grapevines analyzed from Georgia show a high heterogeneity in the morphology of their seeds, which seems to point to a very ancient history of domestication, interactions between wild and cultivated populations and preservation of ancestral traits. We must underline the extraordinary value that these hybrid and feral populations can have as a reservoir of grapevine ge-

netic resources, especially descendants of ancient varieties possibly lost in cultivation at present. This is why the detailed ampelographic and genetic study of these populations is very necessary and urgent, as a further step in the development of innovations in the Georgian vineyard. Following the results obtained in this study, we recommend a greater effort in the consequent protection of wild grapevine populations, especially those with clearly native traits.

Supplementary Material

Supplementary Material can be found online at: https://doi.org/10.5073/vitis.2024.63.09

Acknowledgements

This research PHDF-21-2832 has been supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG). The work on Georgian grapevines and their seeds is part of Maia Kikvadze's doctoral thesis. We thank Erika Maul (The Institute for Grapevine Breeding Geilweilerhof, Germany) for sending samples of grapes of contemporary Near Eastern varieties. We acknowledge the U.S. National Plant Germplasm System (United States Department of Agriculture, Agricultural Research Service), Rancho Santa Ana, Istituto ed Orto Botanico di Palermo, Botanischer Garten Johannes Gutenberg - Universität Mainz, Smithsonian Intitution, and Giardino Botanico di Padova for providing us with seeds of American and Asian Vitis species and related genera. Also, to the curators for collections of Rioja grapevines (Spain) in Mendavia, that of La Casa de las Vides nurseries in Agullent (Valencia, Spain), that of Rojas Clemente grapevines of the Royal Botanical Garden of Madrid (Spain) and that of the Istituto Agrario di San Michele all'Adige (Trentino, Italy) for allowing us to sample leaves, shoots and grapes. Wild populations were sampled by the authors and Encarna Carreño.

Conflicts of interest

The authors declare that they do not have any conflicts of interest.

References

AGENDA, 2020: Georgian amber wines included as 8th category on International Organisation for Vine and Wine list. https://agenda.ge/en/news/2020/3737 (Accessed September 2022).

Aradhya, M., Velasco, D., Ibrahimov, Z., Toktoraliev, B., Maghradze, D., Musayev, M., Bobokashvili, Z., Preece, J. 2017: Genetic and ecological insights into glacial refugia of walnut (*Juglans regia* L.). PLoS ONE 12(10). DOI: 10.1371/journal.pone.0185974.

Arnold, C., Gillet, F., Gobat, J. M., 1998: Situation de la vigne sauvage *Vitis vinifera* subsp. *sylvestris* en Europe. Vitis, 37, 159–170. DOI: 10.5073/vitis.1998.37.159-170.

Arroyo-García, R., Ruiz-Garcia, L., Bolling, L., Ocete, R., Lopez, M. A., Arnold, C., Ergul, A., Söylemezo Lu, G., Uzun, H.I., Cabello, F., Ibáñez, J., 2006: Multiple origins of cultivated grapevine (*Vitis vinifera* L. ssp. *sativa*) based on chloroplast DNA polymorphisms. Molecular Ecology, 15 (12), 3707–3714. DOI: 10.1111/j.1365-294X.2006.03049.x.

Baranov, A., Kai, Y. F., Lazarevski, M. A., Negrul, A. M., Palibin, T. V., Prosmoserdov, N. N., 1946: Ampelografiia SSSR; Volume 1. Moscow, Russia: Pischepromizdat (in Russian).

Bouby, L., Figueiral, I., Bouchette, A., Rovira, N., Ivorra, S., Lacombe, T., Pastor, T., Picq, S., Marinval, P., Terral, J., 2013: Bioarchaeological insights into the process of domestication of grapevine (*Vitis vinifera* L.) during Roman times in Southern France. PLOS One. DOI: 10.1371/journal.pone.0063195.

Bouby, L., Wales, N., Jalabadze, M., Rusishvili, N., Bonhomme, V., Ramos-Madrigal, J., Evin, A., Ivorra, S., Lacombe, T., Pagnoux, C., Boaretto, E., Gilbert, M. T. P., Bacilieri, R., Lordkipanidze, D., Maghradze, D., 2021: Traching the history of grapevine cultivation in Georgia by combining geometric morphometric and ancient DNA. Vegetation History and Archaeobotany, 30 (1), 63-71 DOI: 10.1007/s00334-020-00803-0

Buxó, R., 1997: Arqueología de las plantas. Barcelona: Crítica (In Spanish).

