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that a is a viscosity which takes into account the weighted average of u. Depending
on the increasing or non-increasing character of a one may simulate aggregation
effects or the opposite, leaving crowded zones behavior. Several papers by Chipot
and his collaborators (e.g. cf. [12, 13]) use the former in epidemic theory or to
study heat propagation (also in divergence form for inhomogeneous domains [15];
actually we can develop the same analysis with an operator in divergence form as
in the cited reference, but for simplicity in the presentation we keep the laplacian).
The mathematical analysis is not restricted to existence and uniqueness of solutions,
but also refers to stationary points, convergence of evolutive to stationary solutions,
ordered intervals, or general stability issues among others. Some variations are also
known to have Lyapunov functionals (e.g. cf. [14,16,17]), but this is not the general
case, implying a more complex analysis.

The case of f depending on the unknown u has also been recently treated in some
forms. For an interesting nonlocal reaction part with small values of a parameter
we may refer to [3]. The case of nonlocal viscosity and f(u)

∂u

∂t
− a(l(u))∆u = f(u) + h in Ω

has been developed in some recent papers (see [4] for a simpler approach with sub-
linear term and [5–8] for proper general nonlocal reaction-diffusion models in several
situations). Existence, sometimes uniqueness, regularity and attractors issues have
been addressed in the above references. No need to say that the analysis of station-
ary points and decay is extremely difficult since again the obtention of a Lyapunov
functional is not obvious at all neither the study of stationary points. This draw-
back makes the study of existence and properties of attractors even more interesting
as a natural extension.

On other hand, a main concern in the study of a model is its continuous behavior
with respect to some of its elements. Suppose for instance that real data are not
available in a straightforward way but collected successively and that instead of a
single problem, we have a family of problems with analogous structure but slightly
different (readjusted) terms that we notate with a parameterized index. In this
sense, both continuity in finite-time intervals and robustness properties -when hold-
indicate how some structures vary (at least) continuously w.r.t. parameters (e.g.
cf. [20] for similar results in a setting with delay). Namely we consider the following
perturbed family of reaction-diffusion equations

(Pη)


∂u

∂t
− aη(lη(u))∆u = fη(u) + hη(t) in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),
u(x, τ) = uτ (x) in Ω,

where Ω ⊂ RN is a bounded domain, η ∈ (0, 1] is an indexing parameter of the
family of perturbed problems, and the functions aη, fη and hη satisfies the standard
assumptions on dissipative parabolic problems of reaction-diffusion type, that will
be specified below.

Our goal in this paper is to analyze the behavior of attractors for the problems
(Pη) as η → 0. Some preliminary robustness results for a family of problems as above
can be found in [5] (see also [7] for an improved regularity result). Nevertheless in
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those references the considered perturbations are strongly uniform and the limiting
problem is autonomous. Both restrictions are actually quite unsatisfactory and
unreal in practice and have been removed in this paper.

The structure of the paper is as follows. In Section 2, we recall some known results
about solutions for this family of nonlocal reaction-diffusion problems that allow
us to define suitable dynamical systems (in particular the standard assumptions
appear in (A1)). We combine here some abstract results ensuring the existence of
pullback attractors for multi-valued processes (which is the case here), to apply them
immediately to problems (Pη) under the additional assumption (A2). In Section 3,
the robustness property is settled down step by step with some successive results
introduced by suitable assumptions completing the previous ones. Theorem 3.5 is
our main result and involves a fully non-autonomous development since the limiting
problem (denoted (P0)) is in general non-autonomous. The ad hoc condition (A5)
used in Theorem 3.5 is analyzed at the end of the paper. Some remarks and sufficient
conditions to guarantee (A5) are provided, relating the forces hη and approppriate
tempered parameters.

2. Dynamical systems and attractors

The notation (·, ·) will be used for the scalar product between elements in L2(Ω)
and also the duality between Lp(Ω) and Lq(Ω) (1/p + 1/q = 1). The open and
closed balls in L2(Ω) of center a and radius r are BL2(Ω)(a, r) and B̄L2(Ω)(a, r)

respectively. The dual of H1
0 (Ω) is H

−1(Ω) and the duality product between them
will be denoted by 〈·, ·〉. Here we identify L2(Ω) with its dual, being the chain of
embeddings H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω) dense and compact. Let us also denote by
λ1 > 0 the first eigenvalue of −∆ with homogeneous Dirichlet boundary condition.

The existence of weak solutions for the problems (Pη) requires the elements in
the corresponding PDE to be in suitable spaces and with appropriate conditions.
We collect all of them and present in the next assumption.

(A1) There exist positive constants α1, α2 and m and κ1 ≥ 0, κ2 ≥ 0, p ≥ 2 such
that {aη}(0,1] ⊂ C(R; [m,∞)); {fη}(0,1] ⊂ C(R) fulfill

|fη(s)| ≤ κ1 + α1|s|p−1 ∀s ∈ R,
fη(s)s ≤ κ2 − α2|s|p ∀s ∈ R,

{hη}(0,1] ⊂ L2
loc(R;H−1(Ω)) and {lη}(0,1] ⊂ (L2(Ω))′ (since we make the

identification of L2(Ω) with its dual, for the rest of the paper we just put
{lη}η∈(0,1] ⊂ L2(Ω) and no distinction will be made between the classical
notation in the precedent literature lη(v) or the form (lη, v) for each v ∈
L2(Ω) and η ∈ (0, 1]).

