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ON THE ROBUSTNESS OF PULLBACK ATTRACTORS FOR A
NONLOCAL REACTION-DIFFUSION EQUATION UNDER
PERTURBATION

RUBEN CABALLERO, PEDRO MARIN-RUBIO, AND JOSE VALERO

ABSTRACT. A parametric family of reaction-diffusion equations with nonlocal
viscosity is considered. Existence of solutions and actually of pullback attractors
is known from previous works. In this paper we obtain a robustness result of the
attractors toward the corresponding minimal pullback attractor of the limiting
problem. This result extends the ones obtained in [5]. Actually here all terms
(reactions, external forces and nonlocal viscosity functions) may vary with the
parameter. The upper semicontinuous convergence of attractors is obtained un-
der rather general assumptions and in a fully non-autonomous context using the
framework of tempered universes.

1. INTRODUCTION

The theory of parabolic PDEs (heat transfer and general concentration diffusion
among others) has experimented a great increase of nonlocal models in the last few
decades (all throughout this paper by nonlocal we only mean in space). Actually
there are many examples in several sciences that require different types of nonlocal
modeling, e.g. in Physics one may refer to phase-field analysis (introducing the
phase variable) for phase-transition of material (single or combined), or in Biology
where the number of equations and systems for tumor growth analysis has increased
exponentially in the last years, some of them taking into account nonlocal effects,
convolution operators as fractional laplacian and others, or bacteria group move-
ments as macro organisms (e.g. cf. [2,18,23]). Namely these models include terms
that, instead of a local measure in a certain point, are in fact nonlocal as an average
(isotropic or anisotropic) of the unknown in a neighborhood of each point. This is
sometimes due to the influence that the neighborhood has on each point, and some
measurements come from taking experimental data.

The following nonlocal diffusion equation (fulfilled with suitable initial and bound-
ary conditions) has been considered by many authors:

% —a(l(u))Au=f in Q,

where a is a certain positive function, I € (L?(92))’ is a functional acting on u over the
whole domain €, i.e. l(u(t)) := [, g(z)u(z, t)dx for a certain g € L*(Q). It is clear
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that a is a viscosity which takes into account the weighted average of u. Depending
on the increasing or non-increasing character of ¢ one may simulate aggregation
effects or the opposite, leaving crowded zones behavior. Several papers by Chipot
and his collaborators (e.g. cf. [12,13]) use the former in epidemic theory or to
study heat propagation (also in divergence form for inhomogeneous domains [15];
actually we can develop the same analysis with an operator in divergence form as
in the cited reference, but for simplicity in the presentation we keep the laplacian).
The mathematical analysis is not restricted to existence and uniqueness of solutions,
but also refers to stationary points, convergence of evolutive to stationary solutions,
ordered intervals, or general stability issues among others. Some variations are also
known to have Lyapunov functionals (e.g. cf. [14,16,17]), but this is not the general
case, implying a more complex analysis.

The case of f depending on the unknown u has also been recently treated in some
forms. For an interesting nonlocal reaction part with small values of a parameter
we may refer to [3]. The case of nonlocal viscosity and f(u)

ou .
i a(l(u))Au= f(u) +h in

has been developed in some recent papers (see [4] for a simpler approach with sub-
linear term and [5-8] for proper general nonlocal reaction-diffusion models in several
situations). Existence, sometimes uniqueness, regularity and attractors issues have
been addressed in the above references. No need to say that the analysis of station-
ary points and decay is extremely difficult since again the obtention of a Lyapunov
functional is not obvious at all neither the study of stationary points. This draw-
back makes the study of existence and properties of attractors even more interesting
as a natural extension.

On other hand, a main concern in the study of a model is its continuous behavior
with respect to some of its elements. Suppose for instance that real data are not
available in a straightforward way but collected successively and that instead of a
single problem, we have a family of problems with analogous structure but slightly
different (readjusted) terms that we notate with a parameterized index. In this
sense, both continuity in finite-time intervals and robustness properties -when hold-
indicate how some structures vary (at least) continuously w.r.t. parameters (e.g.
cf. [20] for similar results in a setting with delay). Namely we consider the following
perturbed family of reaction-diffusion equations

O (b)) et = fo) + (1) i 2 x (7,00),
(PT]) w=0 on 0f) x (7'7 OO);
u(z, 7) = urs(x) in ,

where © C RY is a bounded domain, n € (0,1] is an indexing parameter of the
family of perturbed problems, and the functions a,,, f,, and h,, satisfies the standard
assumptions on dissipative parabolic problems of reaction-diffusion type, that will
be specified below.

Our goal in this paper is to analyze the behavior of attractors for the problems
(P,) as n — 0. Some preliminary robustness results for a family of problems as above
can be found in [5] (see also [7] for an improved regularity result). Nevertheless in
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those references the considered perturbations are strongly uniform and the limiting
problem is autonomous. Both restrictions are actually quite unsatisfactory and
unreal in practice and have been removed in this paper.

