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Abstract: Different countries face significant challenges in managing water-related natural
hazards, such as floods and shortages, while ensuring adequate water quality and quantity
to satisfy human needs and preserve ecosystems. Climate change projections exacerbate
this situation by intensifying the hydrological cycle, resulting in substantial changes in pre-
cipitation patterns, evapotranspiration, and groundwater storage. This study reviews water
security challenges across 43 countries, drawing on 128 articles obtained from databases
including EBSCOHOST, Scopus and ResearchGate, as well as specific journals. Key search
terms included “water security”, “water security and climate change”, “water scarcity”,
“water risk index”, “water balance”, “water assessment”, and “land use and land cover
change”. The analysis reveals the main water security issues present in 43 countries (flash
floods, drought and water quality), and the response measures identified these challenges
to water security. All the countries studied face one or more critical water-related effects.
Afghanistan, Bangladesh, India, and Mexico were identified as the most severely affected,
dealing with a combination of water scarcity, flooding, and water pollution. The most
suggested strategies for improving water security include sustainable urban planning,
improving consumption efficiency, strategic land-use planning, applying technologies to
predict availability of water resources and planning according to variations in resource
availability over time. In addition, other general actions include enhancing water storage
infrastructure, improving consumption efficiency and adopting sustainable urban planning.

Keywords: water security; water scarcity; floods; shortages; climate change; water strategies

1. Introduction
Water resources are an essential strategic asset for sustainable development and

a determinant of human life and socioeconomic progress. Water resource security is
seriously threatened in many areas due to the limited supply, unequal distribution, and
declining environmental quality of water resources, which have become major barriers
to human sustainable development and societal advancement [1]. A growing number of
places are facing water security problems, including droughts, flood disasters, and water
environmental degradation, because of population development, economic expansion, and
climate change [2]. Considering the growth of the population and the increasing water
demand over the last century, achieving water security—having enough water to provide
constant and reliable food, energy, health, and livelihoods—is becoming more and more
difficult [3].
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Water security includes the quantity, quality, and availability of water required to
satisfy human needs, support development, protect ecosystems, and manage extreme
water-related events such as floods [4]. It is influenced by both human and natural factors,
including land use, economic development, and management strategies [5]. As a critical
component of sustainable development, water security directly affects human health,
livelihoods, and the stability of social, economic, and ecological systems [6].

Some of the main ways in which water insecurity manifests are drought and/or water
scarcity, water pollution, and floods. Risks associated with water security vary significantly
depending on geographic context, even within the same watershed [7]. For instance, in
China’s West River basin, the upper region faces a high risk of extreme droughts, while
the lower region is primarily threatened by floods caused by heavy rainfall. These floods
damage crops, agricultural infrastructure, and critical systems such as roads, housing, and
sanitation networks, exacerbating economic and food security challenges in the area [8]. In
contrast, in countries like Brazil, while the Jaguari basin currently experiences a low risk of
water scarcity, projections indicate a significant increase in risk due to declining rainfall in
the future [9].

Understanding the impact of climate change on water security is essential to address
water-related vulnerabilities [9,10] and effectively plan for future changes [10], especially
in the face of the increasing frequency and intensity of extreme weather events [11].

Water security has been widely studied in recent years, but no article has been found
that consolidates the current state of this issue based on scientific publications from different
countries on a global scale. This information gap could be crucial in recognizing the
importance and magnitude of the challenges we face regarding current and future water
security. This review identifies the main water security issues and suggests strategies to
face them in the 43 countries under climate change. The information compiled in this article
can serve as a starting point for further exploration of temporal variations in knowledge on
this topic, providing a baseline for future research, in order to identify emerging challenges
and develop more effective strategies for addressing water security concerns.

2. Materials and Methods
A preliminary bibliographic search was conducted using multiple databases, and

articles were collected from EBSCOHOST, ResearchGate and Scopus, using keywords such
as “water security” “water security and climate change” “water scarcity”, “water risk
index”, “water balance”, “water assessment”, “water evaluation and planning” and “land
use and land cover change” (combine or separately).

As illustrated in Figure 1, the distribution of studies across countries was uneven,
influenced by the selection criteria: (i) open-access scientific publications and available
research for academic institutional use; (ii) provide clear information on the researched
topic; (iii) published in the period 2014–2024 as focusing on the last decade allows for a
more detailed and relevant analysis of the most recent effects of climate change; (iv) studies
with a territorial approach, either by political demarcation, river basin, or at the country
level. Two key factors were considered for selecting the study period: the impact of climate
change on the study of the issue and the influence of climate variability on changes in the
problem within a given territory.
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Figure 1. Geographic distribution of number of articles published in each continent.

1. Climate change is one of the main catalyzers compromising water security. In this
regard, the changes observed over the last decade, including rising temperatures and
alterations throughout the hydrological cycle, have intensified the study of water-
related issues such as scarcity, floods, and pollution.

2. Due to climate variability, spatial and temporal changes in water security issues can
occur rapidly, making previously gathered information obsolete in a short period.
This can be due to the implementation of solutions to address the problem or because
the situation has worsened.

The articles received a preliminary classification to identify those that focused on the
effects of climate change in each country so, 132 articles were selected from the 150 reviewed
initially. To ensure better data homogeneity, the inclusion was limited to a maximum of
eleven articles per country. These exclusion criteria were implemented to ensure a balanced
representation of water security issues across diverse geographical regions. This approach
aimed to avoid an overrepresentation of countries with a higher number of accessible
publications while still capturing relevant and diverse perspectives.

The following main criteria guided the article selection process:

1. Territorial Specificity: Only articles that address water security issues within defined
national or watershed boundaries were included.