Remark 2.1. If p = 2, the dissipative condition can be weakened in the following
way,

(2.1) fη(s)s ≤ κ2 + (mλ1 − α2)s
2.

However, since this would lead to different expressions and conditions on the radii
of the absorbing families, in order to simplify the exposition we prefer to keep (A1)
as above. On the other hand, it is possible to use assumption (A1) with 1 < p < 2,
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but in such a case both conditions (the growth and the dissipative ones) are stronger
than in the case where p = 2 if we assume (2.1).

Definition 2.2. A weak solution to (Pη) is an element u ∈ L∞(τ, T ;L2(Ω)) ∩
L2(τ, T ;H1

0 (Ω))∩Lp(τ, T ;Lp(Ω)) for any T > τ with u(τ) = uτ and that verifies in
the scalar distribution sense

d

dt
(u, v) + aη(lη(u))(∇u,∇v) = (fη(u), v) + 〈hη, v〉 ∀v ∈ H1

0 (Ω) ∩ Lp(Ω).

Remark 2.3. Since a weak solution u satisfies that u′ ∈ L2(τ, T ;H−1(Ω)) +
Lq(τ, T ;Lq(Ω)) for any T > τ, then u ∈ C([τ,∞);L2(Ω)) and the following en-
ergy equality holds (e.g. cf. [24, Lemma 3.2, p. 71])

|u(t)|2 + 2

∫ t

s
aη(lη(u(r)))‖u(r)‖2dr

=|u(s)|2 + 2

∫ t

s
[(fη(r), u(r)) + 〈hη(r), u(r)〉]dr ∀τ ≤ s ≤ t.

The existence of global weak solutions for reaction-diffusion equations is well-
known (e.g. cf. [1, 10, 24]), and also when including nonlocal viscosity terms under
the above assumptions (e.g. cf. [5, 8]; for a nonlocal p-Laplacian reaction-diffusion
problem see [6]), using compactness arguments.

Theorem 2.4. Assume that (A1) holds. Then for any uτ ∈ L2(Ω) there exists at
least one weak solution to (Pη). The set of weak solutions to (Pη) with initial datum
uτ at time τ will be denoted by Φη(τ, uτ ).

Since no suitable Lipschitz (local or global) or monotonicity assumptions are
imposed on the functions aη and fη, we cannot guarantee a uniqueness result (for
that e.g. cf. [8, Th.2.1]). This is interesting from the modeling point of view since
continuous but non-differentiable viscosities may describe in a better way some
diffusion processes, for instance in biological situations as bacteria accumulation or
tumor growth (e.g. cf. [11,12]). Nevertheless a multi-valued framework can be used
to establish a suitable dynamical system.

Definition 2.5. Given a metric space (X, d), a multi-valued process U on X is a
family of multi-valued maps U : R2

d ×X → P (X), where R2
d = {(t, τ) ∈ R2 : t ≥ τ}

and P (X) denotes the class of all nonempty subsets of X, such that U(τ, τ, ·) =IdX
for any τ and U(t, r, x) ⊂ U(t, s,U(s, r, x)) for any triplet r ≤ s ≤ t and x ∈ X.
[When the inclusion relation becomes an equality, the process is said to be strict.]

A multi-valued process U on X is said upper semicontinuous if for all (t, τ) ∈ R2
d

and any x ∈ X and neighborhood N of U(t, τ, x) in X there exists a neighborhood
M of x such that U(t, τ, y) ⊂ N for any y ∈ M.

The solution operator to (Pη) allows us to define suitable multi-valued maps
Uη : R2

d × L2(Ω) → P (L2(Ω))

(t, τ, uτ ) 7→ Uη(t, τ, uτ ) := {u(t) : u ∈ Φη(τ, uτ )}.
Moreover, the analogous compactness arguments on the solutions (and their conti-
nuity) give for the multi-valued maps the following result, whose proof is analogous
to [5, Lemma 1 and Proposition 1], so we omit it.
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Proposition 2.6. Assume that (A1) holds. Then Uη is a strict multi-valued process
on L2(Ω) with closed values and upper semicontinuous for any η ∈ (0, 1].

When a better description of stationary points and their stability or other dy-
namical properties is not available, it is still interesting to describe the existence
of attractors, as general objects attracting the dynamics of solutions. The non-
autonomous framework allows several interpretations, all of them useful, as uniform
attractors, trajectory attractors, skew-product flows, etcetera.

In this paper we focus on pullback (multi-valued) attractors, which describe the
time-sections that attract solutions starting pullback in time. This pullback attract-
ing property roughly means that the studied phenomena started developing very
long time ago. An interesting feature of this setting is that the class of attracted
objects can increase those of fixed bounded sets, to larger classes called universes,
following the school of random dynamical systems. Another distinguished prop-
erty is that more general assumptions can be supposed on the forces of the models
in order to ensure the existence of pullback attractors and that minimal pullback
attractors are contained in kernel sections of uniform attractors when the former
exist. We briefly summarize the main concepts and ingredients, which of course are
similar to those of the autonomous setting.