The structure of the paper is as follows. In Section 2, we recall some known results
about solutions for this family of nonlocal reaction-diffusion problems that allow
us to define suitable dynamical systems (in particular the standard assumptions
appear in (Al)). We combine here some abstract results ensuring the existence of
pullback attractors for multi-valued processes (which is the case here), to apply them
immediately to problems (F,) under the additional assumption (A2). In Section 3,
the robustness property is settled down step by step with some successive results
introduced by suitable assumptions completing the previous ones. Theorem 3.5 is
our main result and involves a fully non-autonomous development since the limiting
problem (denoted (FPp)) is in general non-autonomous. The ad hoc condition (A5)
used in Theorem 3.5 is analyzed at the end of the paper. Some remarks and sufficient
conditions to guarantee (A5) are provided, relating the forces h, and approppriate
tempered parameters.

2. DYNAMICAL SYSTEMS AND ATTRACTORS

The notation (-,-) will be used for the scalar product between elements in L?(2)
and also the duality between LP(Q2) and L9(Q2) (1/p+ 1/q = 1). The open and
closed balls in L*(€2) of center a and radius r are Bpzq)(a,r) and Bragq)(a,r)
respectively. The dual of HZ () is H~1(Q2) and the duality product between them
will be denoted by (-,-). Here we identify L?(Q) with its dual, being the chain of
embeddings Hg(Q) C L?(2) € H1(2) dense and compact. Let us also denote by
A1 > 0 the first eigenvalue of —A with homogeneous Dirichlet boundary condition.

The existence of weak solutions for the problems (F,) requires the elements in
the corresponding PDE to be in suitable spaces and with appropriate conditions.
We collect all of them and present in the next assumption.

(A1) There exist positive constants oy, ag and m and k1 > 0, ko > 0, p > 2 such
that {ap}1 C C(R;[m,00)); {fn}1 C C(R) fulfill

|fo(8)] < k1 +aa|sP™! Vs eR,
fn(s)s < kg —ag|s|P Vs €R,

{hn}o1 C L7, (R; H1(Q)) and {ly}o1 C (L*(2)) (since we make the
identification of L?(Q) with its dual, for the rest of the paper we just put
{Untne,) C L?(Q) and no distinction will be made between the classical
notation in the precedent literature /,(v) or the form (I,,v) for each v €

L?(Q) and 7 € (0,1]).

Remark 2.1. If p = 2, the dissipative condition can be weakened in the following
way,

(2.1) fa(8)s < K2 + (MM — ag)s®.

However, since this would lead to different expressions and conditions on the radii
of the absorbing families, in order to simplify the exposition we prefer to keep (A1)
as above. On the other hand, it is possible to use assumption (Al) with 1 < p < 2,
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but in such a case both conditions (the growth and the dissipative ones) are stronger
than in the case where p = 2 if we assume (2.1).

Definition 2.2. A weak solution to (P,;) is an element u € L*(7,T;L%*(2)) N
L3(7,T; HY(Q) N LP(r, T; LP(Q)) for any T > 7 with u(7) = u, and that verifies in
the scalar distribution sense

d

%(u,v) + ay(ly(w)) (Vu, Vo) = (f(u),v) + (hy,v) Yo € Hy(Q) N LP().
Remark 2.3. Since a weak solution u satisfies that «' € L?(7,T; H () +
L1, T; L9(Q)) for any T > 7, then u € C([r,00); L*(Q2)) and the following en-
ergy equality holds (e.g. cf. [24, Lemma 3.2, p. 71])

IU(t)\2+2/ ay (ly (u(r))) u(r) | dr

=lu(s)|* + 2/ [(fn(r) u(r) + (hy(r), u(r)ldr - vr <s <t

The existence of global weak solutions for reaction-diffusion equations is well-
known (e.g. cf. [1,10,24]), and also when including nonlocal viscosity terms under
the above assumptions (e.g. cf. [5,8]; for a nonlocal p-Laplacian reaction-diffusion
problem see [6]), using compactness arguments.

Theorem 2.4. Assume that (A1) holds. Then for any u, € L*(Q) there erists at
least one weak solution to (P,)). The set of weak solutions to (P,) with initial datum
ur at time T will be denoted by ®, (T, ur).

Since no suitable Lipschitz (local or global) or monotonicity assumptions are
imposed on the functions a, and f,, we cannot guarantee a uniqueness result (for
that e.g. cf. [8, Th.2.1]). This is interesting from the modeling point of view since
continuous but non-differentiable viscosities may describe in a better way some
diffusion processes, for instance in biological situations as bacteria accumulation or
tumor growth (e.g. cf. [11,12]). Nevertheless a multi-valued framework can be used
to establish a suitable dynamical system.

