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ABSTRACT. In this paper we study the robustness of dynamically gradient
multivalued semiflows. As an application, we describe the dynamical properties
of a family of Chafee-Infante problems approximating a differential inclusion
studied in [3], proving that the weak solutions of these problems generate a
dynamically gradient multivalued semiflow with respect to suitable Morse sets.

1. Introduction. One of the main goals of the theory of dynamical systems is to
characterize the structure of global attractors. It is possible to find a wide literature
about this problem for semigroups; however, it has been recently when new results
in this direction for multivalued dynamical systems have been proved [3], [13], [14].

In this sense, the theory of Morse decomposition plays an important role. In fact,
the existence of a Lyapunov function, the property of being a dynamically gradient
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semiflow and the existence of a Morse decomposition are shown to be equivalent for
multivalued dynamical systems in [9].

In this work we show under suitable assumptions that a dynamically gradient
multivalued semiflow is stable under perturbations, that is, the family of perturbed
multivalued semiflows remains dynamically gradient.

For a fixed dynamically gradient multivalued semiflow with a global attractor
we also analyze the rearrangement of a pairwise disjoint finite family of isolated
weakly invariant sets, included in the attractor, in such a way that the dynamically
gradient property is satisfied in the stronger sense of [16].

These results extend previous ones in the single-valued framework in [7, 1, 2] to
the case where uniqueness of solution does not hold. Additionally, it is worth saying
that the multivalued semiflows here are not supposed to be general dynamical sys-
tems as in [16], where a robustness theorem for Morse decompositions of multivalued
dynamical systems is also proved under a suitable continuity assumption.

We also apply this general robustness theorem in order to show that a family
of Chafee-Infante problems approximating a differential inclusion is dynamically
gradient if it is close enough to the original problem.

This paper is organized as follows.

Firstly, we introduce in Section 2 basic concepts and properties related to fixed
points, complete trajectories and global attractors. In this way, we are able to
present in Section 3 the main result about robustness of dynamically gradient mul-
tivalued semiflows. Further, in Section 4 we prove a theorem which allows us to
reorder the family of weakly invariants sets, thus establishing an equivalent defini-
tion of dynamically gradient families.

Afterwards, we consider a Chafee-Infante problem in Section 5, where the equi-
valence of weak and strong solutions is established. Once the set of fixed points
is analyzed, we consider a family of Chafee-Infante equations, approximating the
differential inclusion tackled in [3]. We check that this family of Chafee-Infante
equations verifies the hypotheses of the robustness theorem in order to obtain,
therefore, that the multivalued semiflows generated by the solutions of the approx-
imating problems are dynamically gradient if this family is close enough to the
original one.

2. Preliminaries. Consider a metric space (X,d) and a family of functions R C
C(R4; X). Denote by P(X) the class of nonempty subsets of X. Then, define the
multivalued map G : Ry x X — P(X) associated with the family R as follows

G(t,uo) = {u(t) : u(-) € R,u(0) = ug}. (1)

In this abstract setting, the multivalued map G is expected to satisfy some prop-
erties that fit in the framework of multivalued dynamical systems. The first concept
is given now, although a more axiomatic construction will be provided below.

Definition 1. A multivalued map G : Ry x X — P(X) is a multivalued semiflow
(or m-semiflow) if G(0,x) = z for all z € X and G(t + s,x) C G(t,G(s,x)) for all
t,s>0and x € X.

If the above is not only an inclusion, but an equality, it is said that the m-semiflow
is strict.

In order to obtain a detailed characterization of the internal structure of a global
attractor, we introduce an axiomatic set of properties on the set R (see [4] and
[13]).
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The set of axiomatic properties that we will deal with is the following.

(K1) For any x € X there exists at least one element ¢ € R such that ¢(0) = «.
(K2) ¢ () :=¢(-+7) € R for any 7 > 0 and ¢ € R (translation property).
(K3) Let o1, 2 € R be such that ¢2(0) = ¢1(s) for some s > 0. Then, the function
¢ defined by
[ el osti<s,
plt) = { pa(t—s) s<t,

belongs to R (concatenation property).
(K4) For any sequence {¢"} C R such that ¢"(0) — x¢ in X, there exist a sub-
sequence {p™ } and ¢ € R such that "™ (t) — () for all t > 0.

It is immediate to observe [6, Proposition 2] or [15, Lemma 9] that R fulfilling
(K1) and (K2) gives rise to an m-semiflow G through (1), and if besides (K3) holds,
then this m-semiflow is strict. In such a case, a global bounded attractor, supposing
that it exists, is strictly invariant [19, Remark 8].

From now on (K1)-(K2) are always satisfied and G will be the multivalued semi-
flow associated to R.

Once a multivalued semiflow is defined, we recall the concepts of invariance and
global attractor, with evident differences with respect to the single-valued case.

Definition 2. A map 7: R — X is called a complete trajectory of R (resp. of G)
if (- +h) [j0,00)€ R for all h € R (resp. if y(t +s) € G(t,7(s)) for all s € R and
t>0).

A point z € X is a fixed point of R (resp. of G) if () =z € R (resp. z € G(t, 2)
for all ¢ > 0).

Definition 3. A set B C X is said to be negatively invariant if B C G(t, B) for all
t > 0, and strictly invariant (or, simply, invariant) if the above relation is not only
an inclusion but an equality.

The set B is said to be weakly invariant if for any = € B there exists a complete
trajectory v of R contained in B such that v(0) = xz. We observe that weak
invariance implies negative invariance.

Definition 4. A set A C X is called a global attractor for an m-semiflow if
it is negatively semi-invariant and it attracts all attainable sets through the m-
semiflow starting in bounded subsets, i.e., distx(G(t, B), A) — 0 as t — oo, where
distx (A, B) = sup,e 4 infyep d(a, b).

Remark 1. A global attractor for an m-semiflow does not have to be unique, nor a
bounded set (see [24] for a non-trivial example of an unbounded non-locally compact
attractor). However, if a global attractor is bounded and closed, it is minimal among
all closed sets that attract bounded sets [19]. In particular, a bounded and closed
global attractor is unique.

Several properties concerning fixed points, complete trajectories and global at-
tractors are summarized in the following results [13].

Lemma 1. Let (K1)-(K2) be satisfied. Then every fized point (resp. complete
trajectory) of R is also a fized point (resp. complete trajectory) of G.

If R fulfills (K1)-(K/), then the fized points of R and G coincide. Besides, a
map v : R — X is a complete trajectory of R if and only if it is continuous and a
complete trajectory of G.
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The standard well-known result in the single-valued case for describing the at-
tractor as the union of bounded complete trajectories reads in the multivalued case
as follows.

Theorem 1. Consider R satisfying (K1) and (K2), and either (K3) or (K4).
Assume also that G possesses a compact global attractor A. Then
A={70):v €K} = Uer{~(t) : v €K}, (2)
where K denotes the set of all bounded complete trajectories in R.
Now we recall the definitions of some important sets in the literature of dynamical

systems. Let B C X and let ¢ € R. We define the w—limit sets w(B) and w(y) as
follows:

w(B) ={y € X : there are sequences t, — 00,y, € G(ty, B) such that y, — y},
w(p) ={y € X : there is a sequence t,, — oo such that ¢(¢,) — y}.
If v is a complete trajectory of R, then the a—limit set is defined by
a(y) ={y € X : there is a sequence t,, - —oo such that y(t,) — y}.

Some useful properties of these sets [4, Lemma 3.4] are summarized in the fol-
lowing lemma.

Lemma 2. Assume that (K1), (K2) and (K4) hold. Let G be asymptotically com-
pact, that is, every sequence y, € G(t,, B), where t, — 0o and B C X is bounded,
is relatively compact. Then:

1. For any non-empty bounded set B,w(B) is non-empty, compact, weakly in-
variant and

distx (G(t,B),w(B)) — 0, as t — +oo.
2. For any ¢ € R, w(p) is non-empty, compact, weakly invariant and
distx (p(t),w(p)) = 0, ast — +oo.
3. For any v € K, a(y) is non-empty, compact, weakly invariant and
distx (y(t),a(v)) = 0, ast — —oo.

In order to give a more detailed description of the internal structure of the at-
tractor under special cases, additional concepts are required.

Definition 5. Consider the m-semiflow G associated with R.

1. We say that S = {Z;,...,=2,} is a family of isolated weakly invariant sets
if there exists § > 0 such that Os(Z;) N Os5(Z;) = 0 for 1 < i < j < n,
and each Z; is the maximal weakly invariant subset in Os(Z;) = {z € X :
distx(z,Z;) < 6}.

2. For an m-semiflow G on (X, d) with a global attractor A and a finite number of
weakly invariant sets S, a homoclinic orbit in A is a collection {Z1), ..., Epm) }
C S and a collection of complete trajectories {;}1<i<k of R in A such that
(putting p(k + 1) := p(1))

tii{rloo distx (Vi(t), Epaiy) = O,tlirgo distx (7i(t), Epgi+1)) =0, 1 <i <k,
and

for each 4 there exists ¢; € R such that v;(t;) & Zp:) U Ep(it1)-



ROBUSTNESS OF GRADIENT MULTIVALUED DYNAMICAL SYSTEMS 1053

3. We say that the m-semiflow G on (X,d) with the global attractor A is dy-
namically gradient if the following two properties hold:
(G1) there exists a finite family S = {=1,...,E,} of isolated weakly invariant
sets in A with the property that any bounded complete trajectory v of R in
A satisfies

t_l}illnoo distx(v(t),E;) =0, tlggo distx (v(t),Z;) =0

for some 1 <i,j <mn;
(G2) S does not contain homoclinic orbits.