Definition 2.7. A universe D in X is a nonempty class of families parameterized

in time D̂ = {D(t)}t∈R ⊂ P (X). A universe is said inclusion-closed if given D̂ =

{D(t)}t∈R ∈ D and D̂′ = {D′(t)}t∈R with D′(t) ⊂ D(t) for any t, then D̂′ ∈ D.

A family D̂0 (not necessarily in D) is pullback D-absorbing for the process U if

for any t ∈ R and D̂ ∈ D there exists τ(D̂, t) ≤ t such that U(t, τ,D(τ)) ⊂ D0(t)

for any τ ≤ τ(D̂, t).

A multi-valued process U on X is D-asymptotically compact if for any D̂ ∈ D,
t ∈ R, and arbitrary sequences {τn} ⊂ (−∞, t] with τn → −∞, {xn} ⊂ X with
xn ∈ D(τn) and {yn} with yn ∈ U(t, τn, xn), it holds that {yn} is relatively compact
in X.

It is immediate that if a family D̂0 ⊂ P (X) (not necessarily in D) is pullback

D-absorbing for U and also U is D̂0-asymptotically compact (with the analogous
definition), then U is D-asymptotically compact.

Actually these two main ingredients allow us to obtain a pullback attractor.

Definition 2.8. A pullback D-attractor for the multi-valued process U on X is
any family AD = {AD(t)}t∈R ⊂ P (X) such that (i) AD(t) is a nonempty compact
subset of X for any t ∈ R; (ii) AD pullback attracts any element of D, that is,

limτ→−∞ distX(U(t, τ,D(τ)),AD(t)) = 0 for any D̂ ∈ D and t ∈ R; (iii) AD is
negatively invariant, i.e. AD(t) ⊂ U(t, τ,AD(τ)) for any τ ≤ t.

In general pullback attractors are not unique (cf. [21]). In order to gain unique-
ness, we need to impose minimality: a pullback D-attractor AD is minimal if for any

other family of closed sets Ĉ = {C(t)}t∈R that pullback D-attracts, it holds that
AD(t) ⊂ C(t) for any t ∈ R. As usual, the key objects in the sense of minimality
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are omega-limit sets (when they exist). Namely,

Λ(D̂, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ,D(τ))
X

is the omega-limit set of D̂ by U at time t. Actually, we can summarize all the
above in the following result (cf. [5, Theorem 2]), extending the autonomous and
non-autonomous multi-valued theories [9, 22] to the framework of universes.

Theorem 2.9. Consider an upper semicontinuous multi-valued process U on a
metric space X with closed values, a universe D, a pullback D-absorbing family

D̂0 = {D0(t)}t∈R ⊂ P (X) and assume that U is pullback D-asymptotically compact.
Then the family AD = {AD(t)}t∈R given by

AD(t) =
⋃
D̂∈D

Λ(D̂, t)
X

∀t ∈ R

is the minimal pullback D-attractor and AD(t) ⊂ D0(t)
X

for any t ∈ R. Moreover,
if AD ∈ D and U is a strict process, then AD is (strictly) invariant under U, i.e.
AD(t) = U(t, τ,AD(τ)) for any t ≥ τ.

Remark 2.10. (i) Actually for each D̂ ∈ D, if U is just pullback D̂-asymptotically

compact, Λ(D̂, t) is the minimal family of closed time-sections pullback attracting

D̂. Therefore these omega-limit families are the smallest pieces inside the attractor.

(ii) If the pullback D-absorbing family D̂0 belongs to D, has closed sections and D
is inclusion-closed, then AD ∈ D.

After this brief recall, we get back to the family of problems (Pη). The energy
equality (cf. Remark 2.3) and the Gronwall lemma give the following estimate.

Proposition 2.11. Assume that (A1) holds. Then any weak solution u to (Pη)
satisfies for any µ ∈ (0, 2mλ1)

|u(t)|2 ≤ e−µ(t−τ)|uτ |2 +
2κ|Ω|
µ

+
1

2(m− µ(2λ1)−1)
e−µt

∫ t

τ
eµs‖hη(s)‖2∗ds

for all t ≥ τ.

Proof. Any weak solution u to (Pη) satisfies the energy equality and by (A1)

1

2

d

dt
|u|2 +m|∇u|2 ≤ κ|Ω| − α2‖u‖pp + 〈hη, u〉 a.e. t > τ.

Denoting δ > 0 such that µ = 2(m− δ)λ1, after the Hölder and Young inequalities,

(2.2)
1

2

d

dt
|u|2 + (m− δ)|∇u|2 + α2‖u‖pp ≤ κ|Ω|+ 1

4δ
‖hη‖2∗ a.e. t > τ.

In particular, using the Poincaré inequality

d

dt
|u|2 + µ|u|2 + 2α2‖u‖pp ≤ 2κ|Ω|+ 1

2δ
‖hη‖2∗ a.e. t > τ,

whence the Gronwall lemma concludes the proof. □
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Now let us introduce one possible choice of tempered universe, suitable after the
above estimate. This will kill the initial data leading to the absorbing property
under an appropriate assumption on each force hη.