Calafat-Marzal, C., Sánchez-García, M., Gallego-Salguero, A., Piñeiro, V., 2023: Drivers of winegrowers' decision on land use abandonment based on exploratory spatial data analysis and multilevel models. Land Use Policy 132, 106807. DOI: 10.1016/j.landusepol.2023.106807.

Châtaignier, C., 1995: La Transcaucasie au Néolithique et au Chalcolithique. British Archaeological Series 624: 1–240.

Chkhartishvili, N., 2008: Implementation in Georgia of the project on "Conservation and sustainable use of grapevine genetic resources in the Caucasus and Northern Black Sea region" In E. Maul, J.E. Eiras Dias, H. Kaserer, T. Lacombe, J.M. Ortiz, A. Schneider, L. Maggioni and E. Lipman (eds.) Report of a Working Group on Vitis. Pp. 152-154. Rome: Bioversity international. Available at: https://www.bioversityinternational.org/e-library/publications/detail/report-of-a-working-group-on-vitis-1/(Accessed January 2024).

Chkhartishvili, N., Maghradze, D., 2012: Viticulture and winemaking in Georgia. In: Maghradze D, Rustioni L, Scienza A, Turok J, Failla O (eds) Caucasus and Northern Black Sea Region. Vitis, Special Issue, 12, 169–176. DOI: 10.5073/vitis.2012.51.special-issue.3-481 (link to the whole volume).

Cholokashvili, S., 1939: Handbook for viticulture. Vol. 2 Ampelography. p. 478 Tbilisi: "Ganatleba" Publishers. (In Georgian)

Cola, G., Failla, O., Maghradze, D., Megrelidze, L., Mariani, L., 2017: Grapevine phenology and climate change in Georgia. Int. J. Biometeorol. 61, 761–773. DOI: 10.1007/s00484-016-1241-9 and DOI:10.1007/s00484-016-1289-6 (Erratum).

Crespan, M., 2004: Evidence on the evolution of polymorphism of microsatellite markers in varieties of *Vitis vinifera*

L. Theoretical and Applied Genetics, 108, 231–237. DOI: 10.1007/s00122-003-1419-5.

De Lorenzis, G., Chipashvili, R., Failla, O., Maghradze, D., 2015a: Study of genetic variability in *Vitis vinifera* L. germplasm by high-throughput Vitis18kSNP array: The case of Georgian genetic resources. BMC Plant Biology 06/2015, 15, 154. DOI: 10.1186/s12870-015-0510-9.

De Lorenzis, G., Maghradze, G., Biagini, B., Di Lorenzo, G.S., Melyan, G., Musayev, M., Savin, G., Salimov, V., Chipashvili, R., Failla, O., 2015b: Molecular investigation of Caucasian and Eastern European grapevine cultivars (*V. vinifera* L.) by microsatellites. Vitis, 54, Special Issue, 13-16. DOI: 10.5073/vitis.2015.54.special-issue.13-16.

De Lorenzis, G., Mercati, F., Bergamini, C., Cardone, M.F., Lupini, A., Mauceri, A., Caputo, A.R., Abbate, L., Barbagallo, M.G., Antonacci, D., Sunseri, F., 2019: SNP genotyping elucidates the genetic diversity of Magna Graecia grapevine germplasm and its historical origin and dissemination. BMC plant biology, 19(1), 1-15. DOI: 10.1186/s12870-018-1576-y.

Del Zan, F., Failla, O., Scienza, A., 2009: La vite e l'uomo—dal rompicampo delle origini al salvataggio delle reliquie, 2nd edn. Rome: ERSA, 999 pp. (in Italian).

Denk, T., Frotzler, N., Davitashvili, N. 2001: Vegetational patterns and distribution of relict taxa in humid temperate forests and wetlands of Georgia (Transcaucasia). Biological Journal of the Linnean Society, 72(2), 287-332. DOI: 10.1111/j.1095-8312.2001.tb01318.x.