2. Data Homogeneity: To prevent bias from regions with extensive publication records,
a maximum of eleven articles per country was established. This ensured a more
equitable geographical representation.

3. Currency and Relevance: When more than eleven relevant articles were identified per
country, priority was given to the most recent publications and those articles covering
different watersheds to provide a more comprehensive understanding of the water
security challenges.
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This methodology allowed for a broad yet balanced global analysis while maintaining
data consistency and relevance.

The water security issues identified in each country were classified into water scarcity,
flooding, and water quality attending to direct mentions that highlight the problem and its
current and future trends. The water security challenges identified for the 43 countries ana-
lyzed in the present study are shown on a map (Figure 2), created using the QGIS tool, with
an accessible shapefile of the global country distribution. The recommended measures from
different studies were categorized, separating those from articles with a global perspective
and those addressing the effects of climate change. These measures were organized into 3
and 5 thematic axes, respectively, highlighting those with the greatest convergence.
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3. Results and Discussion
3.1. Water Security and Climate Change

The global use of water resources has risen significantly due to rapid population
growth, industrial development, and agricultural expansion. Concurrently, climate change
variability poses a substantial challenge to water security by intensifying the hydrological
cycle [11,12]. Projections of climate change scenarios indicate significant alterations in
precipitation and evapotranspiration patterns [13] across many regions worldwide [14].
These changes exacerbate variability in water availability [9,15] by increasing the frequency
and severity of droughts and periods of water surplus [16,17].

Precipitation levels directly affect production, human livelihoods, and water service
performance. Excessive precipitation can lead to flood disasters, while insufficient rainfall
can result in water resource shortages [18]. Increased rainfall intensity reduces soil water
retention, storage, water yield, and baseflow in upper watershed areas, exacerbating
water scarcity. Intensified rainfall patterns associated with climate change heighten the
vulnerability of water systems, compromising water availability during dry seasons and
increasing flood risks during wet seasons [8].

Rising temperatures have also led to higher rates of evapotranspiration, further af-
fecting water availability [19]. Climate change is expected to cause significant reductions
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in runoff in regions such as Southern Europe, the Middle East, and Southern Africa, pre-
senting severe challenges for water security [20]. As climate patterns become increasingly
unpredictable, water supply and quality are rendered more fragile [21]. Additionally,
rising global temperatures accelerate glacier melting. While this initially increases water
availability in certain regions, the long-term effect is a reduction in glacier mass, posing
a severe threat to future water supply [12]. This phenomenon also heightens the risk of
seasonal flooding, food security and water sustainability [17].

3.2. Challenges in Water Security by Regions and Countries

The challenges were classified according to the three principal issues identified in
the research papers and their combinations: floods (3); water scarcity (21); quality (not
found as an isolated impact); flood and quality (3); scarcity and quality (8); scarcity and
floods (5); scarcity, floods and quality (4). The primary water security challenge identified
was water scarcity, reported in 38 of the 43 countries analyzed (88%), either as an isolated
problem or in conjunction with other challenges. Water quality and flood issues followed
as the second and third most prevalent concerns, each affecting 15 countries. Afghanistan,
Bangladesh, India, and Mexico faced the most severe water security challenges, grappling
with a combination of flooding during intense rainy seasons, water scarcity during dry
periods, and widespread water quality issues, as summarized in Figure 2. Additionally,
other countries that were not included in this research as Uzbekistan, Tajikistan, Myanmar,
Guatemala and Belize, should prioritize water security due to their proximity with the
regions, experiencing a severe water security risk.

The distribution of countries across the six classifications is as follows:

• Scarcity + Floods + Quality: Afghanistan [15,16,22]; Bangladesh [17,23]; India [24–32];
Mexico [33–38].

• Scarcity + Floods: Czechia [39]; China [1,2,5,12,40–45]; Ireland [46]; Peru [47–51];
Vietnam [52].

• Scarcity + Quality: Australia [53]; Ecuador [13,54,55]; Ethiopia [21,56–59]; Mo-
rocco [35,60–63]; Poland [64,65]; Spain [66–70]; United States of America [71–74];
Zambia [75].

• Floods + Quality: Germany [4]; Syria [76]; Turkmenistan [77].
• Scarcity: Algeria [78,79]; Bahamas [10]; Brazil [9,80–83]; Canada [84]; Chile [85];

Colombia [86–88]; Cuba [89]; Ghana [90,91]; Greece [14]; Iran [92–97]; Iraq [98–101];
Italy [102]; Madagascar [103]; Nepal [21,104]; Pakistan [105–107]; Palestine [108,109];
South Africa [110–112]; South Korea [113–115]; Tanzania [116]; Turkey [11,117,118];
United Kingdom [119].

• Floods: Burundi [120]; China [121]; Thailand [122].

The detailed supporting descriptions for this classification can be found in Table A1 in
Appendix A: Description of water problems by country.

3.3. Response Measures to Guarantee Water Security

The most prioritized strategies to address water security were grouped into two
branches: general responses to guarantee water security and strategies to address climate
change effects with three and five subclassifications, respectively. As shown in Figure 3, the
most mentioned strategies to face climate change effects were sustainable urban planning,
improving consumption efficiency, strategic land-use planning, and applying technologies
to predict availability and planning based on temporal resource variations, as suggested
in 25, 23, 14, 8 and 6 references, respectively. The overall prioritized adaptation strategies
focused on developing disaster resilience infrastructure, creating storage facilities and
improving groundwater use, as recommended in five and four articles, respectively.
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Table 1 shows the classification of the proposed measures in the reviewed articles
and the water security issues they address. Of the eight classifications used, five measures
target water scarcity issues, one addresses floods, one focuses on both water scarcity and
quality, and one tackles all three issues together.