Definition 2.5. Given a metric space (X, d), a multi-valued process U on X is a
family of multi-valued maps U : R2 x X — P(X), where R2 = {(t,7) e R?: ¢t > 7}
and P(X) denotes the class of all nonempty subsets of X, such that U(r, 7, ) =Idx
for any 7 and U(t,r,x) C U(t,s,U(s,r,x)) for any triplet r < s < ¢t and = € X.
[When the inclusion relation becomes an equality, the process is said to be strict.]

A multi-valued process U on X is said upper semicontinuous if for all (¢,7) € RZ
and any z € X and neighborhood N of U(t,7,z) in X there exists a neighborhood
M of z such that U(t,7,y) C N for any y € M.

The solution operator to (P,) allows us to define suitable multi-valued maps
U, : RZ x L?(Q2) — P(L*())
(t, T, ur) = Uy(t, T, ur) = {u(t) : u € Op(7,ur)}.

Moreover, the analogous compactness arguments on the solutions (and their conti-
nuity) give for the multi-valued maps the following result, whose proof is analogous
to [5, Lemma 1 and Proposition 1], so we omit it.
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Proposition 2.6. Assume that (A1) holds. Then U, is a strict multi-valued process
on L*(Q) with closed values and upper semicontinuous for any n € (0,1].

When a better description of stationary points and their stability or other dy-
namical properties is not available, it is still interesting to describe the existence
of attractors, as general objects attracting the dynamics of solutions. The non-
autonomous framework allows several interpretations, all of them useful, as uniform
attractors, trajectory attractors, skew-product flows, etcetera.

In this paper we focus on pullback (multi-valued) attractors, which describe the
time-sections that attract solutions starting pullback in time. This pullback attract-
ing property roughly means that the studied phenomena started developing very
long time ago. An interesting feature of this setting is that the class of attracted
objects can increase those of fixed bounded sets, to larger classes called universes,
following the school of random dynamical systems. Another distinguished prop-
erty is that more general assumptions can be supposed on the forces of the models
in order to ensure the existence of pullback attractors and that minimal pullback
attractors are contained in kernel sections of uniform attractors when the former
exist. We briefly summarize the main concepts and ingredients, which of course are
similar to those of the autonomous setting.

Definition 2.7. A universe D in X is a nonempty class of families parameterized
in time D = {D(t) }ter C P(X). A universe is said inclusion-closed if given D =
{D(t)}1er € D and D' = {D'(t) her with D'(t) C D(t) for any ¢, then D' € D.

A family Dy (not necessarily in D) is pullback D-absorbing for the process U if
for any ¢ € R and D € D there exists 7(D,t) < t such that U(t, 7, D(7)) C Dy(t)
for any 7 < 7(D, t).

A multi-valued process U on X is D-asymptotically compact if for any De D,
t € R, and arbitrary sequences {7,} C (—o0,t] with 7, = —oo, {z,,} C X with
Ty € D(1y,) and {yn} with y, € U(¢, Tn, xy), it holds that {y,} is relatively compact
in X.

It is immediate that if a family Dy C P(X) (not necessarily in D) is pullback
D-absorbing for U and also U is ﬁo—asymptotically compact (with the analogous
definition), then U is D-asymptotically compact.

Actually these two main ingredients allow us to obtain a pullback attractor.

Definition 2.8. A pullback D-attractor for the multi-valued process U on X is
any family Ap = {Ap(t) her C P(X) such that (i) Ap(t) is a nonempty compact
subset of X for any ¢ € R; (ii) Ap pullback attracts any element of D, that is,
lim, oo distx (U(t, 7, D(7)), Ap(t)) = 0 for any D € D and t € R; (iii) Ap is
negatively invariant, i.e. Ap(t) C U(t, 7, Ap(r)) for any 7 < ¢.

In general pullback attractors are not unique (cf. [21]). In order to gain unique-
ness, we need to impose minimality: a pullback D-attractor Ap is minimal if for any
other family of closed sets C = {C(t)}+er that pullback D-attracts, it holds that
Ap(t) C C(t) for any t € R. As usual, the key objects in the sense of minimality
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are omega-limit sets (when they exist). Namely,

DD = U vrDm)

s<tT1<s

is the omega-limit set of D by U at time t. Actually, we can summarize all the
above in the following result (cf. [5, Theorem 2]), extending the autonomous and
non-autonomous multi-valued theories [9,22] to the framework of universes.

Theorem 2.9. Consider an upper semicontinuous multi-valued process U on a
metric space X with closed values, a universe D, a pullback D-absorbing family
Do = {Do(t) }er C P(X) and assume that U is pullback D-asymptotically compact.
Then the family Ap = {Ap(t) her given by

¥

Ap(t)= | J AD,t) VteR

Dep

is the minimal pullback D-attractor and Ap(t) C Do(t)X for any t € R. Moreover,

if Ap € D and U 1is a strict process, then Ap is (strictly) invariant under U, i.e.
Ap(t) =U(t, 1, Ap(1)) for any t > 1.