Ekhvaia, J., Akhalkatsi, M., 2010: Morphological variation and relationships of Georgian populations of *Vitis vinifera* L. subsp. *sylvestris* (CC Gmel.) Hegi. Flora-Morphology, Distribution, Functional Ecology of Plants, 205(9), 608-617. DOI: 10.1016/j.flora.2009.08.002.

Eyriés, J. R., 1841: Voyage pittoresque en Asie et Afrique. Paris: Ed. Furne et Cie.

Facsar, G., 1970: Összehasonlitö morfolögiai vizsgälatok kerti szölöfajtäk magjain I (Vergleichende morphologische Untersuchungen der Samen von Gartenrebensorten. I.) Botanikai Közlemenyek, 57,221-231.

Facsar, G., Jerem, E., 1985: Zum urgeschichtlichen Weinbau in Mitteleuropa. Rebkernfunde von *Vitis vinifera* L. aus der urnenfelder-, hallstatt-und latenezeitlichen Siedlung Sopron-Krautacker. Wissenschaftliche Arbeiten aus dem Burgenland, 71, 121-144.

FAOSTAT, 2022: Crops and livestock products: Georgia – grapes – products quantity. https://www.fao.org/faostat/en/#data/QCL (Accessed September 2022).

Ferrer-Gallego, P. P., Ferrer-Gallego, R., Laguna, E., Pipia, I., 2019: (2682) Proposal to conserve the name *Vitis sylvestris* CC Gmel. (Vitaceae) against V. sylvestris W. Bartram. Taxon, 68(2), 409-410. DOI: 10.1002/tax.12043.

Forni, G., 2012: The origin of "Old World" viticulture. In Maghradze D., Rustioni L., Turok J., Scienza A., Failla O. (Eds) Caucasus and Northern Black Sea Region Ampelography. Vitis 12, Special Issue, 27-38. Julius Kühn-Institut, Bundes-

forschungsinstitut für Kulturpflanzen, Institut für Rebenzüchtung Geilweilerhof, Siebeldingen. 489 pp. DOI: 10.5073/vitis.2012.51.special-issue.3-481 (link to the whole volume).

Frolov-Bagreev, A. M., Negrul, A. M., Blagonravov, P.P., 1953–1956: Ampelogafiya SSSR (Ampelography of SSSR vol. 2-6). Moskva (Moscow), Russia: Pish chepromizdat;. (In Russian).

Glonti, T., 2010: Traditional technologies and history of Georgian wine. Bulletin de l'OIV, 83(953), 335-343.

Gmelin, C. C., 1806: Flora Badensis Alsatica et Confinium Regionum Cis et Trans Rhenana. Karlsruhe: Aula Mülleriana.

Haxthausen, A., 1856: Über Georgien (Erste Hälfte des XIX Jh.). Die Georgische Übersetzung, die Einleitung, Kommentationen und Register von Gia Gelaschwili. Artanuji, Tbilisi (in Georgian) (A chapter translated from: August von Haxthausen. 1856. Transkaukasia. Andeutungen über das Familien-und Gemeindeleben und die sozialen Verhältnisse einiger Völker zwischen dem Schwarzen und Kaspischen Meere. Reiseerinnerungen und gesammelte Notizen von August von Haxthausen, Vol. 1-2. Leipzig: Brodhaus.

Hovsepyan, R., 2017: New Data on Archaeobotany of the Lake Sevan Basin. Roman Iran & the Caucasus, 21(3),251-276. DOI: 10.1163/1573384X-20170302.

Hovsepyan, R., Willcox, G., 2008: The earliest finds of cultivated plants in Armenia: evidence from charred remains and crop processing residues in pisé from the Neolithic settlements of Aratashen and Aknashen. Vegetation History and Archaeobotany, 17, 63-71. DOI: 10.1007/s00334-008-0158-6.

Huglin, P., Schneider, C., 1986: Biologie et écologie de la vigne., Paris: Editions Payot.

Imazio, S., Maghradze, D., De Lorenzis, G., Bacilieri, R., Laucou, V., This, P., Scienza, A., Failla, O., 2013: From the cradle of grapevine domestication: molecular overview and description of Georgian grapevine (*Vitis vinifera* L.) germplasm. Tree Genetics and Genome, 9, 641-658. DOI: 10.1007/s11295-013-0597-9.