Table 1. Description and water security issues addressed by the principle measures identified.

Principle Measures Description Water Security Issues
Addressed

Sustainable urban planning

Participatory planning based on human needs,
environmental impacts, and governmental visions,

including the coordinated use of surface
and groundwater.

flash floods water scarcity
and quality

Improving consumption
efficiency

Water management based on supply: allocation and
use of water in key sectors, adapting to the specific
needs of each productive sector and implementing

efficiency improvements in consumption.

water scarcity

Strategic land-use planning

Water resource planning based on the specific
characteristics of each sub-basin (soil type, coverage,
and agricultural practices), ensuring a balanced use

of resources.

water scarcity; quality

Applying technologies to
predict availability

The integration of technologies such as remote
monitoring, geographic information systems (GIS),

and predictive models in water management
and planning.

water scarcity

Planning based on temporal
resource variations

Plan the use and distribution of water resources
according to the spatiotemporal patterns of

precipitation changes and hydrological responses.
water scarcity

Developing disaster resilience
infrastructure

Water retention infrastructure to address disasters
such as floods, reducing the impact on communities

and water resources.
flash floods

Creating storage facilities

Planning and construction of water storage facilities,
such as reservoirs and dams, to promote aquifer
recharge and increase water availability during

dry periods.

water scarcity

Improving groundwater use
Combine use of Surface runoff and groundwater to

maintain ecological flows in river sections that would
otherwise be overexploited.

water scarcity
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3.3.1. Sustainable Urban Planning

The planning of water resources requires a multidisciplinary strategy that addresses
the system’s complexities through robust water governance [6,84,98,108,123]. It is essential
to develop adaptive water management policies that prioritize both human consumption
and environmental water needs, particularly in the context of climate change [20], using an
integrated water resources management approach [28,77,103,124]. Future planning must
consider human needs, environmental impacts, and governmental visions [15]. To achieve
this, the coordinated use of surface and groundwater is vital [92] and participatory land
use planning [86].

Integrated management should include public policies and regulations, such as trans-
boundary water management, regional cooperation among different government levels,
and active involvement from local communities [5,7,21,23,125], prioritizing long-term sus-
tainability [56,76]. This management model, especially during periods of scarcity, enables
the prioritization of human water supply over other uses, ensuring access to water for basic
needs, a cornerstone of water security [9,83] and especially guarantee minimum abstraction
thresholds with our neighboring countries [91].

Creating a collaborative, open, and mutually advantageous water resource community
offers a feasible solution to the global water crisis. Employing a benefit distribution
mechanism based on cooperative game theory can enhance the sharing of water resources
among stakeholders in a basin [126].

Adaptive management needs to consider both climate and human risks. This includes
continuous monitoring of freshwater aquifers, regulation of water extraction and land use,
and preparation for extreme events like hurricanes and storm surges [10,17,81].

3.3.2. Improving Consumption Efficiency

The expected growth in population and the ongoing agricultural demand highlight
the critical requirement for efficient water use strategies in these areas. Among the main
strategies proposed in the reviewed articles, the following stand out:

• Adapt water distribution policies to address future demands, guaranteeing adequate
water supply for both human consumption and agricultural production, which are
essential for food security and economic development [15].

• Introducing improvements in water use efficiency is essential to reduce the vulnera-
bility of communities severely affected by extreme weather events [118,127]. Imple-
menting adjustments in the allocation and use of water across key sectors, such as
agriculture and urban consumption, promotes more efficient resource management.
This approach helps mitigate the impact of supply shortages [11] and encourages
the adoption of measures aimed at ensuring the long-term sustainability of avail-
able resources [16], tailored to the specific needs of each productive sector, including
agriculture [104,116]. Agricultural water demand can be reduced by applying new
irrigation technologies to minimize water losses [101]. The complementarity between
rain and irrigation can be a strategy to optimize water use in agriculture [57].

• Transitioning water management from a demand-driven to a supply-driven approach
is essential in regions facing water scarcity. Effective water resource management must
align with the actual availability of water [128]. Optimizing water use based on both
needs and availability is crucial for ensuring long-term water security, particularly
during periods of reduced supply [89].

• Implement water-saving policies [40] and promote sustainable agricultural practices,
such as planned irrigation and watershed management, to optimize water use in
agriculture [26]. Furthermore, it is crucial to invest in water management technologies,
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such as desalination and artificial recharge, to ensure the future availability of drinking
water [10], while promoting the use of deficit irrigation techniques [92].

• Water leakage control involves identifying the main sources of water loss, such as high
evapotranspiration, and developing resource management strategies to optimize water
use and minimize losses [15,56], for example, a sprinkler irrigation system can improve
the annual volume required [49]. Key measures include maintaining infrastructure
and adopting more efficient technologies [14,30,47,69,89]. These initiatives can be
supported by public and private funding for infrastructure and technology advances
aimed at enhancing irrigation efficiency [62,106], for example, improving network
performance and the use of desalination [78].

• Reuse of water in irrigation areas as a strategy to maximize the use of available
resources. This practice not only helps preserve water but also supports the supply for
agricultural activities during periods of low availability [89].