Remark 2.10. (i) Actually for each De D, if U is just pullback ﬁ—asymptotically
compact, A(ZA?, t) is the minimal family of closed time-sections pullback attracting
D. Therefore these omega-limit families are the smallest pieces inside the attractor.
(ii) If the pullback D-absorbing family Dy belongs to D, has closed sections and D
is inclusion-closed, then Ap € D.

After this brief recall, we get back to the family of problems (F,). The energy
equality (cf. Remark 2.3) and the Gronwall lemma give the following estimate.

Proposition 2.11. Assume that (A1) holds. Then any weak solution u to (F)
satisfies for any p € (0,2mA;)
2k|9| 1

t
) < e+ et [ ey (o) s

forallt > .

Proof. Any weak solution u to (F,) satisfies the energy equality and by (A1)

1d
§£|u|2 + m|Vul|? < k|Q| — agllullb + (hy,u)  ae. t > T
Denoting 6 > 0 such that p = 2(m — ) A1, after the Holder and Young inequalities,
1d

1
(2.2) lu|? + (m — 8)|Vul|* + asllullp < k|Q + Z(;thﬂz ae t>T.

2 dt
In particular, using the Poincaré inequality

d 1

@MQ + pilul? + 200ulp < 25|Q| + %thHf ae.t>r,

whence the Gronwall lemma concludes the proof. O
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Now let us introduce one possible choice of tempered universe, suitable after the
above estimate. This will kill the initial data leading to the absorbing property
under an appropriate assumption on each force h,,.

Definition 2.12. Given ¢ > 0, denote by DL2 the class of all families of nonempty
subsets D = {D(t)}+er such that lim;—,_oc €77 SUp,ep(s \v| =0.

The class of fixed bounded sets, i.e. families D = {D(t)}er with D(t) = B
bounded in L?(Q) for any ¢ € R, is denoted by D}L,Q.

Observe that waz - Dgz for any o > 0 and that Df is inclusion-closed.

The following assumption allows to ensure the (pullback) absorbing property for
suitable tempered universes.

(A2) There exist 9 € (0,1] such that for any n € (0,79] there exists u, €
(0,2X1m) with
0
/ 3| ()| 2ds < oo
—0o0
The next result is an immediate consequence of Proposition 2.11 and (A2). Nev-

ertheless the explicit expression (2.3) will be important later.
Corollary 2.13. Assume that (A1)-(A2) hold. Then the process U, for n € (0,n0]
possesses a pullback DL -absorbing family D()n—{BLQ )(0, Ry (1)) her with

2k e~ Hnt ¢
2.3 R:(t) =1+ + / e8| hy (s)||?ds.
( ) n( ) ,U/n Z(mfﬂn(Z)\l)il) . || 77( )H

~ 12
Moreover, Doy € Dy .

We end this summarizing section with the main result about existence of attrac-
tors.

Theorem 2.14. Assume that (A1)-(A2) hold. Then each process U, forn & (0,no]

possesses the minimal pullback Dﬁj—attmctor A" which belongs to the universe

L2
Hn

Dﬁj and 1is strictly U, -invariant.
Moreover, the minimal pullback D?—attmctors Agfwg (for the corresponding pro-

cesses Uy ) also exist and the following relations hold

F un
Proof. After Proposition 2.6 and Corollary 2.13, the (pullback) asymptotic com-
pactness is the remaining property in order to apply Theorem 2.9. But this is an
almost verbatim copy of [5, Proposition 5]. Observe that the attractor belongs to
the corresponding universe since the absorbing family does and has closed sections
(cf. Remark 2.10 (ii)).

The second part of the statement is a byproduct of the inclusion DIQQ - Dﬁj,

the same abstract results applied to the universe of fixed bounded sets D{az and the
minimality property of each attractor. O
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3. ROBUSTNESS RESULT IN 2

We are interested in the behavior of attractors for the dynamical systems asso-
ciated to problems (F,;) when n — 0. Our approach supposes that the problems
(P,) represent approximations to a final problem and data are approaching after
collecting more and more information toward the definitive values of the involved
external and reaction forces and viscosity terms. Namely:

(A3) Assume that there exist elements ag, fo, ho and Iy such that {a,}, {f,}, {l;}
and {h,} fulfill as n — 0 that
ap — ap uniformly on compact intervals,
Iy —lp weakly in L*(Q),
fn — fo uniformly on compact intervals,

hy — ho weakly in L?(7,T; H'(Q)) for any 7 < T.