Jacquat, C., Martinoli, D., 1999: *Vitis vinifera* L.: wild or cultivated? Study of the grape pips found at Petra, Jordan; 150 B.C.–A.D. 40. Vegetation History and Archaeobotany, 8, 25–30. DOI: 10.1007/BF02042839.

Ketskhoveli, N., Ramishvili, M., Tabidze, D., 1960: Ampelography of Georgia. Georgian Academy of Sciences, Tbilisi: Georgia. (In Georgian and Russian).

Kikvadze, M., Kikilashvili, S., Bitsadze, N., Maghradze, T., De Lorenzis, G., Rubio, R.O., Rivera, D., Bacilieri, R., Failla, O., Maghradze, D., 2023: Wildly growing Eurasian grapevine (Vitis vinifera L.) in Georgia: composition, research and efforts for the preservation. In XIII International Conference on Grapevine Breeding, Genetics and Management. Acta Horticulturae, 1385,19-24. DOI: 10.17660/ActaHortic.2024.1385.3.

Kolenati, F.A., 1846: Versuch einer systematischen Anordnung der in Gruzinien einheimischen reben nebst einem oekonomischtechnischen Ahnhange. Bulletin de la Société Impériale des Naturalistes de Moscou, 19 (2), 279-371. Available at: ht-

tps://www.biodiversitylibrary.org/item/151097#page/285/mode/1up (Accessed January 2024).

Kovach, W., 2007: MVSP—A MultiVariate Statistical Package for Windows, ver. 3.1. Available at: https://www.kovcomp.co.uk/mvsp3man.pdf (Accessed January 2024).

Krebs, P., Pezzatti, G., Beffa, G., Tinner, W., Conedera, M., 2019: Revising the sweet chestnut (Castanea sativa Mill.) refugia history of the last glacial period within extended pollen and macrofossil evidence. Quaternary Sci Rev, 206,111–128. DOI: 10.1016/j.quascirev.2019.01.002.

Kvavadze, E., Gambashidze, I., Mindiashvili, G., Gogochuri, G., 2007: The first find in southern Georgia of fossil honey from the Bronze Age, based on palynological data. Vegetation History and Archaeobotany, 16(5), 399-404. DOI: 10.1007/s00334-006-0067-5.

Laguna, E., 2003. Sobre las formas naturalizadas de *Vitis* en la Comunidad Valenciana. I. Las especies. Flora Montiberica, 23, 46-82. Available at: https://dialnet.unirioja.es/descarga/articulo/1394799.pdf (Accessed March 2024).

Laguna, E., 2004: Datos foliares de las especies e híbridos alóctonos de vides (género *Vitis*) en el territorio valenciano. Toll Negre, 3: 11-25. Available at: http://www.eapv.org/Toll. Negre3.pdf (Accessed December 2023).

Laguna, E., 2006: American and hybrid grapevines (*Vitis* spp.): A new concept of invasive plants to Europe. In Aguilella, A., Ibars, A.. Laguna, E., Pérez-Rocher, B. (Eds.) Proceedings of the 4th European Conference on the Conservation of the Wild Plants.—A workshop on the implementation of the Global Strategy for Plant Conservation in Europe, Valencia, Spain. CD Rom. Generalitat Valenciana: Valencia. Available at: http://www.nerium.net/plantaeuropa/Proceedings.htm (Accessed December 2023).

Levadoux, L., 1956: Les populations sauvages et cultivées de *Vitis vinifera* L. Ann. l'Amel. Plantes, 1, 59-118. Available at: https://www.grapebreeders.com/Reprints/Levadoux1956.pdf (Acessed January 2024).

Maghradze, D., Failla, O. (Eds), 2022: Wild Grapevine in Georgia, multidisciplinary comparative research to unravel the mystery of its domestication. Tbilisi: Shota Rustaveli National Science Foundation of Georgia (SRNCFG). 384 pp.

Maghradze, D., 2008: Status of the *Vitis* collections in Georgia. In E. Maul, J.E. Eiras Dias, H. Kaserer, T. Lacombe, J.M. Ortiz, A. Schneider, L. Maggioni and E. Lipman (eds.) Report of a Working Group on Vitis. Pp. 75-76. Bioversity international, Rome. Available at: https://www.bioversityinternational. org/e-library/publications/detail/report-of-a-working-group-on-vitis-1/(Accessed January 2024).