3.3.3. Strategic Land-Use Planning

Soil management practices and changes in vegetation cover affect water availability
and quality [87]. Forests play a fundamental role in regulating the hydrological cycle by
controlling surface runoff, promoting water infiltration into soils, minimizing soil erosion,
and maximizing water retention [25,35,85]. Changes in land use, such as the conversion of
natural areas to agricultural or urban lands, can negatively impact the water regulation
capacity of the watershed [4,54]. The shift towards intensive land use, such as urbanization,
reduces ecosystems’ capacity to provide good-quality water, increases the demand for water
purification, and simultaneously weakens their supply capacity [129]. This highlights the
need for integrated water and land resource management to ensure that both agricultural
production and water security remain balanced [36,67], enabling more effective and resilient
water resource planning according to the specific characteristics of each sub-watershed,
such as soil type, vegetation cover, and agricultural practices [43].

Nature-based solutions, such as reforestation and ecosystem restoration, can be effec-
tive strategies to mitigate the impacts of land use on water resources and address the effects
of climate change [32,87]. These solutions improve soil quality and reduce vulnerability to
erosion. By maintaining forest cover, the watershed’s hydrological response is enhanced,
contributing to water flow regulation and water quality preservation [87]. An example of
such solutions is the implementation of payment for ecosystem services programs, a water-
shed management strategy that promotes water resource conservation through financial
incentives for local farmers [9].

3.3.4. Applying Technologies to Predict and Monitor Variations in Resource Availability

The integration of technologies such as remote monitoring, geographic information
systems (GIS), and predictive models can significantly enhance water management and
planning capabilities [5]. Predicting when and where the most severe droughts are expected
to happen allows the forecast of severe drought periods, identifying which areas will face
the greatest water scarcity, providing early warnings about the severity and length of
droughts, and conducting planning based on needs. It also influences the creation of more
sustainable policies aimed at mitigating the effects of climate change and ensuring the
long-term sustainability of water resources [16,84,118,130]. Likewise, early analysis of areas
with high runoff and low aquifer recharge can help implement specific management strate-
gies [25]. Modeling studies provide scientific support for analyzing water resource issues
and developing strategies to address current and potential problems for the sustainable
management of water resources [11]. Integrating this type of research into water resource
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planning and management will enhance water security through the adoption of measures
based on scientific data [16].

3.3.5. Planning Based on Temporal Resource Variations

There is a variation in the influence of geographical and climatic factors regarding the
water security of a territory, which suggests the need for customized regional approaches to
improve water security in specific areas [45]. This implies the need for water management
policies that consider not only the current water supply but also future projections under
different socioeconomic and climatic scenarios [70]. Understanding the spatial-temporal
patterns of precipitation changes and their related hydrological responses is crucial for
improving water resource management strategies in large river basins under changing
climatic conditions [8].

Early warning systems based on real-time monitoring of ecological flow can help
mitigate the impacts of extreme hydrological events, such as floods and droughts [131].
There is significant spatial variation in water security risks, highlighting the need for region-
specific strategies to mitigate water-related hazards and vulnerabilities [5]. This integrated
approach should combine water conservation, sustainable resource use, and watershed
planning, prioritizing management practices based on simulated water balance component
data to optimize water use [25].

3.3.6. Developing Disaster Containment Infrastructure

Disaster planning is an integral part of water security management [118]. Risk man-
agement instruments are essential for water supply companies to guarantee water security,
especially when facing natural hazards, technical failures, and deliberate sabotage [132].
Improving water retention infrastructure is a mitigation and planning strategy for address-
ing water-related disasters, such as floods, aimed at minimizing the effects of these events
on communities and water resources [104,120]. Flood mitigation strategies must respond
to different contexts and scales, ensuring that infrastructure construction reduces risks for
all involved. Investments in infrastructure, such as levee construction, pumping stations,
and drainage systems, have been essential for managing extreme rainfall events, enhancing
the resilience of cities to climate challenges [121].

3.3.7. Creating Storage Infrastructure

An alternative when projections indicate changes in flow rates or variations in rainy
and dry season patterns is investment in storage and distribution infrastructure [122]. A
key measure to recharge aquifers and ensure water availability during periods of scarcity
involves creating structures for water storage, such as reservoirs, percolation tanks, ponds,
and dams [116]. These structures help retain rainwater, promote groundwater recharge,
and reduce dependency on surface water sources [30], while increasing water availability
during dry periods [25]. The planning and construction of these facilities are tailored to
specific scales, such as large reservoirs and dams designed to meet the needs of entire
communities [106].

3.3.8. Enhancing Groundwater Use

Groundwater level and spatial-temporal fluctuations under variable basin conditions
are very important for water resource management [4]. The depletion of groundwater
resources and changes in rainfall patterns reduce the availability of water for irrigation,
directly impacting crop production [74]. Groundwater can be a key resource for mitigating
periods of water scarcity, especially in emergency situations. However, there is also a warn-
ing about the need to avoid the overexploitation of aquifers [40]. The most recommended
approach is the combined use of surface and groundwater so that environmental flows can
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be maintained in river stretches that would otherwise be overexploited [133]. It is crucial to
integrate surface and groundwater resources through optimization models [94].

4. Conclusions
The impacts of climate change on water security vary significantly across different ge-

ographical contexts, with key challenges including water scarcity, flooding, and changes in
the quality of surface and groundwater. While polar ice melt has increased water availability
in certain regions, water scarcity is affecting an increasing number of nations, underscoring
a growing water resource crisis that projections suggest will continue to escalate.

The study examined 43 countries, although more research is needed in most of the
countries to generalize by nation, all of them face one or more water-related issues: scarcity,
flooding, and poor water quality, presenting a map that categorizes the situation in each
territory (this being the new and relevant information). This visualization allows for a
territorial approach to understanding the issue.

Some nations are particularly vulnerable, facing increased water security challenges
due to a combination of severe flooding during heavy rainy seasons, water scarcity during
long dry periods, and widespread degradation of water quality. This is especially evident
in countries such as Afghanistan, Bangladesh, India, and Mexico. Additionally, although
Uzbekistan, Tajikistan, Myanmar, Guatemala, and Belize were not included in the study,
these nations should prioritize water security due to their proximity to regions experiencing
the three main challenges identified.