Definition 2.12. Given σ > 0, denote by DL2

σ the class of all families of nonempty

subsets D̂ = {D(t)}t∈R such that limτ→−∞ eστ supv∈D(τ) |v|2 = 0.

The class of fixed bounded sets, i.e. families D̂ = {D(t)}t∈R with D(t) = B

bounded in L2(Ω) for any t ∈ R, is denoted by DL2

F .

Observe that DL2

F ⊂ DL2

σ for any σ > 0 and that DL2

σ is inclusion-closed.
The following assumption allows to ensure the (pullback) absorbing property for

suitable tempered universes.

(A2) There exist η0 ∈ (0, 1] such that for any η ∈ (0, η0] there exists µη ∈
(0, 2λ1m) with ∫ 0

−∞
eµηs‖hη(s)‖2∗ds < ∞.

The next result is an immediate consequence of Proposition 2.11 and (A2). Nev-
ertheless the explicit expression (2.3) will be important later.

Corollary 2.13. Assume that (A1)–(A2) hold. Then the process Uη for η ∈ (0, η0]

possesses a pullback DL2

µη
-absorbing family D̂0,η={B̄L2(Ω)(0, Rη(t))}t∈R with

(2.3) R2
η(t) = 1 +

2κ|Ω|
µη

+
e−µηt

2(m− µη(2λ1)−1)

∫ t

−∞
eµηs‖hη(s)‖2∗ds.

Moreover, D̂0,η ∈ DL2

µη
.

We end this summarizing section with the main result about existence of attrac-
tors.

Theorem 2.14. Assume that (A1)–(A2) hold. Then each process Uη for η ∈ (0, η0]

possesses the minimal pullback DL2

µη
-attractor Aη

DL2
µη

, which belongs to the universe

DL2

µη
and is strictly Uη-invariant.

Moreover, the minimal pullback DL2

F -attractors Aη

DL2
F

(for the corresponding pro-

cesses Uη) also exist and the following relations hold

(2.4) Aη

DL2
F

(t) ⊂ Aη

DL2
µη

(t) ⊂ B̄L2(Ω)(0, Rη(t)) ∀t ∈ R.

Proof. After Proposition 2.6 and Corollary 2.13, the (pullback) asymptotic com-
pactness is the remaining property in order to apply Theorem 2.9. But this is an
almost verbatim copy of [5, Proposition 5]. Observe that the attractor belongs to
the corresponding universe since the absorbing family does and has closed sections
(cf. Remark 2.10 (ii)).

The second part of the statement is a byproduct of the inclusion DL2

F ⊂ DL2

µη
,

the same abstract results applied to the universe of fixed bounded sets DL2

F and the
minimality property of each attractor. □
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3. Robustness result in L2

We are interested in the behavior of attractors for the dynamical systems asso-
ciated to problems (Pη) when η → 0. Our approach supposes that the problems
(Pη) represent approximations to a final problem and data are approaching after
collecting more and more information toward the definitive values of the involved
external and reaction forces and viscosity terms. Namely:

(A3) Assume that there exist elements a0, f0, h0 and l0 such that {aη}, {fη}, {lη}
and {hη} fulfill as η → 0 that

aη → a0 uniformly on compact intervals,

lη ⇀ l0 weakly in L2(Ω),

fη → f0 uniformly on compact intervals,

hη ⇀ h0 weakly in L2(τ, T ;H−1(Ω)) for any τ < T .

Roughly speaking, problems (Pη) are perturbations of the limit problem

(P0)


∂u

∂t
− a0(l0(u))∆u = f0(u) + h0(t) in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),
u(x, τ) = uτ (x) in Ω.

It is immediate that assumptions (A1) and (A3) imply that the elements in (P0), a0,
f0, h0, satisfy the analogous condition (A1) with the same constants. This means
that existence of solutions is guaranteed, Φ0 (analogous definition) is well-defined
and a process U0 can be associated. We do not know yet whether it possesses an
attractor since (A2) is not inherited by the limit.

In two steps we will see that this limit is not only formal but rigorous for solutions
in finite-time intervals and for attractors as well.

Theorem 3.1. Assume that (A1) and (A3) hold. Let τ ∈ R be given. Suppose
that uηnτ ⇀ uτ weakly in L2(Ω) as ηn → 0 and consider a sequence of weak so-
lutions uηn ∈ Φηn(τ, u

ηn
τ ). Then there exist a subsequence (relabeled the same)

and u0 ∈ Φ0(τ, uτ ) such that for any T > τ the sequence {uηn} converge to u0

in several senses, namely weakly-star in L∞(τ, T ;L2(Ω)), weakly in
L2(τ, T ;H1

0 (Ω)) ∩ Lp(τ, T ;Lp(Ω)), strongly in L2(τ, T ;L2(Ω)), with {fηn(uηn)}
converging to f0(u

0) weakly in Lq(τ, T ;Lq(Ω)), the subsequence {aηn(lηn(uηn))∆uηn}
converge to a0(l0(u

0))∆u0 weakly in L2(τ, T ;H−1(Ω)) and {(uηn)′} converge to (u0)′

weakly in L2(τ, T ;H−1(Ω)) + Lq(τ, T ;Lq(Ω)).