Maghradze, D., Mdinaradze, I., Abashidze, E., Kikilashvili, S., Baratashvili, M., Vibliani, M., Kharitonashvili, L., Bitsadze, N., 2017: Ampelographic catalogue of Skra grape collection. Tbilisi: "Meridiani" publisher. 354pp. (in Georgian).

Maghradze, D., Rustioni, L., Turok, J., Scienza, A., Failla, O. (Eds), 2012: Caucasus and Northern Black Sea Region Ampelography. *Vitis* (special issue) 12. Julius Kühn-Institut, Bun-

desforschungsinstitut für Kulturpflanzen, Institut für Rebenzüchtung Geilweilerhof, Siebeldingen. 489 p. DOI: 10.5073/vitis.2012.51.special-issue.3-481.

Maghradze, D., Melyan, G., Salimov, V., Chipashvili, R., Íñiguez, M., Puras, P., Melendez, E., Vaca, R., Rivera, D., Obón, C., Valle Melón, J. M., 2020: Wild grapevine (*Vitis sylvestris* CCGmel.) wines from the Southern Caucasus region. OENO One 2020, 54(4), 849-862. DOI: 10.20870/oeno-one.2020.54.4.3720.

Maghradze, D., Kikilashvili, S., Gotsiridze, O., Maghradze, T., Fracassetti, D., Failla, O., Rustioni, L., 2021: Comparison between the Grape Technological Characteristics of *Vitis vinifera* subsp. *sylvestris* and subsp. *sativa*. Agronomy, 11, 472. DOI: 10.3390/agronomy11030472.

Mangafa, M., Kotsakis, K., 1996: A new method for the identification of wild and cultivated charred grape seeds. Journal of Archaeological Science, 23, 409–418. DOI: 10.1006/jasc.1996.0036.

McGovern, P., Fleming, S., Katz, S., 1995: The Origins and Ancient History of Wine. New York: Gordon & Breach.

McGovern P., 2003: Ancient Wine. The search for the origins of viniculture. Princeton University Press: Princeton.

McGovern P., 2004: Wine and Eurasian grape: Archaeological and chemical perspectives on their origins. In Actas do III Simpósio da Associação International de História e Civilização da Vinha e do Vinho. Funchal, Madeira. Pp. 291–307.

McGovern, P., Jalabadze, M., Batiuk, S., Callahan, M. P., Smith, K. E., Hall, G. R., Kvavadze, E., Maghradze, D., Rusishvili, N., Bouby, L., Failla, O., Cola, G., Mariani, L., Boaretto, E., Bacilieri, R., This, P., Wales, N., Lordkipanidze, D., 2017: Early Neolithic wine of Georgia in the South Caucasus. PNAS, 114(48), E10309–E10318. DOI: 10.1073/pnas.1714728114.

Musayev, M., 2014: Biodiversity and breeding of grapes: a study in Azerbaijan. Journal of Crop and Weed, 10(1), 25-36. https://www.cropandweed.com/vol10issue1/pdf2005/4.pdf (Accessed January 2024).

Musayev, M., Akparov, Z., 2013: Centuries-Old Results of Cultivation and Diversity of Genetic Resources of Grapes in Azerbaijan. In Sladonja, B. and Poljuha, D. eds. The Mediterranean genetic code: grapevine and olive. pp. 99-123. IntechOpen, Rijeka (Croatia).

Negrul, A. M., 1938: Evolucija kuljturnyx form vinograda. Doklady Akademii nauk SSSR, 8, 585–588.

Negrul, A. M., 1946: [Origin of the cultivated grapevine and its classification]. In Frolov-Bagreev, A.M. (ed.) Ampelografiia SSSR [Ampelography of the USSR] Vol. 1. pp. 133–216. Moscow: Pischepromizdat, (in Russian).

NWA, 2022: National Wine Agency of Georgia. www.wine. gov.ge (Accessed August 2022).

Obón, C., Rivera, D., Carreño, E., Alcaraz, F., Palazón, J. A., 2007: Seed morphology of *Vitis vinifera* and its relationship to ecogeographical groups and chlorotypes. In V International Symposium on the Taxonomy of Cultivated Plants. Acta Horticulturae, 799, 51-59. DOI: 10.17660/ActaHortic.2008.799.5.