Remark 2. The last definition generalizes the concept of dynamically gradient
semigroups (see [7], where they are called gradient-like semigroups) to the multival-
ued case. Observe that the above definitions are concerned with weakly invariant
families, which need not to be unitary sets. This is to deal with the more general
concept of generalized gradient-like semigroups [7], in contrast with gradient-like
semigroups (when the invariant sets are unitary).

Now, we introduce the concept of unstable manifold, that will allow us to describe
more precisely the structure of a global attractor of a dynamically gradient m-
semiflow.

Definition 6. The unstable manifold of a set = is

W¥(E) = {up € X : there exists complete trajectory v of R such that
~v(0) = ug and tEIP distx (v(t),2) = 0}.

Now the following result, relating the global attractor with unstable manifolds, is
standard. The first statement is straightforward to see. The second one, supposing
that the global attractor is compact, follows directly from the structure described
in Theorem 1 and the definition of dynamically gradient semiflows.

Lemma 3. Consider a family R C C(Ry4; X) satisfying (K1) and (K2). Suppose
that the associated m-semiflow has a global attractor A. Then, for any bounded set
ECX,W%Z) C A

Moreover, assume that R satisfies either (K3) or (K4), and that the global at-
tractor A is compact. Suppose also that the associated m-semiflow G defined in (1)
is dynamically gradient. Then

A= U WH(E,). (3)

3. Robustness of dynamically gradient m-semiflows. Our first main goal is
to prove that a dynamically gradient multivalued semiflow is stable under suitable
perturbations, that is, a family of perturbed multivalued semiflows remains dy-
namically gradient if it is close enough to the original semiflow, generalizing the
corresponding result in the single-valued case [7]. This is rigorously formulated in
the following theorem.

Theorem 2. Let 1 be a parameter in [0,1], R, C C(Ry;X) fulfill (K1), (K2),
(K3) and (K4), and let G, be the corresponding m-semiflow on X having the global
compact attractor A,. Assume that

(H1) U A, is compact.
n€l0,1]
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(H2) Go is a dynamically gradient m-semiflow with finitely many isolated weakly
invariant sets S® = {Z9,...,2%}.

(H3) A, has a finite number of isolated weakly invariant sets S, = {E],..., 21},
n € [0, 1], which satisfy

lim sup distx(Z7,2%) = 0.
liy sup x(E],57)

(H4) Any sequence {v,} with v, € R, such that {v,(0)} converges for n — 0T
possesses a subsequence {7, } that converges uniformly in bounded intervals
of [0,00) to v € Ro.

(H5) There exists 1] > 0 and neighborhoods V; of Z9 such that Z! is the mazimal
weakly invariant set for Gy, in'V; for anyi=1,...,n and for each 0 < n < 7.

Then there exists ng > 0 such that for alln < no, {G,} is a dynamically gradient

m-semiflow. In particular, the structure of A, is analogous to that given in (3).

Proof. Observe that assumption (H5) concerning certain neighborhood V; of Z¢
involves a hyperbolicity condition of Gy w.r.t. each =Y, and as far as (H3) is also
assumed, there exist {n(V;)}i=1,..» such that Z] C V; for all n < n(V;). W.Lo.g.
assume that § > 0 is such that {z € X : distx(2,Z?) <§} C V, foralli=1,...,n.
By Theorem 1, we have that A, is composed by all the orbits of bounded complete
trajectories of Ry, K,,.
We are going to prove by contradiction arguments that there exists ny € (0, 1]

such that {G,},<n, is dynamically gradient.

Step 1. There exists 19 > 0 such that for all n < 79, any bounded complete
trajectory &, of R, satisfies that there exist ¢ € {1,...,n} and ty such that for all
t > to, distx (&,(t),E?) < 4.

After proving the above claim, we consider the sets B, := {£,(s) : s > {0} C A=
{y : distx(y,E9) < 6} and w(&,). It follows that w(&,) C A, since dist x (&,(t),w(&,))
goes to 0 as t — +00. On the other hand, by Lemma 2 w(§,) is a weakly invariant
set of G, contained in V;. By assumption (H5) we have that w(,) C Z], whence
the ‘forward part’ of property (G1) of a dynamically gradient m-semiflow will follow
immediately.

We prove this Step 1 by contradiction. Suppose it does not hold. Then, there
exist a sequence n; — 0 (as k — 0o) and bounded complete trajectories & of R,
(therefore, from A, ) such that

sup distx (€x(t),S°) > 6 Vtp € R. (4)
t>tg
The set {£x(0)} C Uyepo,1) A, is relatively compact from assumption (H1). So,
there exists a converging subsequence (relabeled the same) in X. From (H4), there
exist a subsequence (relabeled the same, again) and &y € Ro, such that {£xlj0,00)}
converges to & in bounded intervals of [0,00). Actually, if we argue similarly not
for time 0, but now for times —1, —2,..., and use a diagonal argument, we have
that o = 7ol[0,00) Where 7o € Ko, and the convergence of (a subsequence of) {&x}
toward -y holds uniformly in bounded intervals [a, b] of R.
Since Gy is dynamically gradient, there exists ¢ € {1,...,n} such that

distx(y0(t),Z?) — 0 as t — oo.

Therefore, for all r € N, there exist ¢, and k, such that distx (&x(t.),Z?) < 1/r for
all k > k,.. Indeed, this is done as follows: distx (70(s),Z9) < 1/r for all s > ¢, (for
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some t,, w.l.o.g. t. > r > 1/§); now, combining this with the uniform convergence
on [0,t,] of & toward ~p, the existence of k, follows.

However, from (4), there exists t. > ¢, such that disty (&, (t),Z?
t € [t,,t.) and distx (&, (t)),Z9) = 6.

Now we distinguish two cases and we will arrive to the same conclusion in both
of them.

) < ¢ for all

Case (1a). Suppose that t/.—t, — 0o as r — oo (at least for a certain subsequence).

Since {¢, (t,.)} is also relatively compact (by (H1), again), and &, (-) = &, (6.+)
is a bounded complete trajectory of Ry, from (H4) we deduce that a subsequence
(relabeled the same) is converging on bounded time-intervals of [0, c0), i.e. 1 (¢) :=
lim, o0 &k, (t + t].) holds for certain v; € Rg. Moreover, as before, a diagonal argu-
ment, using not ¢, above, but /. — 1, t/. — 2,... implies that «; can be extended to
the whole real line (the function will still be denoted the same; and the convergence
holds in bounded time-intervals of R), in particular, by (H1) and (H4), 71 € K.

Moreover, by its construction, we have that distx (y1(t),Z9) < § for all ¢ < 0.
By Lemma 2 we have that the a-limit set a(v;) is weakly invariant.

As long as =Y is the biggest weakly invariant set contained in V;, we deduce that
distx (y1(7),Z?) = 0 when 7 — —o0.

On the other hand, from (G1) and (G2) we have that distx(y1(t),E9) — 0 as
t — oo for j # 1.

Case (1b). Suppose that there exists C' > 0 such that |¢. —¢,.| < C as r — oc.
(W.lo.g. we assume that ¢, — ¢, — t..)

Recall that distx (&, (t,),Z9) < 1/r. By [9, Lemma 19] =Y is closed, so, up to a
subsequence &, () — y € E). Denote &, (-) = &, (- + ). From (H4), there exist
a subsequence {¢} } and £' € Ro with £'(0) = y such that ¢, converge towards
¢ uniformly in bounded intervals of [0,00). In particular, &, (¢, —t,) — £'(t.), so
that distx (£1(t.),Z9) > 6.

Since =¥ is weakly invariant, there exists v € Ko with v(0) = £1(0) and ~(¢) € =9
for all t € R. By (K3) consider the concatenation

~(t), if t <0,
n(t) = { €Nt), it t > 0.

Then by (G1)-(G2) it follows that distx (y1(t),Z}) — 0 as t — oo with j # i. This
is exactly the same conclusion we arrived in Case (1a).

Reasoning now with the subsequence {fir}, and proceeding as above, we ob-
tain the existence of v, € Ko such that distx(y2(t),Z}) — 0 as t — —oo and
distx (y2(t),E9) — 0 as t — oo, with p & {i,j}.

Thus, in a finite number of steps we arrive to a contradiction, since G satisfies
(G2). Therefore, (4) is absurd, and Step 1 is proved.

Step 2. There exists 1 > 0 such that for all < 7;, any bounded complete
trajectory &, of R, satisfies that there exist j € {1,...,n} and ¢; such that
distx (&,(1), E?) < §forall t <t.