To address the impacts of climate change on water security, the study suggests several
key adaptation strategies. These include sustainable urban planning, improving con-
sumption efficiency, strategic land-use planning, applying technologies to predict water
availability, and developing plans based on temporal resource variations. Nevertheless,
these strategies must be adopted in each context, considering environmental factors and
climate projections as decisive factors when planning water management and use.

One of the limitations of this article is that it is based on a review of open-access
publications, which may disadvantage or exclude countries that have fewer publications
available in this format. This limitation is evident in the number of articles found for
Asia and Africa compared to other regions, as these continents have a higher number of
accessible publications on the topic. This situation could introduce bias into the study,
with results being more influenced by findings from Asia and Africa than from other
analyzed regions. To mitigate this issue and avoid compromising the results, the number
of publications included per country was limited to 11 articles.

Grouping the identified issues into scarcity, floods, and pollution problems helped
reduce potential bias or influences from countries with a higher volume of studies. The
findings on each country’s situation were enriched when multiple studies provided evi-
dence of the issue. However, even a single publication was sufficient to highlight water
security challenges, allowing for an evaluation of the situation in all 43 countries. In cases
where there was an excess of studies, priority was given to the most recent publications
and those focusing on different watersheds.

Nevertheless, given the complexity of this topic, it is important to note that the findings
presented in this article are strictly based on the reviewed publications. However, in future
research, the literature search will be expanded without the limitation of having to be
articles in open-access journals, which will allow us to have a more accurate global view of
the problem of water security worldwide.
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Appendix A

Table A1. Description of water problems by country.

Regions Countries Water Problems References

Africa

Algeria

Water scarcity is intensifying due to population
growth, climate change, and urbanization.
Reduced rainfall, inefficient irrigation, and

over-reliance on groundwater resources
exacerbate deficits, threatening agricultural

productivity and aquifer recharge rates.

Bessedik et al. [78];
Boudjebieur et al. [79]

Burundi

Water insecurity is driven by flood risks
stemming from changes in runoff patterns and

extreme flow events. These changes impact
water availability, seasonal distribution, and

agricultural production.

Kim et al. [120]

Ethiopia

Agricultural expansion and climate change
intensify water scarcity, impacting agro-food
systems, water balance, and sustainability of
irrigation. In Ethiopia, the Awash River Basin

faces severe water quality issues due to
untreated wastewater and agricultural runoff.

Flint et al. [21]; Abera
and Ayenew [56];

Kidanewold et al. [57];
Gedefaw and

Denghua [58]; Abate
et al. [59]

Ghana

The average rainfall over the entire basin is
projected to increase in the wet season [July to
December] and will be not enough in the dry
season [January to June]. Population growth,

climate change, and land-use changes, coupled
with rising temperatures, are expected to induce

water scarcity by 2050, threatening food
production and key crops.

Amisigo et al. [90];
Abungba et al. [91]

Madagascar

Despite its high potential for freshwater
availability, Madagascar remains vulnerable to
water scarcity. Factors such as climate change,

land use and cover changes, population growth,
and existing policies significantly affect water
resources and the livelihoods of communities

residing near major river basins.

Zy et al. [103]
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Table A1. Cont.

Regions Countries Water Problems References

Africa

Morocco

Land-use changes, including the expansion of
agricultural and urban areas, are impacting negatively
on water quality and availability of both surface and
groundwater. Additional challenges include erosion,

biodiversity loss and deficiencies in irrigation
technology, all of which place greater pressure on the
situation by adding the effects of climate variability.

Gallardo-Cruz et al. [35];
Ben et al. [60];

Nevárez-Favela and
Fernández-Reynoso [61];

Andrade et al. [62]; Alitane
et al. [63]

South Africa

Current and future limited water supply capacity and
availability have the greatest impact on regions such
as the Eastern Cape and parts of Mpumalanga, with

predictions to exacerbate with climate pattern
variability. Additionally, dams and reservoirs are

unable to effectively capture and manage projected
rainfall increases due to inadequate water storage

infrastructure.

Cullis [110]; Vernon
et al. [111]; Dlamini

et al. [112]

Tanzania

The combined effects of climate change and rising
water demand are expected to create a critical water
security challenge, especially in the Pangani basin.

While projected increases in precipitation may
enhance water availability during certain seasons,

they are unlikely to be sufficient to meet the growing
demands of the agricultural, hydroelectric, and

domestic sectors.

Kishiwa et al. [116]

Zambia

The high demand for irrigation water, particularly in
the upper and middle sections of the basin, combined
with a historical decline in precipitation and elevated

evapotranspiration levels, results in severe water
shortages, especially during dry seasons. Furthermore,

the reduction in aquifer recharge and surface flow,
along with the discharge of wastewater from

treatment plants, affects water quality and the
long-term sustainability of the resource.

Tena et al. [75]

Asia

Afghanistan

The country is facing high vulnerability, low reliability,
and limited resilience, especially in the Kabul River
basin. Projections suggest that climate change will

increase runoff variability, altering precipitation
patterns, and amplifying surface runoff, raising the
frequency and severity of droughts and floods. As a

consequence, water production is projected to fall
short of meeting demand.