Roughly speaking, problems (P,) are perturbations of the limit problem

O — aollo()u = fo(w) + ho() in @ x (7,00),
(Po) U — on 08 x (1,00),
w(z, 7) = ur(z) in Q.

It is immediate that assumptions (A1) and (A3) imply that the elements in (P), ag,
fo, ho, satisfy the analogous condition (A1) with the same constants. This means
that existence of solutions is guaranteed, ®y (analogous definition) is well-defined
and a process Uy can be associated. We do not know yet whether it possesses an
attractor since (A2) is not inherited by the limit.

In two steps we will see that this limit is not only formal but rigorous for solutions
in finite-time intervals and for attractors as well.

Theorem 3.1. Assume that (A1) and (A3) hold. Let 7 € R be given. Suppose
that wl® — u, weakly in L*(Q) as n, — 0 and consider a sequence of weak so-
lutions u™ € ®, (r,ul). Then there exist a subsequence (relabeled the same)
and u® € ®o(7,u,) such that for any T > T the sequence {u™} converge to u’
in  several senses, namely weakly-star in L¥(r,T;L*(Q)), weakly in
L*(1,T; H}(Q)) N LP(1,T; LP(RY)), strongly in L*(7,T;L*(Q)), with {f,,(u™)}
converging to fo(u®) weakly in L(7,T; L9(R)), the subsequence {ay, (I, (u™))Au'}
converge to ag(lo(u®)) Au® weakly in L*(7, T; H=1(Q)) and {(u™)'} converge to (u®)’
weakly in L*(7,T; H-1(Q)) + L4(7, T; L4(£2)).

Proof. We follow the same lines as in [5, Theorem 4], by using uniform estimates,
the Gronwall lemma, the Aubin-Lions theorem and a diagonal argument to increase
the final time T arbitrarily. For short let us just give the main ideas.

The main estimates follow from (2.2) in Proposition 2.11 after the Gronwall
lemma. The uniform estimates and compactness arguments imply the convergences
in L°(7,T; L?(Q)) and L2(7,T; H (Q))NLP(7,T; LP(Q)) of u to a certain element
u”.
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Observe that the boundedness of {u"} in LP(7,T; LP(Q2)) and (A1) gives that
{fn. ("))} is bounded in L4(7,T; L4(2)). From all above we deduce that

{(u™)'} is bounded in L*(r,T; H~1(Q)) + LI(r, T; LY(Q)).

Now the Aubin-Lions theorem provides the convergence of (a subsequence of, but
relabeled the same) {u"} to u" strongly in L?(7,T; L?(f2)) and by the Dominated
Convergence Theorem almost everywhere in (7,7") x €.

The former almost everywhere convergence jointly with the uniform convergence
on compact subsets of R of f,, towards fp means that f,, (u) also converge almost
everywhere to fo(u®). Indeed, fix (a.e.) (x,5) € Q x (7,T) such that u™ (x,s) —
u°(z, s). Consider a compact neighborhood of u®(z,s), K = B(u(z, s)) C Nyo(z.s)-
Then

| fon (" (2, 8)) = fo(u’(, 5))|
< fp (W (2, 8)) = fo(u™ (z,5))] + | fo(u™ (2, 5)) = fo(u(z,s))] = 0

as 1, — 0. This means (cf. [19, Lemme 1.3, p.12]) that f,, (u™) — fo(u®) weakly
in LP(1,T; LP(2)).

Analogously from the almost everywhere convergence u™ (t) — u%(t) in L?(Q)
and the weak convergence of l,,, — Iy in L*(Q2) we obtain

[l (™) = Lo (u®)] = (L, u™) = (Lo, )]

<|(ly,,u™ — uo)] + |(Ly, — lo,uo)\ —0 a.e.t,

which implies (as the argument with the sequence {f,,}) that {a,, (1,,(u"™))} con-
verge almost everywhere to ag(lo(u")). Using the Dominated Convergence Theorem
again it is not difficult to conclude that in fact

an, (L, (u™)) = ag(lo(u®))  strongly in L*(7,T).
Since Aum — Au® weakly in L?(7,T; H-1(2)), from above we also deduce that
—ay, (I, (™) Au™ — —ag(lp(u®))Au®  weakly in L*(r,T; H~ ().

Finally, we deduce that u® solves the limit problem (Pp), since the equation is
satisfied and the initial condition can be deduced in a standard way testing against
v with v € H}(Q) N LP(Q) and ¢ € H(1,T) with ¢(T) = 0 and (1) # 0.
Integrating and comparing the resulting expressions of the problems (P,) and (F),
the weak convergence assumption u7" — wgy concludes that uO(T) = wug and the

proof is finished. 0

Unfortunately the convergence almost everywhere in time of u’(t) — u°()
strongly in L?(2) does not seem enough for our purposes. It still remains to gain
one convergence for our arguments. We impose a slightly stronger assumption than
(A3) for the sequence {h,} converging to hg.