The above claim can be proved analogously as before, and since for any bounded
complete trajectory &, € K, by Lemma 2, a(&,) is weakly invariant for G,,, and
contained in some Vj;, the ‘backward part’ of property (G1) of a dynamically gradient
m-semiflow will follow immediately.
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Hence, for all suitable small n, {G, (t) : t > 0} satisfies (G1).

Step 3. There exists 75 > 0 such that {G,,}, <y, satisfies (G2).

If not, there exist a sequence 7 — 0, with G, having an homoclinic structure.
We may suppose that the number of elements of weakly invariant subsets connected
on each homoclinic chain in S, is the same. Moreover, by assumption (H3) each
E?’“ is contained in Vj for 1, small enough and w.l.o.g. the order in the route of the
homoclinics visiting the V; sets is the same.

Therefore, for £ > kj there exist a sequence of subsets EZ’(CI)’ - E;”El) in S, (with
p(l+1) = p(1)), and a sequence of complete trajectories {{¢F}._, }1, each collection
of [ elements in the corresponding attractor A,, , with

. . k —_ . . k —_ .
tiulnoo distx (& (t), :Z’(“i)) =0, tlggo distx (& (t), :ZI(Ci-&-l)) =0,1<i<L

If we argue now as in the proof of (G1), we may construct a homoclinic structure
of Gy, getting a contradiction with the fact that the m-semiflow Gy is dynamically
gradient. O

Remark 3. The above result also applies to the particular case of a dynamically
gradient m-semiflow when the weakly invariant families of the original and per-
turbed problems are reduced to unitary sets (Remark 2 and [7, Theorem 1.5]).

4. An equivalent definition of dynamically gradient families. We will give
an equivalent definition of dynamically gradient families. For proving the main
result in this section we will need a stronger condition than (K4). Namely, we shall
consider the following stronger condition:

(K4) For any sequence {¢"} C R such that ¢"(0) — zo in X, there exists a sub-
sequence {p"} and ¢ € R such that ¢™ converges to ¢ uniformly in bounded
subsets of [0, 00).

As before, let A be the global attractor of the m-semiflow G associated with R.

Remark 4. We have seen that the property of being dynamically gradient for
a disjoint family of isolated weakly invariant sets S = {Z1,...,2,} C A is stable
under perturbations. We observe that in the paper [16] a slightly different definition
was used for dynamically gradients families. Namely, instead of conditions (G1)-
(G2) it is assumed that any bounded complete trajectory v(-) of R in A satisfies
one of the following properties:

1. {y(t) : t € R} C E; for some i.

2. There are i < j for which

1), 2 Ein ), = Ej

t——o0

These assumptions are clearly stronger than (G1)-(G2) and imply that the sets
=; are ordered. Our aim is to show that when § is a disjoint family of isolated
weakly invariant sets, these conditions are equivalent. For this we will need to
introduce the concept of local attractor and its repeller and study their properties.

We say that A C A is a local attractor in A if for some € > 0 we have that
w(O:(A)NA) = A. Let A be alocal attractor in .A. Then its repeller A* is defined
by

A*={re A:w)\A # 0}.

Some properties about local attractors and its repeller as well as the proof of the

following three lemmas can be found in [9].



ROBUSTNESS OF GRADIENT MULTIVALUED DYNAMICAL SYSTEMS 1057

Lemma 4. Assume that (K1) — (K4) hold and that a global compact attractor A
exists. Then a local attractor A is invariant.

Remark 5. Although in [9] the stronger assumption (K4) is assumed, the proof is
valid for just (K4).

Lemma 5. Assume that (K1)-(K3), (K4) hold and that a global compact attractor
A exists. Then the repeller A* of a local attractor A C A is weakly invariant and
compact.

Lemma 6. Assume that (K1)-(K3), (K4) hold and that a global compact attractor
A ezists. Let us consider the sequences xy € A, ti, — +00 and @i(-) € R such that
0k (0) = 2. Then from the sequence of maps &k (+) : [—tg, +00) — A defined by

§e(t) = or(t +ty)

one can extract a subsequence converging to some () € K uniformly on bounded
subsets of R.

In order to prove the equivalent definition of dynamically gradient families, we
have to ensure the existence of one local attractor in a family of isolated weakly
invariant sets.

Lemma 7. Assume that (K1)-(K3), (K4) hold and that a global compact attractor
A exists. Let S = {E1,...,2,} C A be a disjoint family of isolated weakly invariant
sets. If G 1is dynamically gradient with respect to S, then one of the sets Z; is a
local attractor in A.

Proof. Let 8y > 0 be such that Os,(Z;) N Os,(Z;) = @ if i # j and Z; be the
maximal weakly invariant set in Os,(Z;) for all j. First we will prove the existence
of j € {1,...,n} such that for all § € (0, dp) there exists ¢’ € (0,) satisfying

) G(t, Og: (Ej) n .A) C O5(Ej). (5)
If not, there would exist 0 < § < &g and for each j sequences ti € RT, xi € A,
¢} € R with ¢7(0) = x], such that

j 1

J =. -

d(zk;v'—*j) < k’
d(l(1),Z5) < 6 for all ¢ € [0,8]).

We have to consider two cases: ti — 400 or ti <C.

Let t], — 4+o00. We define the sequence

L(t) = pl(t +t]) for t € [—t],00).

By Lemma 6 we obtain the existence of a complete trajectory of R, ¥7(-), such that a
subsequence of ] satisfies 17, (t) — ¢ (t) for every t € R. Hence, d(¢7(t),E;) <6 <
8o for all ¢ < 0. Therefore, as ¥/ € K, condition (G1) implies that d(¢7(¢),Z;) — 0
as t — —oo. On the other hand, since d(17(0),Z;) = §, conditions (G1) — (G2)
imply that d(¢7(t),Z;) — 0 as t — 400, where i # j.

Let now #] < C. We can assume that ], — /. By (K4) we obtain the existence

of 7 € R such that goi converges to ¢/ uniformly on bounded sets of [0, 00). It is
clear then that d(¢’(t7),E;) = §. As ¢/(0) € E; and E; is weakly invariant, there
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exists a complete trajectory of R, ¢; (), such that ¢, (0) = ©7(0) and Vi () € Ej
for all £ < 0. Concatenating ¢; and ¢’ we define

o [y () ift <0,
W(t){ oI (t)if t >0,

which is a complete trajectory by (K3). Again, conditions (G1) — (G2) imply that
d(7(t),Zi) — 0 as t — +o0, where i # j.

We have obtained then a connection from =; to a different =;. Since this is
true for any Z;, we would obtain a homoclinic structure, which contradicts (G2).
Therefore, (5) holds for some j. It follows that

w(O0y (E;) NA) C Os(E;) € Os,(5;)-
Since w(Os(Z;) NA) is weakly invariant, we obtain that w(Os (2;)N.A) C E;. But
=; C G(t,Ej) C G(t,05(2;) N A) for any ¢ > 0 implies the converse inclusion, so
that =; = w(O0s(Z;) N A). Thus, Z; is a local attractor in A. O

Now we prove the main result of this section which allows us to establish the
equivalent definition of dynamically gradient families.

Theorem 3. Assume that (K1)-(K3), (K 4) hold and that a global compact attractor
A exists. Let S = {E1,...,2,} C A be a disjoint family of isolated weakly invariant
sets. Then G is dynamically gradient with respect to S in the sense of Definition 5
if and only if S can be reordered in such a way that any bounded complete trajectory
() satisfies one of the following properties:

1. {y(t) : t e R} C E; for some i.

2. There are i < j for which

V()= Ein (), 2 Ej
Proof. 1t is obvious that conditions 1-2 imply that G is dynamically gradient. We
shall prove the converse.

By Lemma 7 one of the sets Z; is a local attractor. After reordering the sets, we

can say that Z; is the local attractor. Let
El={r e A:w(x)\E; # o}

be its repeller, which is weakly invariant by Lemma 5. Since Z; are closed (cf. [9,
Lemma 19]), weakly invariant and disjoint, we obtain that Z; C =} for j > 2.

We will consider only the dynamics inside the repeller =7, that is, we define the
following set:

Ri={p €R:(t) € E] Vit >0}

Since Z7 is weakly invariant, R; satisfies (K'1). Further, let ¢, (-) = ¢(- + 1), where
@ € Ry and 7 > 0. Then it is clear that ¢, (t) € Ry for all ¢ > 0, and then (K2)
holds. If ¢1(-), ¢2(-) € R4, it follows by (K3) that the concatenation belongs also
to Rq. Finally, if ¢,(0) = ¢g with ©,(0) € ZF and ¢, (-) € Ry, then ¢ € % (as
27 is closed) and by (K4) passing to a subsequence ¢y, (t,) — ¢(t), for t,, —t >0,
where ¢ € R. Again, the closedness of =} implies that ¢ € R;. Hence, (K4) also
holds. We can define then the multivalued semiflow G : Rt x 2% — P(Z2%) :

Gi(t,z) = {y € E] : y = ¢(t) for some p € Ry, ¢(0) =z},
which is strict by (K3). This definition is equivalent to the following one:
Gi(t,x) = G(t,x) NE for v € ZF.
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Indeed, Gi(t,x) C Gi(t,x) is obvious. Conversely, let y € G(t,z). Then, y =
o(t), ¢(-) € R, and y € Ef. We state that ¢(s) € Ef for all 0 < s < t. Assume by
contradiction that ¢(s) € = for 0 < s < t. Therefore, w(p(s)) C Z;. But then by
(K3),

G(T,y) C G(T,G(t — s,p(5))) CG(T +t—s,p(s)) = E1 as T — oo,

which is a contradiction with y € EF. Using again (K3) one can define a function
() € Ry such that (0) = y, so that y € G1(¢, z).