Saka and Mohammady [15];
Sediqi and Komori [16];

Akhtar et al. [22]

Bangladesh

Water insecurity affects parts of the country, with
projections indicating a worsening trend, especially in

the north-west region with the highest demand
increase. This raises concerns regarding unsustainable

groundwater use if appropriate management
strategies are not implemented. While irrigation water
demand is expected to rise in the coming decades, it

may subsequently decline due to improved crop
yields and population decreases. Vulnerability to both
floods and groundwater contamination is projected to

increase across both dry seasons and the monsoon
climate system, characterized by heavy rainfall.

Raihan et al. [17]; Kirby and
Mainuddin [23]
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Table A1. Cont.

Regions Countries Water Problems References

Asia

China

Water security risks exhibit significant regional
variations, with challenges related to water

availability, quality, and climate risks like droughts
and floods. While some areas manage resources

effectively, others face severe water security deficits.
Rising water scarcity, driven by increased demand
from urban, economic, agricultural, and industrial

sectors, and intensive mining activities have depleted
groundwater storage. In densely populated regions,

water quality fluctuates significantly, with agricultural
runoff and wastewater as primary contaminants.

Despite these challenges, positive trends have been
observed, such as the Yangtze River Basin’s water
security index improving from “unsafe” in 2011 to

“relatively safe” by 2019, and similar positive trends in
Inner Mongolia and Gansu.

Zhou et al. [1]; Li et al. [2];
Chunxia and Yiqiu [5]; Tang
et al. [12]; Deng et al. [40];

Sun et al. [41]; Zhang
et al. [42]; Gu et al. [43];
Zhang et al. [44]; Wang

et al. [45]

Hong Kong (China)

The region has experienced significant flood events,
largely attributable to its natural topography, which
limits flood management to a five-year recurrence

interval. Historical floods have had a severe impact on
Shenzhen and Hong Kong, disrupting local economies
and the daily lives of residents. Recurrent flooding of

the Shenzhen River has further adversely affected
infrastructure, local economies, and communities in

both cities.

Yang and Huang [121]

India

Key challenges to water security include low rainfall,
high temperatures, and consistently high evaporation

rates, exacerbated by inadequate water storage
infrastructure. Urbanisation has further reduced pond
areas and groundwater recharge volumes. Sub-basins

are particularly vulnerable to soil erosion and
sedimentation. Projections indicate increased flood
vulnerability due to elevated river flow and runoff,
influenced by variations in precipitation amount,

frequency, and intensity. Additionally, water demand
is expected to far exceed supply, posing significant

risks to water security. Increased runoff and reduced
aquifer recharge exacerbate these issues, impacting
water availability for both human consumption and

agricultural use.

Ishita and Kamal [24]; Pandi
et al. [25]; Sabale et al. [26];

Kumar et al. [27]; Dubey
et al. [29]; Nivesh et al. [30];
Jayanthi et al. [31]; Loukika

et al. [32]

Iran

Current scenarios reveal that water demand exceeds
the available capacity, posing significant risks to

agricultural production and urban water supply and
the projections are not favourable due to reduction in

precipitation and water reservoir, presenting more
frequent periods of water scarcity. Groundwater

availability is in play due to overexploitation from the
three main aquifers and intensive land use.

Additionally, climate change is accelerating snowmelt,
which, combined with increased evaporation, is

contributing to long-term reductions in water
availability for storage and use.

Shaabani et al. [92]; Najimi
et al. [93]; Moghadam

et al. [94]; Sheikha-Bagem
et al. [95]; Zare et al. [96];

Salmani et al. [97]
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Regions Countries Water Problems References

Asia

Iraq

Water shortages have been identified due to
transboundary retention caused by the Upstream dam

construction and water loss of surface irrigation
systems. Additionally, population growth, along with

industrial and agricultural expansion, has made it
increasingly difficult to meet the rising demand for

water. Also, the evapotranspiration in a specific period
exceeds the system’s capacity to deliver water to meet
demands and water availability has been affected with

the reduction of flow of the Euphrates River from
Turkey, combined with the limited storage capacity.

Hamdi et al. [98]; Saeed
et al. [99]; Najm et al. [100];
Abdulhameed et al. [101]

Nepal

Flood risks in the Karnali River basin are significant.
Projections indicate a considerable increase in river

flow, which, while potentially enhancing water
availability, also presents significant risks, notably an

elevated potential for flooding and challenges in
managing increased water volumes during rainy

seasons. Rising minimum and maximum
temperatures are expected to accelerate glaciers and
snow melt, further altering the basin’s hydrological

cycle. Additionally, reliable water sources in Nepal are
diminishing due to reduced precipitation and

accelerated glacier melt.

Flint et al. [21]; Lamichhane
et al. [104]

Pakistan

Water distribution within the basin is unequal, with
significant challenges in agricultural areas that are

heavily dependent on irrigation. Urban and industrial
areas also face persistent water shortages. High unmet
water demand is projected, driven by factors such as
population growth, agricultural expansion, climate

change, and a substantial reduction in water
availability. Rising temperatures, reductions in

precipitation and increased evaporation rates are
expected to further reduce the flow of the Indus and

the Kabul basins.

Waqas et al. [105]; Amin
et al. [106]; Khalid and

Saleem [107]

Palestine

Limited water resource availability and
overexploitation, combined with geopolitical

challenges, significantly restrict access to additional
water supplies. The region exhibits a high degree of

vulnerability to both natural and anthropogenic risks,
which are further intensified by increasing climate
pressures, urbanisation, ongoing conflicts, and a

deficit of investment in modern water management
infrastructure.

Jabari et al. [108]; Jabari
et al. [109]

South Korea

Surface runoff increases, induced by changes in urban
area extent and agricultural practices within the
catchment, coupled with reduced groundwater

recharge and evapotranspiration, suggest a shift in the
water balance dynamics. Projections suggest an
increase in the frequency and intensity of both

meteorological and hydrological droughts, driven by
declining precipitation during key seasons and rising

temperatures.