Proof. We follow the same lines as in [5, Theorem 4], by using uniform estimates,
the Gronwall lemma, the Aubin-Lions theorem and a diagonal argument to increase
the final time T arbitrarily. For short let us just give the main ideas.

The main estimates follow from (2.2) in Proposition 2.11 after the Gronwall
lemma. The uniform estimates and compactness arguments imply the convergences
in L∞(τ, T ;L2(Ω)) and L2(τ, T ;H1

0 (Ω))∩Lp(τ, T ;Lp(Ω)) of uηn to a certain element
u0.
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Observe that the boundedness of {uηn} in Lp(τ, T ;Lp(Ω)) and (A1) gives that
{fηn(uηn))} is bounded in Lq(τ, T ;Lq(Ω)). From all above we deduce that

{(uηn)′} is bounded in L2(τ, T ;H−1(Ω)) + Lq(τ, T ;Lq(Ω)).

Now the Aubin-Lions theorem provides the convergence of (a subsequence of, but
relabeled the same) {uηn} to u0 strongly in L2(τ, T ;L2(Ω)) and by the Dominated
Convergence Theorem almost everywhere in (τ, T )× Ω.

The former almost everywhere convergence jointly with the uniform convergence
on compact subsets of R of fηn towards f0 means that fηn(u

ηn) also converge almost
everywhere to f0(u

0). Indeed, fix (a.e.) (x, s) ∈ Ω × (τ, T ) such that uηn(x, s) →
u0(x, s). Consider a compact neighborhood of u0(x, s), K = B̄(u0(x, s)) ⊂ Nu0(x,s).
Then

|fηn(uηn(x, s))− f0(u
0(x, s))|

≤|fηn(uηn(x, s))− f0(u
ηn(x, s))|+ |f0(uηn(x, s))− f0(u

0(x, s))| → 0

as ηn → 0. This means (cf. [19, Lemme 1.3, p.12]) that fηn(u
ηn) ⇀ f0(u

0) weakly
in Lp(τ, T ;Lp(Ω)).

Analogously from the almost everywhere convergence uηn(t) → u0(t) in L2(Ω)
and the weak convergence of lηn ⇀ l0 in L2(Ω) we obtain

|lηn(uηn)− l0(u
0)| = |(lηn , uηn)− (l0, u

0)|
≤|(lηn , uηn − u0)|+ |(lηn − l0, u

0)| → 0 a.e. t,

which implies (as the argument with the sequence {fηn}) that {aηn(lηn(uηn))} con-
verge almost everywhere to a0(l0(u

0)). Using the Dominated Convergence Theorem
again it is not difficult to conclude that in fact

aηn(lηn(u
ηn)) → a0(l0(u

0)) strongly in L2(τ, T ).

Since ∆uηn ⇀ ∆u0 weakly in L2(τ, T ;H−1(Ω)), from above we also deduce that

−aηn(lηn(u
ηn))∆uηn ⇀ −a0(l0(u

0))∆u0 weakly in L2(τ, T ;H−1(Ω)).

Finally, we deduce that u0 solves the limit problem (P0), since the equation is
satisfied and the initial condition can be deduced in a standard way testing against
vφ with v ∈ H1

0 (Ω) ∩ Lp(Ω) and φ ∈ H1(τ, T ) with φ(T ) = 0 and φ(τ) 6= 0.
Integrating and comparing the resulting expressions of the problems (Pη) and (P0),
the weak convergence assumption uηnτ ⇀ u0 concludes that u0(τ) = u0 and the
proof is finished. □

Unfortunately the convergence almost everywhere in time of uηn(t) → u0(t)
strongly in L2(Ω) does not seem enough for our purposes. It still remains to gain
one convergence for our arguments. We impose a slightly stronger assumption than
(A3) for the sequence {hη} converging to h0.

(A4) One of the following two options holds: either hη → h0 strongly in
L2(τ, T ;H−1(Ω)) for any τ < T, or hη ⇀ h0 weakly in L2(τ, T ;L2(Ω))
for any τ < T.
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Lemma 3.2. Under the assumptions of Theorem 3.1 and (A4), the converging
sequence {uηn} obtained in Theorem 3.1 also satisfies uηn(t) → u0(t) strongly in
L2(Ω) for all t > τ.

Proof. Fix T > τ . We continue with the compactness arguments used in Theorem
3.1. Now from the energy equality (cf. Remark 2.3) we have that

|uηn(s)|2 ≤ 2κ|Ω|(s− r) + |uηn(r)|2 + 2

∫ s

r
〈hηn(θ), uηn(θ)〉dθ ∀τ ≤ r ≤ s ≤ T

and similarly for the solution u0 to (P0)

|u0(s)|2 ≤ 2κ|Ω|(s− r) + |u0(r)|2 + 2

∫ s

r
〈h0(θ), u0(θ)〉dθ ∀τ ≤ r ≤ s ≤ T.

Consider the functions

Jn(s) := |uηn(s)|2 − 2κ|Ω|s− 2

∫ s

τ
〈hηn(θ), uηn(θ)〉dθ,

J0(s) := |u0(s)|2 − 2κ|Ω|s− 2

∫ s

τ
〈h0(θ), u0(θ)〉dθ.