It is clear that G; possesses a global compact attractor, which is the union of
all bounded complete trajectories of Rq, and that G is dynamically gradient with
respect to {Eq,...,E,}. Then, again by Lemma 7 we can reorder the sets in such a
way that 2y is a local attractor in Zj. Let =5 ;| be the repeller of =3 in Z]. Then we
restrict as before the dynamics to the set =5 ; and so on. Hence, we have reordered
the sets =; in such a way that =, is a local attractor and Z; is a local attractor for
the dynamics restricted to the repeller of the previous local attractor Z7_; ;_, for
J=2and E; CEj_ ;_,if i > j, where E] j = Ej.

Now, if v(-) is a bounded complete trajectory such that

V), s, 2 Ej
then we shall prove that i < j. Moreover, if () is not completely contained in
some =, then 7 < j.
If 4 = 1, then it is clear that j > 1. Also, if there exists v(tp) € Z1, then j > 1,
as =7 is a local attractor.
Let ¢ = 2. Then v(t) € Ef for all ¢ € R, and then () Ao =, is forbidden.

Hence, j > 2. Again, if there exists v(tg) € Za, then the fact that Zs is a local
attractor in =7 implies that j > 2.

Further, note that if ¢ > 3, then ~(¢) € E5 for all t € R. Also, by induction, it
follows that v(t) € Ef ; , forallt € Rand 2 <k <i—1. Indeed, let v(t) € Z;_; ; ,
forallt € Rwith2 < k <i—1. Then (t) o E; implies clearly that y(t) € =}

for all t € R. In particular, v(t) € 2}, ; , for all £ € R. Hence, Z; € Z7 ;; 5, so

that j > ¢. Finally, if there exists y(tg) € Z;, then j > i as E; is a local attractor in

= o O
i—1,0—2

To finish this section, we recall that the disjoint family of isolated weakly invariant
sets S = {E1,...,E,} C Ais aMorse decomposition of the global compact attractor
A if there is a sequence of local attractors ) = Ag C A; C ... C A, = A such that
for every k € {1,...,n} it holds

= AN Az_l.

It is well known [16] that for general dynamical systems conditions 1-2 in Theorem
3 are equivalent to the fact that S generates a Morse decomposition. This fact can
be proved also under conditions (K1)-(K3), (K4) [9].

Thus, Theorem 3 implies that under conditions (K1)-(K3),(K4) the family S
generates a Morse decomposition if and only if G is dynamically gradient.
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5. Application to a reaction-diffusion equation. We will consider the Chafee-
Infante problem

%_%:ﬂ ), >0, z€(0,1),
u(t,0) =0, u(t,1) =0, o
(0, 2) = up(x),

where f satisfies

)fGC()
1(0) =

2)

) f(0) > O exists and is finite;

) f is strictly concave if u > 0 and strictly convex if u < 0;
) Growth condition:

(A
(A
(A3
(A4
(A5
|f(w)] < Cr + CalulP™,
where p > 2,C,Cy > 0;
(A6) Dissipation condition:
(a) If p > 2:
fu)u < C5 — Cylul?, Cs,Cq > 0.
(b) If p=2:

lim sup & <0.
u—too U
Remark 6. Note that as a consequence of condition (A6)(b), we have that f(u)u <

(M —C5)U2+C(;, where C5, Cg > 0 and A1 = 72 is the first eigenvalue of the operator
8 u

Let 2 =(0,1) and 1/p+ 1/g = 1. Denote by (,-) and || - |2 the scalar product
and norm in L2(Q), by ||-|| 3 the norm in H}(Q) associated with the scalar product
of gradients in L2(£2) thanks to Poincaré’s inequality. As usual, let H—1(Q) be the
dual space to H}(€2). Denote by (-, ) pairing between the space LP(2) N H}(Q) and
its dual L9(Q) N H=1(Q).

Definition 7. The function u(-) € C([0,T], L*(2)) is called a strong solution of (6)
on [0, 77 if:

1. u(0) = up;

2. u(-) is absolutely continuous on compact subsets of (0,7);
3. u(t) € H2(Q) N HL(Q), f(u(t)) € L*(Q) for a.e. t € (0,T) and

du(t) _ .
o Au = f(u(t)), a.e. t € (0,7T);

where the equality is understood in the sense of the space L?((2).

Definition 8. The function u(-) € C([0,T], L*(f2)) is called a weak solution of (6)
on [0,T] if:
1. u e L>*(0,T; L*(Q));
2. w e L20,T; HY(Q)) N LP(0, T; LP(Q));
3. The equality in (6) is understood in the weak sense, i.e.
qa
dt
where the equality is understood in the sense of distributions.

(u(t),v) = (Au,v) = (f(u(t)),v), Vv € Hy(Q) N L"(Q),
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Let us make some comments on the natural relation among the above two defin-
itions. Let u(-) be a strong solution such that f(u(-)) € L*(0,T; L*(2)). In view of
[3, Proposition 2.2] we have that u € L%(0,T; H}(2)), so Au € L?(0,T; H=(Q))
and then % € L2(0,T; H~'()). Hence, by [20, Lemma 7.4] we get

(2 0) — (Bu0) = (Fult),v), Yo € HY(Q).

Using [22, p.250] we obtain

d
%<U,U> - <AU,, U) = <f(u(t))av>a Yo € H&(Q)v
so point 3 of Definition 8 is satisfied.

Finally, if p > 2 by condition (A6)(a) we have

Cs  flu(t, z))u(t, z)

Cy Cy

Thus, f(u)u € L((0,T) x Q) implies that u € LP((0,T) x Q) = LP(0,T; LP(f2)).
Hence, u(-) is a weak solution as well.

In view of [8, p.283], for any ug € L*(Q) there exists at least one weak solution.
Moreover, if f(u()) € L*(0,T; L*(92)), then putting g(-) = f(u(:)) we obtain by [5,
p.189] that the problem

dv
— —Av=g(t
{ o~ Av=4(),

v(0) = wo,
possesses a unique strong solution v(+). Since this problem has also a unique weak
solution ¥(-) and the strong solution is a weak solution as well, then v(-) = 9(-) =
u(+). Hence u(-) is also a strong solution of problem (6).

Therefore, we have checked that the sets of weak and strong solutions satisfying
f(u()) € L*(0,T; L?(2)) coincide.

lu(t, )" <

5.1. Stationary points. We now focus on the properties of the stationary points.
To this end, we have followed the classic procedure from [11] and [12]. Moreover,
we have also taken some ideas from [18].

Properties (K1) — (K4) are satisfied (cf. [13]). In view of (K3) every weak
solution can be extended for any ¢ > 0, that is, to a globally defined one. Let
R C C([0,00), L3(Q)) be the set of all globally defined weak solutions of problem
(6) and let G be the associated multivalued semiflow (see Section 2). It is shown
in [13, Lemma 12] that v is a fixed point of R (equivalently, of G) if and only if
v € HE () and

2
% + f(v) =0, in H}(Q). (7)

The inclusion H}(Q) C L*°(Q) implies that f(v) € L>°(Q), so that v € H2(Q) N
H (). Therefore, v(-) is a strong solution as well.

Let consider the function F': R — R defined by

F(s) :/ f(r)dr, se€R.
0
We define
a_ =inf{s <0: sgn f(z) = sgn z, Va;s <z < 0}
and
ay =sup{s>0: sgn f(z) = sgn z, Vz;0 < & < s}.
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If follows from conditions (A2) and (A3) of f that —oco < a_ <0 < ag < +o0.
Since f is positive on (0,a4) and negative on (a—,0), we have that F is strictly
increasing on [0,a4), strictly decreasing on (a_,0] and F(0) = 0. We consider
E,,E_ €0,00] defined by

E, = lim F(s),

S—a4

E_= lim F(s).

sS—a_
Then, F has the inverse functions Uy : [0, E4) — [0,a4), U- : [0, E_) — (a_,0].
We also define the following functions with domains (0, £ ) and (0, E_), respect-
ively, with values on [0, 00):

Uy (E)
T+(E)=/O (E—F(u)™"%du, 0 < E < E,,

0
T_(E) = / (E—F(u)™?du, 0 < E<E_.
U_(E)

Let us consider vg € R and a solution u of
% +f (u) =0, (8)
u(0) = 0,4/(0) = vg.
Note that the solution of the problem (8) is unique, since f is convex for u < 0
and concave for u > 0, so it is Lipschitz on compact intervals (see [28, p.4] or [10,

p.8]).
If we define E = v3/2, then:

U (7))?
( (2 ) + F(u(z)) = E.
On the other hand, the functions 7, 7_ evaluated in £ = vg /2 give us V2 the
x-time necessary to go from the initial condition u(0) = 0, with initial velocity
vg, —vp respectively, to the point where v (T (E)) = 0. Indeed, u(z) satisfies

u (z))? T .
% + F(u(z)) = E, so & = %\/E%F(u) Since v/ (T4 (F)) = 0 for u = U4 (E),
then

5 Ty (E) 1 Ui (E) 1 4 5
2 /0 1 dz ; NCEYIO) u="14(E).

By symmetry with respect to the u axis, the x—time it takes for u(z) to go from
(U*(E),0) to (0, —vg) is Ty (E). By this way, if 27, (F) = 1, that is, 77(F) = %
then u(-) is a solution satisfying the boundary conditions «(0) = u(1) = 0. Applying
a similar reasoning for 77 (F), we obtain that u satisfies the boundary conditions
if, and only if, F satisfies for some k € N only one of the following conditions:

kT (E) + (k= 1)1 (E) = —, 9)

kr_(E)+ (k— 1)1 (F) = (10)

Sl Sl

1
kT (E) + kT_(F) = —. 11
+(E) (E) 7 (11)
Remark 7. Note that if E satisfies (9) or (10) for a certain k, then u has 2k zeros
and if E satisfies (11), then u has 2k + 1 zeros. Our goal is to solve these equations
for E as a function of f’(0). To this end, we study the properties of 7.
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In order to obtain solutions of the equations (9), (10) and (11) it is necessary to
make a change of variable for the functions 71. Given F € (0, F1), we put

Ey*=F(u), 0<y<1, 0<u<U(E)

and
Ey*=F(u), -1<y <0, U_(E)<u<0.

Hence, du = (2yE/f(u))dy and E — F(u) = E(1 — y?). By this change, we obtain
1

" (BE)=2VE | (1- yz)*l/zﬁdy,() <E<E;; u=U.(Ey*),0<y<1;
0

0
7_(E) = 2@/ (1- y2)_1/2%dy,0 <E<E_ ;u=U_(Ey?*),-1<y<0.
—1

The next results show some properties of these functions.

Theorem 4. The functions 74+ satisfy
7r
li E)=——.
T Ok
Proof. Since f'(0) > 0 and f(0) =0, given € € (0, 1), there exists § > 0 such that
FO)1—-e)u< flu) < f(0)1+e)u, 0<u<sé.
1 U 1 (12)
< < , 0<u <o
S O)(A+e) ™ flu) = f(0)(1—¢)
Moreover, as U (FE) is continuous at 0, given § > 0, there exists n > 0 such that
for 0 < E <, Uy (FE) <¢. Now, if we integrate (12) between 0 and u we obtain
the following inequality

f'(0) f'(0)
2 2
Using the change of variable Ey? = F(u), we have

(f’(0)2%€)>1/2u << (f’(0)2(;:+6)

(1—eu? < F(u) < (1+¢e)u? 0<u<o.

1/2
< > u, for 0O<E<n 0<y<l1.
Dividing the previous expression by f(u) and using (12) we obtain

1—¢ 1/2 Y 1+e¢ 1/2
(swronrer) << (GErma=) o o<EsnosysL

Now if we multiply by 2/E(1 — 32)~2 and integrate from 0 to 1, we get

1/2 1/2
1—¢ 1+¢
S — <t (B)<m|———  for 0< E <.
(arorr) @< (o) o o<ESy
Finally, taking ¢ — 0, the theorem follows. The proof for 7_ is analogous. O

Theorem 5. The functions T4 are strictly increasing on their domains.

Proof. Let consider the expression of 74 and 0 < Fy < Es < Ey. Then,

B 1 2y \/E _ \/E
)—T+<E1>—/o Ji-g? [f(U+(Ezy2)) f(UﬂEw?)de'

T+ (B2
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From [10, p.8] we have that the function f is differentiable almost everywhere in

VE

R, so a(F) = i) is differentiable as well. Hence,

o (E) =

AU (EY?) - 22Ef (U (Ey?))
2VE (U (By?)) '

Recall the change of variable F(u) = Ey?. Consider the numerator of o/, that is,
B(u) = f*(u) — 2F(u) f'(u). Then we obtain

Blu) = 2 / ") (s) — Fw))ds, 0< s <.

Since f is strictly concave, if s < u, then f/'(s) > f'(u) (cf. [28, p.5]). As a result,
B(u) > 0.

In order to finish the proof rigorously, we have to justify the previous calculations.
Indeed, from [10, p.5], we have that the function f is absolutely continuous and from
[5, p.16], f € L}, .. Therefore, o/ € L} . and o/ > 0 a.e., which implies that a(E)

is strictly increasing and the proof is finished.
The claim for 7_(FE) follows analogously. O

Theorem 6. The functions 74+ satisfy

li E) =
P ) = 00

Then, 74 : (0, E*) — ((Qf/(g))m,oo).

Proof. Case ay < oo. Then, we have f(ay) = 0 and u(z) = a4 is a constant
solution to the problem % + f(u) = 0. Let us consider E; = F(a4) and the
solution u to this problem satisfying the conditions u(0) = 0,4’ (0) = vo, E = 2.
As ay is a constant solution, by uniqueness 7, (E™) = co. Therefore, given T' > 0,
there exists 6 > 0 such that if E > E. — 0, then 74 (E) > T, which follows from the
continuity of w with respect to its initial conditions.

Case a; = oco. Note that if p > 2, then a; < oo. Therefore, p = 2. In this case,
f(u) > 0 for all u € (0,00). From condition (A5), there exist «, 3 > 0 such that
f(u) < a+ Bu. For u > 0 we have
flw) _ «
ez et

& o

Hence, f(u)/u® — 0, as u — oo.
On the other hand, [;' f(s)ds < [;'(a+8s) ds. Thus, we have F'(u) < au+pu?/2

and

Flu)  «

<=+
ud T u

0<

N

o
SN

Hence, F(u)/u® — 0, as u — oc.
We claim that lim+ f(u)/u* = oo. Indeed, since f/(0) exists, for any e €
u—0
(0, f'(0)), there exists § > 0 such that |[f'(0) — f(u)/u| < e, for any |u| < 4.
Thus, dividing by u2, we obtain
u(f'(0) —¢e) _ fu) _ u(e+ f'(0))

< <
u? u? u?

and the result follows.
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Since f(u)/u? — 0, as u — oo, and f(u)/u?® — oo, as u — 0T, for any £ > 0,
there exists a first value ug € (0,00) where f(ug)/u3 = . Hence,
LZ) >e, 0<u<ug.
u
From the above expression, we have [ f(s)ds > [} es?ds and eu®/3 < F(u).
Then, F(u)/u® > ¢/3, if 0 < u < ug. Since F( )/u? — 0, as u — oo, we deduce
that there exists a first @ > ug such that F(u)/u® = ¢/3. Hence, we have
Fu) _ ¢
> —
u? 3’

0<u<mu,

with F(u) = £u°.
Now, computing 7, in E = F(u), we have

——du =

Ut (E) 1
S
o 1 J3 [T 1
> ———du=— —du
0\ JewP — gu vedo Vad —ud

V3 u [ 3\~ 3

SV Vet Ve, U
V3w 1t 1
:773/0 53 (1 —s)2""ds

“ a8 (3):

@\
T

Recall that eu® = 3F (7). Then,

eu = 3F£;¢ ) .
u
Taking € — 0, by construction @ — oo. Therefore, from condition (A6)(b) we have
that lim, o f(u)/u <0, so the last expression tends to 0 and 71 (E£) — oo. O
Theorem 7. Consider
A, = n?n?.
Then, for each n > 1, there exist two continuous functions EF : [\,,00) — [0, E4)

with the following properties:
1. For each integer k > 1 and for f'(0 ) [A2k—1,00) the only solution of the
equation (9) (resp. 10) is the value Ej,_(f'(0)) (resp. Ey (f(0)));
2. For each integer k > 1 and for f'(0) € [Aak,00) the only solution of the
equation (11) is the value Ey, (f'(0)) = ES, (f'(0)) = Eax;
3. For each integer n > 1, EX(f'(0)) =0, if f/(0) = A

Proof. Let be n > 1. If n is odd, then n = 2k — 1 for £k > 1. First, we prove that
we can define the function

E,f : [Ap,00) — [0, E1)
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by putting EX(f/(0)) = E, where E satisfies k7 (E) + (k — 1)7¢(E) = 1/v/2.
Consider the function

hi (0, Bx) — (nm//27(0), 00
defined by %} (E) == k14 (E) + (k — 1) (E). If f'(0) > )\n then, as hy is a strictly
increasing function, there exists a unique E3;, , € (0, Fx) such that h'} (B3, |) =
1/V2.

Since hy has inverse, E5,_, = (ht)~'(1/v/2) is the solution of the expressions
(9) and (10). Moreover, E3;, | (\,) = 0 by construction.