- Obón, C., Rivera-Obón, D. J., Valera, J., Matilla, G., Alcaraz, F., Maghradze, D., Kikvadze, M., Ocete, C. A., Ocete, R., Nebish, A., Abellán, J., Palazón, J. A., Rivera, D., 2024: Is there a domestication syndrome in Vitis (Vitaceae) seed morphology? Genetic Resources and Crop Evolution, 2024, 1-25. DOI: 10.1007/s10722-024-02023-1.
- Ocete, R., Rivera, D., Maghradze, D., Salimov, V., Melyan, G., Musayev, M., Ocete, C. A., Chipashvili, R., Failla, O., Obón, C., 2018: Support trees and shrubs for the Eurasian wild grapevine in Southern Caucasus. Annals of Agrarian Science, 16(4), 427-431. DOI: 10.1016/j.aasci.2018.06.005.
- Orrù, M., Grillo, O., Venora, G., Bacchetta, G., 2012: Computer vision as a method complementary to molecular analysis: Grapevine cultivar seeds case study. Comptes Rendus Biologies, 335, 602–615. DOI: 10.1016/j.crvi.2012.08.002.
- Pagnoux, C., Bouby, L., Ivorra, S., Petit, C., Valamoti, S.-M., Pastor, T., Picq, S., Terral, J. F., 2015: Inferring the agrobio-diversity of *Vitis vinifera* L. (grapevine) in ancient Greece by comparative shape analysis of archaeological and modern seeds. Vegetation History and Archaeobotany, 24, 1–10. DOI: 10.1007/s00334-014-0482-y.
- **Pallas, P. S., 1799-1801:** Bemerkungen auf einer Reise in die Südlichen Statthalterschaften des Russischen Reichs. Leipzig: Ed. Gottfried Martin.
- **Perrier, X., Flori, A., Bonnot, F., 2003:** Data analysis methods. In Genetic Diversity of Cultivated Tropical Plants; Hamon, P., Seguin, M., Perrier, X., Glaszmann, J. C., Eds.; Enfield Science Publishers, Montpellier, France, pp. 43–76.
- **Perrier, X., Jacquemoud-Collet, J. P., 2023:** DARwin Software. http://darwin.cirad.fr/(Accessed January 2023).
- **POWO, 2024:** *Vitis vinifera* L. Plants of the World Online https://powo.science.kew.org/taxon/urn:lsid:ipni.org: names:30478388-2 (Accessed January 2024).
- **Prazzoli, M. L., 2017:** Insight into grapevine (*Vitis vinifera*) genetic resources from Caucasus using an integrative approach. Universitá degli Studi di Milano, Milan. Ph.D. Thesis. https://air.unimi.it/bitstream/2434/512616/2/phd_unimi_R10455.pdf.
- Rambaut, A., 2018. Tree Figure Drawing Tool Version 2018-11-25–v1.4.4. http://tree.bio.ed.ac.uk/software/figtree/(Accessed November 2023).
- Ramishvili, R. 1988: Wild growing grapevine of the Trans-Caucasus. Tbilisi: Publ. House Acad. Sci. (in Russian).
- **Ramishvili, R., 2001:** History of Georgian grape and wine. Tbilisi (in Georgian).
- Riaz, S., De Lorenzis, G., Velasco, D., Koehmstedt, A., Maghradze, D., Bobokashvili, Z., Musayev, M., Zdunic, G., Laucou, V., Walker, M. A., Failla, O., 2018: Genetic diversity analysis of cultivated and wild grapevine (*Vitis vinifera* L.) accessions around the Mediterranean basin and Central Asia. BMC plant biology, 18(1), 137. DOI: 10.1186/s12870-018-1351-0.
- Rivera, D., Abellán, J., Palazón, J. A., Obón, C., Alcaraz, F., Carreño, E., Laguna, E., Ruiz, A., Johnson, D., 2020: Modelling ancient areas for date palms (*Phoenix* species: Arecace-