(A4) One of the following two options holds: either h, — hg strongly in
L*(r,T; H1(Q)) for any 7 < T, or hy, — ho weakly in L*(7,T; L*(Q))
for any 7 < T.
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Lemma 3.2. Under the assumptions of Theorem 3.1 and (A4), the converging
sequence {u"} obtained in Theorem 3.1 also satisfies u(t) — u°(t) strongly in
L%(Q) for allt > 7.

Proof. Fix T' > 7. We continue with the compactness arguments used in Theorem
3.1. Now from the energy equality (cf. Remark 2.3) we have that

|u’7"(3)\2 < 2|Q|(s —7) + Jul (7‘)\2 + 2/ (hn, (0),u™(0))df V7T <r<s<T
and similarly for the solution u" to (P)
\uo(s)\Q < 2k|Q(s —71) + |u0(r)\2 + 2/ <h0(0),u0(0))d0 Vr<r<s<T.

Consider the functions

Tn(s) == [u™ ()2 — 2|Qs — 2/s<hnn(0),u’7”(9))d0,

Jo(s) := [u¥(s)|? — 2k|Qs — 2/s(h0(9),u0(9)>d9.

They are non-increasing, continuous and thanks to the convergences proved in The-
orem 3.1 and (A4) it holds that J,(s) — Jo(s) almost everywhere on (7,7"). Under
these conditions we can assure in fact that the convergence J,,(s) — Jo(s) holds for
all s € (1,T] (for a detailed explanation of this argument see for instance the proof
of [5, Proposition 1]). Moreover, since (A4) provides the convergence of the integral
terms, we deduce that
(3.1) lim [u"™ (s)]* = [u®(s)[* Vs € (1,T).

n—0
Since we already had that {u"} is bounded in C([r, T]; L*(92)), then {u"(s)} con-
verges weakly in L2(Q) to some element. Actually we may identify this weak limit
since {(u)'} is also bounded in L4(,T; H=1(Q2) + LI(2)) and the compact em-
bedding L?(Q2) cC H~1(2) implies that the Ascoli-Arzeld theorem can be used.
Namely {u"} converges to u" strongly in C([7,T]; H=1(Q) + L%(92)). Thus we iden-
tify the weak limit

u™(s) = u®(s) weakly in L?(Q) Vs € [r,T].
This weak limit and the convergence of the norms (3.1) give the result in (7,7].

But T is arbitrary, so the same argument in 7'+ 1, T' 4+ 2 and successively and a
diagonal procedure finish the proof. O

Before establishing our main result we need to embed somehow the pullback ab-
sorbing families in a suitable family which should be also controlled by the dynamical
system Up. This is an ad hoc assumption to provide the most general conditions on
the family of problems (P,) and relate them suitably to (Fp).

(A5) There exists p9 € (0,2mA;) such that

0
(3.2) / 0% [y (s) |2ds < o0

—0o0
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and

(3.3) m 1 elHo—pn)t /t s )”2d .
. m limsup ———————— ern s)||zds = 0.
== n-0 P m— /1’77(2)‘1)_1 —00 !

Remark 3.3. Observe that assumption (A5) implies that for any ¢ € [0,00), the
family of balls {Br2(q)(0, ¥.(t))}, where

G2(t) = ¢ + I | " ey (s)|2d
= c+ limsu e S)|las,
¢ 0” 2(m — A ) S L

belongs to the universe Dﬁs .
Without assuming totally (A5), but just (3.2) we have the following

Corollary 3.4. Assume that (A1), (A3) and (3.2) hold. Then Uy possesses the

minimal pullback Dlj:ig -attractor .AOD{;2 and the minimal pullback Dﬁj -attractor AOfo
0
and the following relation holds

AY L2 (1) C AY L (8) C Brag) (0, Ro(t)) VEER,

L2 L2
Dy Duo

where

2k|Q| e Hot ¢
RXt) =1+ + / 0% || ho(s)]|2ds.
Proof. 1t is a consequence of Theorem 2.9, analogously to the result for the per-
turbed problems (cf. Theorem 2.14), being the family {Br2q)(0, Ro(t))} pullback

Dﬁj -absorbing for Ujy. Therefore, the last relation can be deduced in the same way
as (2.4). O

Beyond the above attraction result, we may understand better the constructed
ad hoc condition (3.3) in (A5). Roughly speaking we do not impose a uniform
bound for all the radii I, in terms of Ry, but a bound in terms of the superior
limit (i.e. when 7, — 0 only a finite amount of them may escape, but they do
not matter). The radii of absorbing families for (P,) problems are controlled by a
tempered function W2 in Dﬁj . In other words, these time-sections of the (perturbed)
attractors are subsets of the time-section of a family which is attracted through Uy
to the limiting attractor .A%LQ.