Second, if n is even, then n = 2k for k > 1. As before, we consider h%} (E) :=
kT (E) + kr(E). Since it is an increasing function, for f’(0) > A, there exists
a unique Ey, € (0, E1) such that h%(Fa) = 1/v/2. Analogously, we obtain the
solution of the expression (11), B, = (k) ~'(1/v2), and E3._,(A\,) = 0. O

Theorem 8. For each n > 1 and f'(0) € [\, ), the equation (7) has two new
more solutions v:: with the following properties:

1 a_ <uf(x )<aJr for all z € 10,1];

2. If f'(0) = \,, then vf =0;

3. For f'(0) € (An,00), v has n + 1 zeros in [0,1]. Denoting these zeros by

xqi, q = 0,1,....n with 0 = xa—L < :Uli < in < ... < :Bf = 1, we have
()%, (x) > 0 for z}f <z <al,,q¢=01,...,n—1 and (=1)%, (z) < 0
forzy <z <z, ,,¢=01,...,n—1. Also, v = —v,, if f is odd;

Proof. The first point follows from F(ul(z)) < E < Ex.

The second point follows from the third one of Theorem 7. Indeed, for each n > 1
and f’(0) € [\, 00) we have the values EX(f’(0)) by the above theorem. Also, we
have a solution of the equation (7) which is denoted by v. If f/(0) = \,, then
EX(\,) =0and vo =0, so v} =

The third point follows by Remark 7. If f is odd, then —U~(E) = Ut (E),

7+(F) = 7_(E), so we have v} = —v. O
Corollary 1. If n?7% < f'(0) < (n +1)272,n € N, then there are 2n + 1 fized
points: 0, vit, ...,vff, where vjipossesses j+ 1 zeros in [0, 1].

5.2. Approximations. From now on, we shall consider the following family of
Chafee-Infante equations

0 02
T~ f(w), t>0, z€(0,1),
u(t,0) =0, u(t,1) =0,
U(O,LU) = UO($),
where e € (0,1] is a small parameter and f. satisfies
(A1) f. € C(R ) and is non-decreasing;
(42) f.(0) =
(A3) 7(0) > 0 exists, is finite, monotone in ¢ and f! (0) —o0, as € — 07;
(A4) fe is strictly concave if uw > 0 and strictly convex if v < 0;
(A5) —1 < f.(s) <1, for all 5, and
|[fe(s) = Ho(s)| <&, if [s| > e, (14)

where
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-1, if u <0,
Ho(u) =< [-1,1], if uw=0,
1, if u >0,

is the Heaviside function.

Conditions (A1)-(A6) are satisfied with p = 2, so problem (13) is a particular
case of (6).

Our aim now is to prove that for ¢ sufficiently small the multivalued semiflow
G. generated by the weak solutions of problem (13) is dynamically gradient. Prob-
lem (13) is an approximation of the following problem, governed by a differential
inclusion

2
Ou 0 o), on Q x (0,T),

ot 0x?
ulaq = 0, (15)

u(0,x) = up(x).
We say that the function u € C([0,T], L?(£2)) is a strong solution of (15) if
1. u(0) = uop;
2. u(+) is absolutely continuous on (0,7) and u(t) € H?(Q) N Hi(Q) for a.e.
t e (0,7);
3. There exists a function g(-) such that g(t) € L*(), a.e. on (0,7T), g(t,z) €
Hy(u(t,x)), for a.e. (t,x) € (0,T) x 2, and
du  9*u
it~ 022 7
In this case we put R as the set of all strong solutions such that the map g
belongs to L%(0,T;L?(£2)). Conditions (K1)-(K4) are satisfied (cf. [9]) and the
map G : Ry x L2(Q) — P(L?*(f2)) defined by (1) is a strict multivalued semiflow
possessing a global compact attractor Ag (cf. [25]) in L?(2), which is connected
(cf. [26]). The structure of this attractor is studied in [3]. It is shown that there
exists an infinite (but countable) number of fixed points

— 0 vt o +
vo = 0,0,V ,...,0, U, -,

(t)=0, ae. te(0,7).

and that Ay consists of these fixed points and all bounded complete trajectories
¥(+), which always connect two fixed points, that is,

Y(t) — 21 as t — oo,

Y(t) — z9 as t — —o0, (16)

where z; = 0,2; = v or z; = v, for some n > 1. Moreover, if 9 is not a fixed
point, then either zo = 0 and 21 = vf, for some n > 1, or z9 = vi 21 = v;f with
k>n.

We fix some Ny € N. Denote

Zny = (Uksno{oi }) U {vo}
and define the sets
Ep={vl o} 1<k<No—1,
-0 _ { y : 3¢ € K such that (16) holds with z; € Zy,, }
~No j=1,2 and y = ¢(t) for some t € R ’
where K stands for the set of all bounded complete trajectories. We note that

set E?VO contains the fixed points in Zy, and all bounded complete trajectories
connecting them.
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Remark 8. It is known [9] that the family M = {Z}, ..., E(J]VO} is a disjoint family
of isolated weakly invariant sets and that G is dynamically gradient with respect
to M in the sense of Remark 4. Hence, Gy is dynamically gradient with respect to
M in the sense of Definition 5.

Now our purpose is to adapt some lemmas from [3, p.2979] to problem (13). In
view of Theorems 7 and 8 and the third condition on f., there exists a sequence
g — 0, as k — oo, such that for every e € (£j,8x41] and any k > 1 problem (13)
has exactly 2k + 1 fixed points {v§ = 0, {v:,j "7?:1} such that for each 1 <n < k
v, has n+ 1 zeros in [0, 1].

Let us consider a sequence {&,,} converging to zero.

Lemma 8. Let n € N be fived. Then, v} n (resp. vz ) do not converge to 0 in
H}(0,1) as e, — 0.

Proof. Suppose that v}  — 0in Hj(0,1). Then vl  — 0in C([0,1]). By Remark
7,vF , has a unique maximum in a € (0,2 ) and by the properties of 7 described

o
before @ = “-. We may assume that x;" does not converge to 0. Let x¢(g,,) be the
first point Where vl (x0) = em or 29 = a if such a point does not exist. We claim
that zo(e,,) — 0, as am — 0. It is clear that 9%v] , /02® = —f. (v} ) <0in
(0,z7), and then
+
v x
Venn(T0) ) < ey Ve € [0,0), (17)
xo mo

by concavity. Hence, integrating first on (s,a) and then on (0,z) with z < zq, we
have

)= [ fen i, e (19)

vt (@) = /O ’ /m for (WF, o (7))drds + /O / for (WF o (7))drds.

Since fc(u) is concave, we have that fe(u)/u > fe(e)/e, ¥V 0 < u < e. Moreover,
by assumption (A5) of f. we get f-(u) > 1=2u, for all 0 < u < £. Hence, using (17)
we have

1— m ’U+ o x o
vl / / n(T)drds > Em Vepon O)/ / Tdrds.
" Em Zo 0 s

Thus,
> Loem oz 2P
- Em 2 6:]']0

so it follows that g — 0, as &, — 0.
Let ;1 < 0 < d3 be such that zg(e,,) < 01 < d2 < alen). Since v (z) >
Em VX € [xg, al, if we intregate (18) over (&1, x) with &; < 2 < b9, we have

v;rn(w) Em,n /6/f Smn ))drds > (1 — ) /6 / drds,
1 s 1 s

which implies a contradiction if v} . — 0 in C([0, 1]).

The proof is similar for v_ . 0

Lemma 9. v ~ k (resp. v_ ) converges to v (resp. vy ) in HY(Q) as m — oo
for any k > 1.
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Proof. 1t is easy to see that v}  is bounded in H?(Q)NH (), so v} | — v strongly
in H}(Q) and C([0,1]) up to a subsequence. The proof will be finished if we prove
that v = v,;". We observe that since in such a case every subsequence would have
the same limit, the whole sequence would converge to v,j

It is clear that the functions g. , = f., (vjm ) are bounded in L>°(0,1).

Passing to a subsequence we can then assume that g., converges to some g weakly
in L2(0,1). It is clear that —(9%v/0x?) = g and v is a fixed point if we prove the
inclusion g(z) € Ho(v(x)) for a.e. x € (0,1). By Mazur’s theorem [29, p.120] there
exist zy, € V, = conv(U3S, ge, ) such that z,, — g, as m — oo, strongly in L?(0, 1).
Taking a subsequence we have z,,(z) — g(z), a.e. in (0,1). Since z,, € V,,,, we get
Zm = Zf\;"i Aigey,» where \; € [0, 1], Zf\[:"i Ai =1 and k; > m, for all 1.

Now (14) implies that |g., () — Ho(v(x))| — 0, as k — oo, for a.e. x. Indeed, if
v(z) =0, then g, (z) € [-1,1] = Ho(v(z)). If v(z) > 0, then |gc, () — Ho(v(z))| =
|fer (Ve (2)) — 1] = 0, as k — oo. If v(z) < 0, we apply a similar argument.

Thus, for any 6 > 0 and a.e. x there exists m(z,d) such that g., (z) C [a(z)
3,b(x) + 0], for all k > m, where [a(z),b(z)] = Ho(v(zx)). Hence, zp,(z) C [a(z)
0,b(x) + 6], as well. Passing to the limit we obtain g(z) € [a(x),b(x)], a.e. on (0,1).