- ae): Bayesian analysis of biological and cultural evidence. Botanical Journal of the Linnean Society, 193(2), 228-262. DOI: 10.1093/botlinnean/boaa011.
- **Rivera, D., Miralles, B., Obón, C., Carreño, E., Palazón, J. A., 2007:** Multivariate analysis of *Vitis* subgenus *Vitis* seed morphology. Vitis 46, 158–167. DOI: 10.5073/vitis.2007.46.158-167.
- Rivera, D., Obón, C., García-Arteaga, J., Egea, T., Alcaraz, F., Laguna, E., Carreño, E., Johnson, D., Krueger, R., Delgadillo, J., Ríos, S. 2014: Carpological analysis of Phoenix (Arecaceae): contributions to the taxonomy and evolutionary history of the genus. Botanical Journal of the Linnean Society, 175(1), 74-122. DOI: 10.1111/boj.12164.
- Rivera, D., Valera, J., Maghradze, D., Kikvadze, M., Nebish, A., Ocete, R., Ocete, C. A., Arnold, C., Laguna, E., Alcaraz, F., Rivera-Obón, D. J., Lovicu, G., Obón, C., In press. Heterogeneity in Seed Samples from Vineyards and Natural Habitats along the Eurasian Vitis vinifera Range: Implications for Domestication and Hybridization. Horticulturae.
- **Rivera, D., Walker, M., 1989:** A review of palaeobotanical findings of early *Vitis* in the Mediterranean and of the origins of cultivated grapevines, with special reference to new pointers to prehistoric exploitation in the western Mediterranean. Review of Palaeobotany and Palynology 61:205–237. DOI: 10.1016/0034-6667(89)90033-X.
- **Robinson, J., Harding, J., Vouillamoz, J., 2013:** Wine Grapes. London: Allen Lane Penguin Press, London.
- Rossetto, M., McNally, J., Henry, R. J., 2002: Evaluating the potential of SSR flanking regions for examining relationships in Vitaceae. Theoretical and Applied Genetics, 104, 61–66. DOI: 10.1007/s001220200007.
- Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012: Fiji: an open-source platform for biological-image analysis. Nat Methods, 28; 9(7), 676–682. DOI: 10.1038/nmeth.2019.
- Sefc, K. M., Steinkellner, H., Lefort, F., Botta, R., da Câmara-Machado, A., Borrego, J., Maletić, E., Glössl, J., 2003: Evaluation of the genetic contribution of local wild grapevines to European grapevine cultivars. American Journal of Enology and Viticulture, 54, 15–21. DOI: 10.5344/ajev.2003.54.1.15.
- **Smith, H., Jones, G., 1990:** Experiments on the effects of charring on cultivated grape seeds. Journal of Archaeological Science, 17, 317–327. DOI: 10.1016/0305-4403(90)90026-2.
- **Sosnovszky, D., 1974:** Vitaceae in Flora S.S.S.R. Vol. 14. Geraniales, Sapindales, Rhamnales. Pp. 516-544. Jerusalem: Israel Program of Scientific Translations.
- **Staroselskii, V., 1893:** Grape varieties of Shorapani and Kutaisi Uezds of Kutaisi Gubernia. Tbilisi: Published by Phylloxera Committee of the Caucasus. 12 pp. (in Russian).
- **Stummer, A., 1911:** Zur Urgeschichte der Rebe und des Weinbaues. Mitteilungen der Anthropologischen Gesellschaft in Wien, 41, 283–296.

Terpó, A., 1976: The carpological examination of wild-growing vine species of Hungary. Acta Bot. Acad. Sci. Hung., 22, 209-247.

Terpó, A., 1978: Origin and distribution of Vitis sylvestris Gmel. In II International Symposium on the problems of Balkan Flora and Vegetation. Pp. 3-10. Istanbul: Faculties of Science, Forestry and Pharmacy of the University of Istanbul.

Terral, J. F., Tabard, E., Bouby, L., Ivorra, S., Pastor, T., Fiqueiral, I., Picq, S., Chevance, J. B., Jung, C., Fabre, L. and Tardy, C., 2010: Evolution and history of grapevine (*Vitis vinifera* L.) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Annals of Botany, 105, 443–455. DOI: 10.1093/aob/mcp298.

This, P., Jung, A., Boccacci, P., Borrego, J., Botta, R., Costantini, L., Crespan, M., Dangl, G. S., Eisenheld, C., Ferreira-Monteiro, F., Grando, S., 2004: Development of a common set of standard varieties and standardized method of scoring microsatellites markers for the analysis of grapevine genetic resources. Theoretical and Applied Genetics, 109, 1448–1458. DOI: 10.1007/s00122-004-1760-3.