Ware et al. [113]; Kim
et al. [114]; Lee et al. [115]



Water 2025, 17, 633 15 of 25

Table A1. Cont.

Regions Countries Water Problems References

Asia

Syria

Water availability challenges are driven by rapid
population growth, leading to a significant decline in
per capita water resources. This situation is expected
to worsen under the impacts of climate change, with

decreased precipitation, reduced runoff, and
diminished flow in the Euphrates River, the region’s

main water supply.

Mourad and Alshihabi [76]

Thailand

Water security varies unevenly across different
regions. Some areas are expected to see increased

water levels, while others may experience reductions.
During dry season, rainfall is projected to rise by up to

84%, while increases of up to 11% are anticipated
during the wet season. While these precipitation

changes could enhance water availability at certain
times, they also elevate the risk of extreme events,

such as flooding. Such flooding is expected to impact
rice paddies, intercropped plantations, and urbanised

areas, posing significant challenges for both water
management and land use planning.

Satriagasa et al. [122]

Turkey

Projected climate change and population growth
impacts on future water availability suggest that the
basin is likely to face water shortages driven by both
climatic factors and rising demand, particularly from
agriculture, the region’s largest water consumer. This
includes the prospect of water shortages during dry

periods and excessive flows in the wet season.
Furthermore, groundwater has been compromised

due to overexploitation and changes in recharge
capacity.

Yaykiran [11]; Keleş [117];
Taylan [118]

Turkmenistan

Climate change is expected to introduce greater
seasonal variability, resulting in severe floods during
wet seasons and reduced flow in the Harirud River

throughout most seasons. These changes are likely to
decrease water quality due to increased nutrient loads,

such as nitrogen and phosphorus, and diffuse
pollution from untreated agricultural wastewater. The

construction of the Salma Dam in Afghanistan has
further reduced downstream water flow, significantly
impacting water availability in Iran and Turkmenistan.
Moreover, the Doosti Reservoir, which supplies water

to Mashhad in Iran, is projected to fail in meeting
water demand beyond 2036, leading to critical water

security challenges for the region.

Nazari [77]

Vietnam

Base flow reduction during the dry season with
significant challenge for water availability and

Increased runoff during the rainy season with flood
risks in downstream urban areas.

Ha and Bastiaanssen [52]
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Table A1. Cont.

Regions Countries Water Problems References

Europe

Czechia

Alterations in land use and agricultural practices have
significantly altered the small water cycle, increasing
surface runoff and diminishing infiltration, resulting

in sedimentation, water scarcity, and localised
flooding. These effects are expected to intensify with
anticipated increases in temperature and variability in

precipitation patterns.

Noreika et al. [39]

Germany

Water security risks are primarily focused on the
management of extreme events, such as flooding.

Deforestation and land use change contribute to water
quality degradation, as increased runoff transports

higher levels of sediments, nutrients, and pollutants
into rivers. This negatively impacts water quality for

human consumption, agriculture, and other uses.
Furthermore, annual river flows have risen by more

than 80%, further compounding water
management challenges.

Shukla et al. [4]

Greece

Under the baseline scenario, the Ali Efenti basin faces
a significant unmet annual water demand, principally

driven by the agricultural sector, its largest water
consumer. Simulations of deficit irrigation practices

suggest significant potential for annual water savings.
Within the urban, tourism, and industrial sectors, one

scenario projects further water savings through
enhanced distribution network efficiency and a

reduction in water losses.

Psomas et al. [14]

Ireland

Climate variability in combination with land cover
change amplifies the hydrological response, resulting

in more pronounced extremes in both dry and wet
conditions. The increasing rate of urbanisation and its
alterations in land cover have contributed to the rising

frequency of extreme floods and their associated
devastations.

Basu et al. [46]

Italy

Significant droughts in the last few years, rising water
stress for crops and the ecosystem in general, increase

in the number of rain but reduction in overall
precipitation.

Bernini et al. [102]

Poland

The economy is heavily reliant on agriculture, where
intensive farming practices and climate change are

exacerbating water stress, resulting in years with low
average precipitation average, classified as “dry”

according to the Relative Precipitation Index [RPI].
Furthermore, reservoir water quality is severely

compromised by pollution from agricultural activities.

Zlati et al. [64]; Szewczyk
et al. [65]
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Regions Countries Water Problems References

Europe

Spain

Water security challenges include water shortages and
groundwater overexploitation. Heavily reliant on
groundwater for drinking water, agriculture, and
drought mitigation in major cities such as Madrid,

Barcelona, and Valencia, the country faces significant
challenges. Hotspots of pronounced groundwater

overexploitation include the Upper Guadiana Basin
and several basins in Andalusia, where inadequate

groundwater management and structural issues
exacerbate the problem. In south-eastern Spain, a

region experiencing chronic water scarcity, the
environmental impacts of blue water consumption for
energy crops are particularly severe. Climate change
and environmental flow requirements are expected to
significantly reduce hydroelectric power production.

Under low-adaptation scenarios, the most severe
impacts on water security include increased plant

water stress, higher flood discharge, hillside erosion,
and increased sediment yield. The implementation of

more efficient irrigation techniques and adopting
Nature-based Solutions [NbS] could reduce

water demand.

Gunn and Amelin [66];
Núñez et al. [67]; Garcia

et al. [68]; Eekhout et al. [69];
Cheng et al. [70]

United Kingdom

The area is currently facing water security deficits,
with demand exceeding supply. This situation is

expected to worsen, particularly during the summer
months, due to annual increases in demand. These
challenges are most acute downstream of the River

Dee, notably in cities such as Chester.