They are non-increasing, continuous and thanks to the convergences proved in The-
orem 3.1 and (A4) it holds that Jn(s) → J0(s) almost everywhere on (τ, T ). Under
these conditions we can assure in fact that the convergence Jn(s) → J0(s) holds for
all s ∈ (τ, T ] (for a detailed explanation of this argument see for instance the proof
of [5, Proposition 1]). Moreover, since (A4) provides the convergence of the integral
terms, we deduce that

(3.1) lim
η→0

|uηn(s)|2 = |u0(s)|2 ∀s ∈ (τ, T ].

Since we already had that {uηn} is bounded in C([τ, T ];L2(Ω)), then {uηn(s)} con-
verges weakly in L2(Ω) to some element. Actually we may identify this weak limit
since {(uηn)′} is also bounded in Lq(τ, T ;H−1(Ω) + Lq(Ω)) and the compact em-
bedding L2(Ω) ⊂⊂ H−1(Ω) implies that the Ascoli-Arzelà theorem can be used.
Namely {uηn} converges to u0 strongly in C([τ, T ];H−1(Ω)+Lq(Ω)). Thus we iden-
tify the weak limit

uηn(s) ⇀ u0(s) weakly in L2(Ω) ∀s ∈ [τ, T ].

This weak limit and the convergence of the norms (3.1) give the result in (τ, T ].
But T is arbitrary, so the same argument in T + 1, T + 2 and successively and a
diagonal procedure finish the proof. □

Before establishing our main result we need to embed somehow the pullback ab-
sorbing families in a suitable family which should be also controlled by the dynamical
system U0. This is an ad hoc assumption to provide the most general conditions on
the family of problems (Pη) and relate them suitably to (P0).

(A5) There exists µ0 ∈ (0, 2mλ1) such that

(3.2)

∫ 0

−∞
eµ0s‖h0(s)‖2∗ds < ∞
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and

(3.3) lim
t→−∞

lim sup
η→0

e(µ0−µη)t

m− µη(2λ1)−1

∫ t

−∞
eµηs‖hη(s)‖2∗ds = 0.

Remark 3.3. Observe that assumption (A5) implies that for any c ∈ [0,∞), the
family of balls {BL2(Ω)(0,Ψc(t))}, where

Ψ2
c(t) := c+ lim sup

η→0

e−µηt

2(m− µη(2λ1)−1)

∫ t

−∞
eµηs‖hη(s)‖2∗ds,

belongs to the universe DL2

µ0
.

Without assuming totally (A5), but just (3.2) we have the following

Corollary 3.4. Assume that (A1), (A3) and (3.2) hold. Then U0 possesses the

minimal pullback DL2

F -attractor A0

DL2
F

and the minimal pullback DL2

µ0
-attractor A0

DL2
µ0

and the following relation holds

A0

DL2
F

(t) ⊂ A0
DL2

µ0

(t) ⊂ B̄L2(Ω)(0, R0(t)) ∀t ∈ R,

where

R2
0(t) := 1 +

2κ|Ω|
µ0

+
e−µ0t

2(m− µ0(2λ1)−1)

∫ t

−∞
eµ0s‖h0(s)‖2∗ds.

Proof. It is a consequence of Theorem 2.9, analogously to the result for the per-
turbed problems (cf. Theorem 2.14), being the family {BL2(Ω)(0, R0(t))} pullback

DL2

µ0
-absorbing for U0. Therefore, the last relation can be deduced in the same way

as (2.4). □
Beyond the above attraction result, we may understand better the constructed

ad hoc condition (3.3) in (A5). Roughly speaking we do not impose a uniform
bound for all the radii Rη in terms of R0, but a bound in terms of the superior
limit (i.e. when ηn → 0 only a finite amount of them may escape, but they do
not matter). The radii of absorbing families for (Pη) problems are controlled by a

tempered function Ψ2
c in DL2

µ0
. In other words, these time-sections of the (perturbed)

attractors are subsets of the time-section of a family which is attracted through U0

to the limiting attractor A0
DL2

µ0

.

We can establish now our main robustness result.

Theorem 3.5. Assume that (A1)–(A5) hold and that

(3.4) lim inf
η→0

µη =: µ > 0.

Then the families {Aη

DL2
µη

} converge upper semicontinuously to A0
DL2

µ0

as η → 0, i.e.

lim
η→0

distL2(Ω)(A
η

DL2
µη

(t),A0
DL2

µ0

(t)) = 0 ∀t ∈ R.

Proof. By contradiction, suppose that the thesis is false. Then there exist ε > 0,
t ∈ R and a sequence ηn → 0 with

(3.5) distL2(Ω)(A
ηn

DL2
µηn

(t),A0
DL2

µ0

(t)) > ε.
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Now, according to the notation in Remark 3.3, consider the family D̂0,0 =
{D0,0(t)}t∈R given by

(3.6) D0,0(t) := BL2(Ω)(0,Ψc0(t)) with c0 = 2 +
2κ|Ω|
µ

.