This, P., Lacombe, T., Thomas, M. R., 2006: Historical origins and genetic diversity of wine grapes. Trends Genet., 22, 511–519. DOI: 10.1016/j.tig.2006.07.008.

Troshin, L., Nedov, P., Litvak, A., Guzun, N., 1990: Improvement of *Vitis vinifera sativa* DC. taxonomy. Vitis 29, Special Issue, 37-43. DOI: 10.5073/vitis.1990.29.special-issue.37-43.

Tsertsvadze, N., 2012: Georgia: native varieties of grapevine. In: Maghradze D, Rustioni L, Scienza A, Turok J, Failla O (eds) Caucasus and Northern Black Sea Region. Vitis, 12, Special Issue, 177–239. DOI: 10.5073/vitis.2012.51.special-issue.3-481 (link to the whole volume).

Ujmajuridze, L., Kakabadze, G., Mamasakhlisashvili, L., 2018: Georgian grape varieties. Tbilisi: Publishing house "Pegasi". 578 pp. (In Georgian).

UNESCO, 2013: Ancient Georgian traditional Qvevri wine-making method. https://ich.unesco.org/en/RL/ancient-georgian-traditional-qvevri-wine-making-method-00870 (Accessed September 2022).

Urushadze, T. F., Winfried, E. H., Blum, Machavariani, J. S., Kvrivishvili, T. O., Pirtskhalava, R. D., 2015: Soils of Geor-

gia and problems of their use. Annals of Agrarian Sciences, 13 (4), 8-23. Available at: https://techinformi.ge/Annals_18_2_2020/2015_13_4_8-23.pdf (Accessed January 2024).

Valera, J., Matilla-Seiquer, G., Obón, C., Rivera, D., 2022: Archaeobotanical Study of Tell Khamîs (Syria). Heritage, 5(3), 1687-1718. DOI: 10.3390/heritage5030088.

Valera, J., Matilla-Seiquer, G., Obón, C., Alcaraz, F., Rivera, D., 2023: Grapevine in the ancient upper Euphrates: Horticultural implications of a Bayesian morphometric study of archaeological seeds. Horticulturae, 9(7), 803. DOI: 10.3390/horticulturae9070803.

Valera, J., Rivera, D., Matilla-Séiquer, G., Rivera-Obón, D. J., Ocete, C. A., Ocete, R., Ramírez, J. A., Moreno, J. M., Martínez, J. J., Obón, C. 2024. Insights into Medieval Grape Cultivation in Al-Andalus: Morphometric, Domestication, and Multivariate Analysis of *Vitis vinifera* Seed Types. Horticulturae, 10(5), 530. DOI: 10.3390/horticulturae10050530.

Vavilov N. I., 1926. Centry proiskhozhdenia kulturnikh rastenii (The centers of origin for cultivated plants). Trudy po prikladnoi botanike, genetike i selektsii Proc Appl Botany Genet Breeding, 16,133–137 (in Russian).

Vavilov N. I., 1931: Wild progenitors of the fruit trees of Turkistan and the Caucasus and the problem of the origin of fruit trees. In. Anonymous (ed.): Proceedings and Reports of IX international horticultural congress, London, 1930. pp. 271–286. London: Royal Horticultural Society.

Volynkin, V. A., 2008: A study of grapevine genetic resources of the Georgian subgroup under Crimean conditions. In E. Maul, J.E. Eiras Dias, H. Kaserer, T. Lacombe, J.M. Ortiz, A. Schneider, L. Maggioni and E. Lipman (eds.) Report of a Working Group on Vitis. Pp. 165-168. Rome: Bioversity international,. Available at: https://www.bioversityinternational.org/e-library/publications/detail/report-of-a-working-group-onvitis-1/(Accessed January 2024).

Wyler, L., Conedera, M., Tanadini, M., Krebs, P., 2023: Relating the management difficulty to the abandonment rate of traditional mountain vineyards. Journal of Rural Studies 102, 103072. DOI: 10.1016/j.jrurstud.2023.103072.

Zohary, D., Hopf, M., 2000: Domestication of plants in the Old World. New York: Oxford University Press.