Abbas et al. [119]

North America

Bahamas

Water security is unevenly distributed across the
island, with some areas facing greater risks than

others. The study predicts that risks in Andros will
intensify by the end of the century, driven by the

combined effects of climate change and
population growth.

Holding and Allen [10]

Canada

This region is susceptible to severe droughts due to
low annual precipitation and the geographic influence
of barriers such as the Rocky Mountains. Over recent

decades, a 1.7 ◦C increase in average annual
temperature has exacerbated water stress. With 58% of
the land dedicated to agriculture, fluctuations in soil
moisture and recurrent droughts present significant

challenges to regional food security. Projections
suggest a future increase in both frequency and

severity of agriculture problems.

Zare et al. [84]

Cuba

Extreme drought events during 2011–2012 and
2015–2016 severely reduced water availability. Future

decreases in precipitation, driven by climate
variability and change, are expected to further

compromise water availability, posing significant
challenges to agricultural sustainability. Agricultural

activities, particularly rice cultivation, remain the
primary consumers of water resources. Projections

indicate increasing pressures on water resources due
to declining precipitation and increasing demand.

Puebla et al. [89]
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North America

Mexico

There is a high vulnerability to contamination, water
scarcity, and flooding. Insufficient wastewater

treatment capacity, inadequate flood protection
infrastructure, and inefficient water distribution

systems exacerbate issues of water access and quality,
negatively affecting overall water security. The

conversion of natural areas into agricultural lands has
further increased water demand, putting additional
strain on water availability. Furthermore, projections
indicate an increase in mean annual temperature and a

decrease in precipitation due to climate change,
leading to more frequent extreme events. These

changes are expected to exacerbate water scarcity in
certain regions seasonally and elevate the risk of

seasonal flooding.

Cortez-Mejía et al. [33]; De
La Rosa et al. [34];

Gallardo-Cruz et al. [35];
Leija et al. [36]; Colín-García

et al. 37]; Molina-Sánchez
and Chávez-Morales [38]

United States of
America

Mountain regions experience recurring drought
conditions, notably during dry seasons (e.g.,

East-Taylor in Colorado). Increases in temperature
and shifting precipitation, patterns snowmelt leading
to increases in stational soil dryness and increases in

overall surface runoff from the topographical
smoothening. In the Upper Colorado River Basin,

there are issues related to water quality and limited
availability due to specific disturbances such as

wildfires, extreme rainfall, and debris flows. Increased
food production is also uncertain as the irrigated area
in water-stressed regions is increasing, especially in

Southwest United States.

Mital et al. [71]; Edvard [72];
Ridgway et al. [73]; Kompas

et al. [74]

South America

Brazil

Water insecurity is exacerbated by groundwater
contamination stemming from inadequate sanitation

infrastructure. Under global warming scenarios
exceeding 1.5 ◦C, increased evapotranspiration and

decreased precipitation are projected to reduce water
availability, intensifying water scarcity and

vulnerability during dry months. A decline in water
availability for human consumption, agriculture, and

other uses is anticipated.

Sone et al. [9]; Vieira
et al. [80]; Ballarin et al. [81];
Gesualdo et al. [82]; Thomaz

et al. [83];

Chile

Changes in land use and land cover are projected to
reduce native and mixed forests, agricultural lands,

and both young and mature non-native forest
plantations. This will reduce soil water storage,

diminish water availability, and decrease aquifer
recharge due to lower percolation and groundwater

flow. Consequently, water security within the region is
expected to be negatively affected.

Pereira et al. [85]

Colombia

Projected increases in rainfall variability and intensity
exacerbate water security issues. Soil management
practices and changes in vegetation cover influence
water availability and quality. Agricultural practices

are identified as primary contributors to
sedimentation and nutrient pollution in groundwater.

Also, the decline in forested areas increases surface
runoff during peak rainfall periods affecting

agricultural productivity and sediment transport.

Valencia et al. [86]; Ortegón
et al. [87]; Ruíz et al. [88]
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South America

Ecuador

Water availability is under threat due to climate
change and land use changes driven by urbanization
and agricultural activities. Future scenarios predict

increased water deficits caused by rising temperatures,
higher evaporation rates, and reduced precipitation.

Growing water scarcity is expected, alongside
increased agricultural demand, irrigation expansion,
and higher energy requirements for water pumping
and transport, particularly in the Machángara Basin.

Additionally, anthropogenic activities, such as
sedimentation and agricultural wastewater discharge,

may lead to water eutrophication.

Chengot et al. [13]; Avilés
et al. [54]; Ayala et al. [55]

Peru

Current water availability exceeds demand in the
Vilcanota-Urubamba, Ambato and Coata basin, and
climate change scenarios predict a further increase in

availability particularly during the dry season.
Population growth and agricultural expansion are the
primary drivers of rising demand. jeopardizing water
supplies for both human and agricultural use. While
some models forecast increased annual precipitation,

reductions in critical-month flows intensify the
challenge. Additionally, forest cover loss has

diminished the basin’s capacity for hydrological
regulation, heightening flood risks during the rainy

season and reducing base flow during the dry season.

Goyburo et al. [47]; Salomón
et al. [48]; Laveriano

et al. [49]; Olsson et al. [50];
Paiva et al. [51]

Australia Australia

Changes in land use and land cover reduce infiltration
and exacerbate surface runoff alternating flow

patterns also combine with the increases in rainfall
intensity. Also, periods of prolonged drought
combined with increased water demands and

overloading of nutrients from agricultural activities,
urban wastewater discharge, soil erosion and

sediment transport exacerbate water quality issues.

Das et al. [53]
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