To conclude the proof, we have to prove that v = v,j. By Lemma 8 v # 0. Hence,
as v} () >0 for all z € (0,27 (em)), v = v;} for some n € N. Since v} has n + 1

zeros, the convergence U;ﬂk — v, implies that v:m , has n + 1 zeros for m > N.
But v;“ « possesses k 4 1 zeros. Thus, k = n.
For the sequence v_ , the proof is analogous. O

Lemma 10. Let &, — 0, k,, — o0 as m — oco. Then v:' K, (Tesp. v_ )

EmsRm

converges to 0 in HE(Q) as m — oo.

Proof. In the same way as in the proof of Lemma 9 we obtain that up to a sub-
sequence vjm K, —UIn H} () and C([0,1]), where v is a fixed point of problem
(15). We will prove that v = 0 by contradiction. If not, then v = v for some

n € N. However, since vy has exactly n + 1 zeros and v}, — v in C([0,1]),
we have that U:m,km has n + 1 zeros for any m > M with M big enough. This

contradicts the fact that v:m &, Dossesses k, + 1 zeros and k,,, — 0o. As the limit
is 0 for every converging subsequence, the whole sequence converges to 0.
For the sequence v_ , the proof is analogous. O

Once we have described the preliminary properties, we are now ready to check
that (13) satisfies the conditions given in Theorem 2 for certain families M.. We
recall that [27, Theorem 10] guarantees the existence of the global compact invariant
attractors A., where each A is the union of all bounded complete trajectories.

Let us check assumptions (H1)-(H5) of Theorem 2.

As we have seen before, condition (H2) follows from Remark 8. Therefore, we
prove now condition (H1).

Multiplying the equation in (13) by u, we obtain

1d
gl + iy < [ oo

1
< Slulliy + €, (19)
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where we have used Poincaré’s inequality. Denoting by A; the first eigenvalue of
the operator —A in H}(£2), we have

d
Sz < =Ml + K.

Gronwall’s lemma gives
K
lu@®)lIZ: < e u(0)]72 + o 20 (20)
1

Integrating (19) over (¢,¢+ r) with r > 0 we have
t+r
Jutt+ )+ [ ullyds < @) s + r
t

Then by (20),

t+r
1
/ lullF2ds < [lu(0) 7262 + (A - 7“) K. (21)
t 1

On the other hand, multiplying (13) by —Awu and using Young’s inequality we
obtain

%Huﬂfqg +2/|Aullfe < [If-()]Z2 + [ AullZa. (22)
Since f.(u(+)) € L?(0,T; L*(Q)),VYT > 0, we obtain by [5, p.189] that
we L (n, T HY(),
du

7 € L*(n, T;L*(Q)), Y0<n<T.

This regularity guarantees that the equality
1d, o du
5@””“;{5 = <E’_
is correct [21, p.102]. Then

Au), for a.e. t, (23)

d —
—llully < K+ Il

We apply the uniform Gronwall lemma [22, p. 91] with y(s) = [lu(s)[%,:, g(s) = 1
_ 0
and w(s) = K. Also, using (21) we obtain

w(0)||2,e M+ (L + 1)K
s+ (0K Y

- (24)

Jutt + )% < (

It follows from (20) that ||y||L2 < 51 forany y € A., 0 < e < 1. Hence, Upce<1Ae
is bounded in L?(). Since A. C G.(t,A.) for any t > 0, for any y € A. there
exists z € A, such that y € G.(1,z). Then using (24) with r = 1 and ¢t = 0 we

obtain that
1 _
ol < (| + ( + 1) K+K> .
0 )\1

50 Up<e<1Ae is bounded in Hg (€2). The compact embedding H} (2) C L?(Q) implies
that Up<.<1.A. is relatively compact in L?(£2). As the global attractor Ag of the
differential inclusion (15) is compact, the set Up<.<1A: is compact in L*(Q).

In order to establish that (13) satisfies the rest of conditions given in Theorem
2, we need to prove two previous results related to the convergence of solutions of
the approximations and the connections between fixed points.
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Theorem 9. If uc,o — ug in L3(Q) as e, — 0, then for any sequence of solutions
of (13) ue, () with ue,(0) = ue, o there exists a subsequence of €, such that ue,
converges to some strong solution u of (15) in the space C([0,T], L3(S2)), for any
T > 0.

Proof. We define g, (t) = f, (uc, (t)) and up(t) = u,, (t). From (20) we have that
|lun(®)||2 < Co, for all t > 0, so that ||g,(t)||r2 < Ci, for a.e. ¢ > 0. Hence, there
exists a subsequence such that u, — u weakly in L2(0,T; L*(Q2)). It follows from

(22) and ||gn(t)]|Lz < C; that frT |Aul3.ds < CF(T — 1) + |Jun(r)||3,,. Using (24)
0

we obtain that fTT |Auy||2,ds < C(r). Hence, %% is bounded in L?(r, T; L*(€2)) for

any 0 < r < T, so passing to a subsequence d:l‘t” — % weakly in L2(r, T; L2(52)).

Moreover, Ascoli-Arzela theorem implies that for any fixed » > 0 we have u,, — u
in C([r,T], L*()) and u is absolutely continuous on [r, T].

Also, g, converges to some g € L>(0,T; L*(Q)) weakly star in L>(0,T; L?(Q2))
and weakly in L2(0,7; L?(£2)). On the other hand, since —Au,, = fd:;—; +gn, —Au,
converges to [(t) = —(%)+ g weakly in L?(r, T; L*(12)). Hence, we find at once that
u satisfies

i Au(t) = g(t), a.e. on (0,T).

We need to prove that u(-) is a strong solution of (15). Now, we show that
g(t) € Ho(u(t)), a.e. in (0,T). For this, we shall prove first that for a.e. z €  and
s€(0,T)

|gn (s, ) — Ho(u(s,x))| — 0, as n — co.

Indeed, if u(s,z) = 0, then g,(s,x) = fe, (un(s,z)) =0 € [-1,1] = Ho(u(s,x)),
for all n, so that the result is evident. If u(s,z) < 0, then

lgn (s, 2) — Ho(u(s,x))| = |fe, (un(s,z)) + 1| = 0, as n — oo.
Finally, if u(s,x) > 0, then
|gn (s, ) = fo(u(s, @))| = |fz, (un(s,x)) = 1] = 0, as n — oc.
Now, by [23, Proposition 1.1] we have that for a.e. ¢t € (0,T)
gt)e (@ | J alt)-
n>0  k>n

Then g(t) = lim y,(t) strongly in L?(f2), where
n— oo

M M
un() = g (1), > X =1,k >n
1 =1

We note that for any ¢ € [0,7] and a.e. x € 2 we can find n(e, z,t) such that if
k > n, then |gi(t,z) — Ho(u(t,z))| < . Therefore,

M

|yn(t7w) - Ho(u(t,.%'))| < Z )\ilgki (L:L‘) - H()(u(t,l')” <e.
i=1

Hence, since we can assume that for a.e. (t,xz) € (0,T) x Q,yn(t,x) — g(t,x), it
follows that g(¢,z) € Ho(u(t, z)).
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It remains to check that u is continuous as ¢ — 07. Let 4 be the unique solution
of

du

N Au=0

dt b ’
ulog =0,
u(0) = uy,

and let vy, (t) = u,(t) — 4(t). Multiplying by v,, the equation

dv,,
W - Avn = fen(un)v
we obtain
1d 9 9
5 ggllvnllze + llonllzy < (fe, (un(t)), vn) (25)
1 1
< Sl e am) B + S llonE, (26)
so that

[vn (172 < loa(0)lI72 + Kt.
Hence, |Ju(t) — 4(t)[|2, = lim,—yo0 |0 (t)[|32 < K¢, for ¢ > 0, and
[u(t) = uoll> < [lu(t) —a(®)| L2 + [|a(t) — uollL> <6,

as soon as t < £(d). Therefore, u(-) is a strong solution.
Finally, if ¢,, — 0, then

[un(tn) = uoll 2 < [Jon(tn)ll L2 + [[U(tn) — uol| 2

< VIon(0)]122 + Kt + [[i(tn) — woll 2 0.

Hence, u,, — u in C([0,T],L?(Q2)). By a diagonal argument we obtain that the
result is true for every 7" > 0. O

As a consequence of the last theorem, condition (H4) follows.

Remark 9. Let be u., (-) a bounded complete trajectory of (13). Fix T" > 0.
Since Uy, <., “Ae is precompact in L3(Q), ue, (=T) — y in L? up to a subsequence.
Theorem 9 implies that u., converges in C([0,T], L?()) to some solution u of (15).
If we choose successive subsequences for —27', —3T, ..., and apply the standard
diagonal procedure, we obtain that a subsequence u., converges to a complete
trajectory u of (15) in C([-T,T], L*(Q2)) for any T' > 0. Since Up<e<1.Ac is bounded
in L2(Q2) (in fact in HE(Q)), it is clear that u is a bounded complete trajectory of
problem (15).

Now, we need to prove a previous lemma to obtain the convergence of solutions
of the approximations in the space C([0,7T], H}).

Lemma 11. Any sequence &, € A., with e, — 0 is relatively compact in Hg ().