We can establish now ourultr)nain robustness result.

Theorem 3.5. Assume that (A1)-(A5) hold and that

(3.4) liminf ju,) =: p > 0.
n—0 -
Then the families {Anpﬁf,} converge upper semicontinuously to AD% asn — 0, t.e.
: ; n 0 _

Proof. By contradiction, suppose that the thesis is false. Then there exist ¢ > 0,
t € R and a sequence 7, — 0 with
(3.5) dist2(q) (AT (1), AD 2 (1)) > e

2
DL
Knn ro
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Now, according to the notation in Remark 3.3, consider the family f)g’o =
{Do,0(t) }ter given by
2k|Q
(36) D070(t) = BL2(Q) (0, \I}co (t)) with ¢g = 2 + ,L|L ‘

The choice of the constant ¢y makes 13070 a kind of envelope of almost all the pullback
Dﬁjﬂ—absorbing families by (2.3) and (3.4). Since this family belongs to Dﬁj (cf.

Remark 3.3), there exists 7 := 7(¢, 1/5070, ) < t such that

(3.7) diStL2(Q)(U0(t, T, D070(7_')) A,DLQ( )) < 6/2.
y (3.5) we may select points 2™ € .A” (t) such that
V‘nn
(38) diStLQ(Q)(Znn,.ADﬁz (t)) > €.
0

By the negative invariance of the minimal pullback attractors,
ADL2 (t) C Uy, (¢, 7T ADL2 (7).
Hnn Hnn
Therefore each z™ belongs to the trajectory of a weak solution, namely there exist
{zI"} with 2" € An (7) and u™ € @, (7,z") with 2™ = u'™(t) € ADL2 (1).

HKnn
Moreover, since the pullback attractors are contained in the time-section of the

absorbing families, we have
2" € Bra)(0, Ry, (7)) Vi,
Since 71, — 0, by the properties of superior and inferior limits, all but at most a
finite amount of 7, satisfy
R} (7) < W2 (7).

Thus {z" = u™(7)} is bounded and there exist a weakly converging subsequence
u™(7) = uz € Doo(7) and u® € ®¢(7,uz) such that, by using Theorem 3.1 and
Lemma 3.2, we may take small enough 7(7,¢,¢) such that

(3.9) [um (t) —u’(t)] <e/2 Vi, < 1.

Finally, the triangle inequality, (3.7) and (3.9) yield
dist 2 (u™ (1), ADLz( )
<dist 2(q) (u (t), u’ (1)) + dist 20 (u°(2), ADLQ( ) <& Vi <1,

which is a contradiction with (3.8). This concludes the proof. O

Remark 3.6. Although the result is stated in the usual terms of attractors, the
proof of the robustness result really shows that the family of attractors is upper
semicontinuously converging toward Ao(ﬁo,o,t), where 13070 is introduced in (3.6)
and the upper script 0 in the omega-limit means w.r.t. to the dynamical system Uy
(cf. Remark 2.10 (i)).

It might be convenient to complete our main result, Theorem 3.5, with some
explanations, comments and conditions that imply that the required assumptions
hold, in particular the ad hoc condition (A5).
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Remark 3.7. Some robustness results in the literature conclude with an autonomous
limiting problem (FPp) when n — 0, i.e. hg = 0. Actually that is the case treated
in [5] since there h, = nh for a fixed element h € L2 (R; H~1(Q)) fulfilling condi-
tion (23) in [5]. Of course, these assumptions imply that (A4), (A5) and (3.4) hold
immediately in the context of this paper and that one may take any ug € (0,2mA],
where the right extreme value 2mA; in the interval is also valid since the problem

(Pp) is autonomous (hg does not exist; see the proof of Proposition 2.11).

Remark 3.8. (i) If hg fulfills (3.2) and p, = po for all n << 1, then (3.4) is trivial
and (3.3) reduces to

t
(3.10) lim limsup/ 05| hy(s)||2ds = 0,

t——0o0 n—0 — oo

which looks easier to check. For instance, if h, = f(m)h for some h (and po €
(0,2mA1)) fulfilling (3.2) and some function f with lim sup,_, |f(n)| < oo, then
(3.10) holds, and it yields (A5).

(ii) If some other argument allowed simplifying the expression (3.3) neglecting
what appears in front of the integral and reducing it to compute

¢
lim limsup/ e“”sth(S)szSa

t——o0 n—0 o

one should observe that, in general, the limit in time ¢ and the superior limit in 7 do
not conmute as one may check immediately with a real counterexample of functions
with finite integral on (—o0,0) and compact support of fixed length moving to the
left as n — 0.

We have discussed till now the case where hg = 0 and the case of pu, fixed for
all n. Consider now the case when not only h, is converging to hg but also the
associated {y,} (not necessarily constants in 1) converges to some value: p, — pqo.
The next result gives sufficient conditions such that (3.2) holds.