The choice of the constant c0 makes D̂0,0 a kind of envelope of almost all the pullback

DL2

µηn
-absorbing families by (2.3) and (3.4). Since this family belongs to DL2

µ0
(cf.

Remark 3.3), there exists τ̄ := τ(t, D̂0,0, ε) < t such that

(3.7) distL2(Ω)(U0(t, τ̄ , D0,0(τ̄)),A0
DL2

µ0

(t)) < ε/2.

By (3.5) we may select points zηn ∈ Aηn

DL2
µηn

(t) such that

(3.8) distL2(Ω)(z
ηn ,A0

DL2
µ0

(t)) > ε.

By the negative invariance of the minimal pullback attractors,

Aηn

DL2
µηn

(t) ⊂ Uηn(t, τ̄ ,A
ηn

DL2
µηn

(τ̄)).

Therefore each zηn belongs to the trajectory of a weak solution, namely there exist
{zηnτ̄ } with zηnτ̄ ∈ Aηn

DL2
µηn

(τ̄) and uηn ∈ Φηn(τ̄ , z
ηn
τ̄ ) with zηn = uηn(t) ∈ Aηn

DL2
µηn

(t).

Moreover, since the pullback attractors are contained in the time-section of the
absorbing families, we have

zηnτ̄ ∈ BL2(Ω)(0, Rηn(τ̄)) ∀ηn.
Since ηn → 0, by the properties of superior and inferior limits, all but at most a
finite amount of ηn satisfy

R2
ηn(τ̄) ≤ Ψ2

c0(τ̄).

Thus {zηnτ̄ = uηn(τ̄)} is bounded and there exist a weakly converging subsequence
uηn(τ̄) ⇀ uτ̄ ∈ D0,0(τ̄) and u0 ∈ Φ0(τ, uτ̄ ) such that, by using Theorem 3.1 and
Lemma 3.2, we may take small enough η̄(τ̄ , t, ε) such that

(3.9) |uηn(t)− u0(t)| < ε/2 ∀ηn ≤ η̄.

Finally, the triangle inequality, (3.7) and (3.9) yield

distL2(Ω)(u
ηn(t),A0

DL2
µ0

(t))

≤distL2(Ω)(u
ηn(t), u0(t)) + distL2(Ω)(u

0(t),A0
DL2

µ0

(t)) < ε ∀ηn ≤ η̄,

which is a contradiction with (3.8). This concludes the proof. □
Remark 3.6. Although the result is stated in the usual terms of attractors, the
proof of the robustness result really shows that the family of attractors is upper

semicontinuously converging toward Λ0(D̂0,0, t), where D̂0,0 is introduced in (3.6)
and the upper script 0 in the omega-limit means w.r.t. to the dynamical system U0

(cf. Remark 2.10 (i)).

It might be convenient to complete our main result, Theorem 3.5, with some
explanations, comments and conditions that imply that the required assumptions
hold, in particular the ad hoc condition (A5).



ROBUSTNESS FOR NONLOCAL EQ. UNDER PERTURBATION 1153

Remark 3.7. Some robustness results in the literature conclude with an autonomous
limiting problem (P0) when η → 0, i.e. h0 ≡ 0. Actually that is the case treated
in [5] since there hη = ηh for a fixed element h ∈ L2

loc(R;H−1(Ω)) fulfilling condi-
tion (23) in [5]. Of course, these assumptions imply that (A4), (A5) and (3.4) hold
immediately in the context of this paper and that one may take any µ0 ∈ (0, 2mλ1],
where the right extreme value 2mλ1 in the interval is also valid since the problem
(P0) is autonomous (h0 does not exist; see the proof of Proposition 2.11).

Remark 3.8. (i) If h0 fulfills (3.2) and µη = µ0 for all η << 1, then (3.4) is trivial
and (3.3) reduces to

(3.10) lim
t→−∞

lim sup
η→0

∫ t

−∞
eµ0s‖hη(s)‖2∗ds = 0,

which looks easier to check. For instance, if hη = f̂(η)h for some h (and µ0 ∈
(0, 2mλ1)) fulfilling (3.2) and some function f̂ with lim supη→0 |f̂(η)| < ∞, then
(3.10) holds, and it yields (A5).

(ii) If some other argument allowed simplifying the expression (3.3) neglecting
what appears in front of the integral and reducing it to compute

lim
t→−∞

lim sup
η→0

∫ t

−∞
eµηs‖hη(s)‖2∗ds,

one should observe that, in general, the limit in time t and the superior limit in η do
not conmute as one may check immediately with a real counterexample of functions
with finite integral on (−∞, 0) and compact support of fixed length moving to the
left as η → 0.

We have discussed till now the case where h0 ≡ 0 and the case of µη fixed for
all η. Consider now the case when not only hη is converging to h0 but also the
associated {µη} (not necessarily constants in η) converges to some value: µη → µ0.
The next result gives sufficient conditions such that (3.2) holds.

Proposition 3.9. Assume that (A2) holds, the convergence hη ⇀ h0 holds weakly
in L2(−M, 0;H−1(Ω)) for any M > 0, µη → µ0 and

(3.11) sup
η∈(0,η0]

∫ 0

−∞
eµηs‖hη(s)‖2∗ds < ∞,

where η0 is given in assumption (A2). Then∫ 0

−∞
eµ0s‖h0‖2∗ds < ∞.