Proof. There exists a bounded complete trajectory 1. of (13) with ¢, (0) = &,.
Denote uy,(-) = e, (—T+-) and choose some T" > 0. Then &, = un(T), un(0) =
e, (=T). In view of Remark 9 up to a subsequence u,, — u in C([0,T], L?(2)),
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where u is a strong solution of (15). On top of that, by (24) and the argument in
the proof of Theorem 9 we obtain that for r > 0,

U, — u weakly star in L (r, T; Hy (),
du, d
% — di; weakly in L?(r, T; L*(Q)),
U, — u weakly in L?(r, T; H*(Q)).
Therefore, by the Compactness Theorem [17, p.58] we have
U, — u strongly in L*(r, T, H3(Q)),
un(t) — u(t) in HY(Q) for a.a. t € (r,T).
In addition, by standard results [21, p.102] we have that u,,u € C([r,T], H}(Q)).
Multiplying (13) by dgt" and using (23), we obtain

||un(t)\|§{é < Hun(s)H%{é +C(t—s), C>0,t>s>r.

2
du,

d 2 2
T %HUHHH(} < [Ife (un) I Z2-

L2
Thus,

The same inequality is valid for the limit function u(-). Hence, the functions J, (t) =
un()[13; — Ct, J(t) = [lu(t)||3;, — Ct, are continuous and non-increasing in [r, 7.
0 0
Moreover, J,(t) — J(t) for a.e. t € (r,T). Take r < t,,, < T such that ¢,, — T and
In(tm) = J(tm) for all m. Then
In(T) = J(T) < Jn(tm) = J(T) < [Jn(tm) = T (tm)| + [T (tm) — J(T)].

For any € > 0 there exist m(e) and N(e) such that J,(T) — J(T) < e if n > N.

Then limsup J,,(T) < J(T), so limsup [[un (T)[|3: < [[u(T)|3:. As un(T) — u(T)
0 0
weakly in Hj implies lim inf ||u,, (T))||3, > [[u(T)||3,., we obtain
0 0

Jan (D = (DI,
so that u, (T) — u(T) strongly in H}(). Hence, the result follows. O

Corollary 2. If ucg — ug in L*(Q), where uco € Ae, ug € Ay, then for any T > 0
there exists a subsequence €y, such that u., converges to some strong solution u of
(15) in C([0,T], Hy(92)).

Proof. We know from Theorem 9 that there exists a subsequence such that u.,
converges to some strong solution u of (15) in C([0, 7], L?(£2)). Then the statement
follows from the invariance of A, and Lemma 11. O

Remark 10. Let u., (-) be a bounded complete trajectory of (13). Fix T' > 0. By
Lemma 11 u., (=T) — y in H}(Q) up to a subsequence. Corollary 2 implies then
that u., converges in C([0,T], H}(Q2)) to some solution u of (15). If we choose suc-
cessive subsequences for —27, —3T'... and apply the standard diagonal procedure

we obtain that a subsequence u., converges to a complete trajectory w of (15) in
C([-T,T), H}(Q)) for any T > 0. By Remark 9 this trajectory is bounded.

Lemma 12. disty(A., Ag) — 0, ase — 0.
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Proof. By contradiction let there exist 6 > 0 and a sequence y., € A., such that
diStHé (Ye,,»Ao) > 6.

Hence, as y., = ue,(0), where u., is a bounded complete trajectory of problem
(13), using Remark 10 we obtain that up to a sequence u., converges to a bounded
complete trajectory u of the problem (15) in the space C([-T,T], H}(Q)) for every
T > 0. Thus, u(t) € Ag for any ¢t € R. We infer then that

Ye, = ue, (0) = u(0) € Ay,
which is a contradiction. O

We choose some § > 0 such that
O5(Z)) NOs(E)) =0 if i # j

and =) are maximal weakly invariant.
For problem (13) let us define the sets

Mg = {vf, v} for 1 <i< Ny,

£,07 Ve,

Zi, = (Ui {02} U{0),
e o v 3¢ € K¢ such that (16) holds with z; € Z§, ,
No j=1,2and y = 9(t) for some t € R ’
where K® is the set of all bounded complete trajectories of (13).
In view of Lemma 9 we have

distyy (M7,2)) =0, ase — 0, 1<i<No
Lemma 13. disty (Mg, 2%,) =0, ase —0.

Proof. Suppose the opposite, that is, there exists § > 0 and a sequence y., € MJ‘EV’:)
such that

dist g1 (ysk,E?VO) > ¢ for all k. (27)
Let &, be a sequence of bounded complete trajectories of problem (13) such that

&, (0) =y, and

& (1) — zfl as t — —o0,

& (1) — zé“ as t — 0o,
where 2 1 z{f € Z]E\}“O. By Lemmas 9 and 10, passing to a subsequence we have that
28— 2 € Zn,,i=—1,0.

By Remark 10 we obtain that up to a subsequence ., converges to a complete
trajectory 1o of problem (15) in the space C([—T,T], H}(?)) for every T > 0, so
Ye, — %0(0) in HY(Q). Thus, either 1y is equal to a fixed point Zy # 0 or there
exist two fixed points of problem (15), denoted by Z_1,Zp such that

E(zZ_1) > E(Zo),
Yo(t) = Z_1 as t — —o0,
Yo(t) — Zo as t — oo.
If Zo = 7o, then Z_1,%Z¢ € Zn,, which means that 1,(0) € E(])VU. This would imply

a contradiction with (27). Therefore, we assume that Zy # zo. Also, it is clear that
Zo = vt # 0, for some m € N.
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Let 79 > 0 be such that O,,(Zo) N Oy, (20) # B and Oq,,(Zo) does not contain
any other fixed point of problem (15). The previous convergences imply that for
each r < rg there exist a moment of time ¢, and k, such that &, (¢,.) € O,(Z) for
all k > k.. On the other hand, since &, (t) — 2%, as t — oo, and 2§ — z, there
exists ¢, > t, such that

&er, (1) € Oy (Z0) for all t € [ty 1),

1€, () — ZollL2 = 7o.

Let us consider two cases: 1) ). — ¢, — 00;2)|t] — ¢,| < C. We begin with the
first case. We define the sequence of bounded complete trajectories of problem (13)
given by

€0 =& (E+ ).

By Remark 10 we can extract a subsequence of this sequence converging to a
bounded complete trajectory 1 of problem (15). Since t/. —t, — oo, we obtain that
P1(t) € Or,(Zo) for all t < 0. Since Oz, (Zo) does not contain any other fixed point
of problem (15), it follows that ¢ (t) — Zo as t = —oo. But ||41(0) —Zg|| 2 = 0, sO
1 is not a fixed point. Therefore, 11 (t) — Z; as t — oo, where Z; is a fixed point
such that E(z1) < E(Zp).

In the second case we define the sequence

Eli,,, (t) = fEkT (t + tr)'

Passing to a subsequence we have that
glir (O) — 20,
t—t, —t.
As E,ir converges to a solution ¢! of problem (15) uniformly in bounded subsets
from [0, co) such that £'(0) = Zo, &, (. —t,) = &'(t'), so that [|€'(¢') —Zo|| > = ro.
‘We put
[ =z ift<o,
nit) = { 1) if £ > 0.
Then 1 is a bounded complete trajectory of problem (15) such that ¢ (¢t) — Z; as
t — oo, where z; is a fixed point satisfying F(z1) < E(Zp).
Now, if Z; = zg, then we have the chain of connections
Yo(t) = Z_1 as t — —00,Yp(t) = Zg as t — 400,
P1(t) = Zg as t — —00,91(t) = Z1 as t — +o0,
which implies that Z_1,%9,21 € Z,, an then 9y(0) € Z%. This would imply a
contradiction with (27).
However, if Z; # Zg, then we proceed in the same way and obtain a new connec-
tion from the point Z; to another fixed point with less energy. Since the number of

fixed points with energy less than or equal to E(Zy) is finite, we will finally obtain
a chain of connections of the form

Yo(t) = Z_1 as t = —o0, Yo(t) = Zg as t = +o0,
P1(t) = Zg as t — —o0, YP1(t) = Z1 as t — +o0,

Y (t) = Zmo1 as t — —00, Yp(t) = Zm = 20 as t — 4o0.

And again, this implies a contradiction with (27). O
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These convergences imply the existence of gy such that if € < g, then
M C Os(2?) for any 1 <i < Ny.
Further, let

- _ y : F € K* such that ¢(0) =y
i and Y(t) € Os(Z)) forallt e R [~

These sets are clearly maximal weakly invariant for G. in O5(Z?), so condition
(H5) is satisfied for V; = O5(Z?). As a consequence of Lemmas 9, 13, Remark 9

and the definition of § we have
distr2(25,29) =0, as e — 0, for 1 <i < Np.

Therefore, condition (H3) is satisfied.
We also get by Remark 10 and the definition of § that

disty (25,27) = 0, as e = 0, for 1 <i < No.

Moreover, M® = {Z1,...,E%, } is a disjoint family of isolated weakly invariant
sets.
Applying Theorem 2 we obtain the following result.

Theorem 10. There exists €1 > 0 such that for all 0 < € < g1 the multivalued
semiflow G, is dynamically gradient with respect to the family ME.
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