Proposition 3.9. Assume that (A2) holds, the convergence h, — ho holds weakly
in L?(—M,0; H~1(Q)) for any M > 0, oy — o and

0
(3.11) sup / en® || by ()] 2ds < oo,
WE(OJIO] —o0
where 1o is given in assumption (A2). Then

0
/ 95| ||2ds < oo,

—0o0
Proof. Denote by C > 0 to the supremum in (3.11). Since lim, 1, = 10, we have
that

e’ hy(-) = el ho(-)  weakly in L*(—M, 0; H~(Q)) for all M > 0.
By the properties of the weak limit one deduces that
0
/ e ||hg(s)||2ds < C VM > 0,
-M

whence the result follows. O
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Our aim now is to provide some sufficient conditions that also imply (3.3), which
combined with the above gives (A5). Observe that the assumptions now are stronger
that in the previous result.

Proposition 3.10. Under the assumptions of Proposition 3.9, suppose also that
{pn} € (0,2mA1) with po = lim,, p,, € (0,2mA1),

hy — ho  strongly in L*(—=M,0; H1(Q)) for any M > 0,
and
0 0
timsup [ ey ()|2ds = [ e ha(s) s

n—0 —00 —00

Then (A5) holds.

Proof. Since (3.2) follows by Proposition 3.9, we are concerned with (3.3). In fact,
by the assumption that pg is neither 0 nor 2mAy, the convergence p, — 1o and the
properties of superior limits, it suffices to check that

t
(3.12) lim lim sup / e |y ()]s = 0.

t——o0 n—0 o

Consider an arbitrary sufficiently small value € > 0 and denote M? such that

—Mg
/ 0% [ho(s) | 2ds = .

—0o0
From the hypotheses

0 0
lim [ €|y (s)|%ds :/ eh0%||ho(s)|2ds VM > 0.
-M

n—=0 /) _nr
In particular, therefore
limsup/ Me“"Sth(s)szs <e VM > M.
n—0 —00
This yields (3.12) and therefore (A5). O
There might be sequences {,, } C (0,2mA;) related to h,, such that (A2) holds

but the sequence {uy, } do not converge. In this case, we may consider the inferior
limit (already introduced) and the superior limit of the tempered parameters

:= lim inf pu,, [i ;= limsu .
M 0 Hn K nﬁopﬂn

Corollary 3.11. Assume that h, — ho weakly in L*(—M,0; H=1(Q)) for any M >
0 and that {p,} C (0,2m\1) are such that (3.11) holds. Then

0
/ el¥||ho(s)||2ds < oo.

Proof. Tt suffices to consider a sequence i, converging to p and apply the Propo-
sition 3.9. O

Remark 3.12. Obviously the same result holds for z instead of p, but observe that
pus > pis for s <0, so the result above is stronger than the analogous with z.
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The reformulation of Proposition 3.10 in terms of inferior and superior limits re-
quire to control u, from above and from below, to take advantages of the properties
of the superior limit in (3.3). The new resulting condition is not as straightforward
to check as before.

Proposition 3.13. Suppose that (A2) is satisfied, the convergence h,, — hgy holds
weakly in L*(—M,0; H=1(Q)) for any M > 0,
0 < p = liminf u, <limsup p, = i < 2mA;
- n—0 n—0
and (3.11) and (3.12) hold. Then, for any € > 0 such that py = i + € < 2mAy,
(A5) is true.

Proof. By Corollary 3.11 it is immediate that any value pg as in the statement
makes that (3.2) holds true. In order to obtain (3.3), no = iz + €, by the properties
of the superior limit, is such that when n — 0, all but at most a finite number of n
fulfill fi + € > p,). Therefore pg — p,; > 0 and so elro—#n)t < 1. This, combined with
the assumption g < 2mA; and the choice of pg, also less than 2mA;, implies

e(ho—pn)t _ 1
m = pp(201) 71 T m— po(2A1) 7
Therefore (3.3) is a consequence of (3.12). O
CONCLUSIONS

A robustness result has been established in L?(§2) for pullback attractors in suit-
able universes for perturbed problems (P,) towards the minimal pullback attractor
of the corresponding limit problem (Fy). This pullback attractor acts in another
suitable universe with tempered parameter po. The perturbed elements {ay}, {fy},
{l,} and {hy} (these last ones associated with coefficients {1, }) satisfy the appro-
priate conditions (A1)—(Ab) such that the result holds, being the ad hoc condition
(A5) the most difficult to verify. Final comments to derive sufficient conditions such
that (A5) hold are given. Namely, the tempered parameters {s,} are analyzed in
several situations, fixed or not, converging or just with inferior and superior limits.
The results extend previous ones where the limit problem was autonomous, that is,
ho =0.
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