Proof. Denote by C > 0 to the supremum in (3.11). Since limη µη = µ0, we have
that

eµη ·hη(·) ⇀ eµ0·h0(·) weakly in L2(−M, 0;H−1(Ω)) for all M > 0.

By the properties of the weak limit one deduces that∫ 0

−M
eµ0s‖h0(s)‖2∗ds ≤ C ∀M > 0,

whence the result follows. □
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Our aim now is to provide some sufficient conditions that also imply (3.3), which
combined with the above gives (A5). Observe that the assumptions now are stronger
that in the previous result.

Proposition 3.10. Under the assumptions of Proposition 3.9, suppose also that
{µη} ⊂ (0, 2mλ1) with µ0 = limη µη ∈ (0, 2mλ1),

hη → h0 strongly in L2(−M, 0;H−1(Ω)) for any M > 0,

and

lim sup
η→0

∫ 0

−∞
eµηs‖hη(s)‖2∗ds =

∫ 0

−∞
eµ0s‖h0(s)‖2∗ds.

Then (A5) holds.

Proof. Since (3.2) follows by Proposition 3.9, we are concerned with (3.3). In fact,
by the assumption that µ0 is neither 0 nor 2mλ1, the convergence µη → µ0 and the
properties of superior limits, it suffices to check that

(3.12) lim
t→−∞

lim sup
η→0

∫ t

−∞
eµηs‖hη(s)‖2∗ds = 0.

Consider an arbitrary sufficiently small value ε > 0 and denote M0
ε such that∫ −M0

ε

−∞
eµ0s‖h0(s)‖2∗ds = ε.

From the hypotheses

lim
η→0

∫ 0

−M
eµηs‖hη(s)‖2∗ds =

∫ 0

−M
eµ0s‖h0(s)‖2∗ds ∀M > 0.

In particular, therefore

lim sup
η→0

∫ −M

−∞
eµηs‖hη(s)‖2∗ds ≤ ε ∀M ≥ M0

ε .

This yields (3.12) and therefore (A5). □
There might be sequences {µηn} ⊂ (0, 2mλ1) related to hηn such that (A2) holds

but the sequence {µηn} do not converge. In this case, we may consider the inferior
limit (already introduced) and the superior limit of the tempered parameters

µ := lim inf
η→0

µη, µ̄ := lim sup
η→0

µη.

Corollary 3.11. Assume that hη ⇀ h0 weakly in L2(−M, 0;H−1(Ω)) for any M >
0 and that {µη} ⊂ (0, 2mλ1) are such that (3.11) holds. Then∫ 0

−∞
eµs‖h0(s)‖2∗ds < ∞.

Proof. It suffices to consider a sequence µηn converging to µ and apply the Propo-
sition 3.9. □
Remark 3.12. Obviously the same result holds for µ̄ instead of µ, but observe that
µs ≥ µ̄s for s ≤ 0, so the result above is stronger than the analogous with µ̄.
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The reformulation of Proposition 3.10 in terms of inferior and superior limits re-
quire to control µη from above and from below, to take advantages of the properties
of the superior limit in (3.3). The new resulting condition is not as straightforward
to check as before.

Proposition 3.13. Suppose that (A2) is satisfied, the convergence hη ⇀ h0 holds
weakly in L2(−M, 0;H−1(Ω)) for any M > 0,

0 < µ = lim inf
η→0

µη ≤ lim sup
η→0

µη = µ̄ < 2mλ1

and (3.11) and (3.12) hold. Then, for any ϵ > 0 such that µ0 := µ̄ + ϵ < 2mλ1,
(A5) is true.

Proof. By Corollary 3.11 it is immediate that any value µ0 as in the statement
makes that (3.2) holds true. In order to obtain (3.3), µ0 = µ̄+ ϵ, by the properties
of the superior limit, is such that when η → 0, all but at most a finite number of η
fulfill µ̄+ ϵ > µη. Therefore µ0 − µη > 0 and so e(µ0−µη)t ≤ 1. This, combined with
the assumption µ̄ < 2mλ1 and the choice of µ0, also less than 2mλ1, implies

e(µ0−µη)t

m− µη(2λ1)−1
≤ 1

m− µ0(2λ1)−1
.

Therefore (3.3) is a consequence of (3.12). □

Conclusions

A robustness result has been established in L2(Ω) for pullback attractors in suit-
able universes for perturbed problems (Pη) towards the minimal pullback attractor
of the corresponding limit problem (P0). This pullback attractor acts in another
suitable universe with tempered parameter µ0. The perturbed elements {aη}, {fη},
{lη} and {hη} (these last ones associated with coefficients {µη}) satisfy the appro-
priate conditions (A1)–(A5) such that the result holds, being the ad hoc condition
(A5) the most difficult to verify. Final comments to derive sufficient conditions such
that (A5) hold are given. Namely, the tempered parameters {µη} are analyzed in
several situations, fixed or not, converging or just with inferior and superior limits.
The results extend previous ones where the limit problem was autonomous, that is,
h0 ≡ 0.
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