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A B S T R A C T   

Young adult wild-type and aryl hydrocarbon receptor knockout (AHRKO) mice of both sexes and the C57BL/6J 
background were exposed to 10 weekly oral doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; total dose of 
200 μg/kg bw) to further characterize the observed impacts of AHR as well as TCDD on the retinoid system. 
Unexposed AHRKO mice harboured heavier kidneys, lighter livers and lower serum all-trans retinoic acid (ATRA) 
and retinol (REOH) concentrations than wild-type mice. Results from the present study also point to a role for the 
murine AHR in the control of circulating REOH and ATRA concentrations. In wild-type mice, TCDD elevated liver 
weight and reduced thymus weight, and drastically reduced the hepatic concentrations of 9-cis-4-oxo-13,14- 
dihydro-retinoic acid (CORA) and retinyl palmitate (REPA). In female wild-type mice, TCDD increased the he
patic concentration of ATRA as well as the renal and circulating REOH concentrations. Renal CORA concen
trations were substantially diminished in wild-type male mice exclusively following TCDD-exposure, with a 
similar tendency in serum. In contrast, TCDD did not affect any of these toxicity or retinoid system parameters in 
AHRKO mice. Finally, a distinct sex difference occurred in kidney concentrations of all the analysed retinoid 
forms. Together, these results strengthen the evidence of a mandatory role of AHR in TCDD-induced retinoid 
disruption, and suggest that the previously reported accumulation of several retinoid forms in the liver of AHRKO 
mice is a line-specific phenomenon. Our data further support participation of AHR in the control of liver and 
kidney development in mice.   

Abbreviations: AHR, aryl hydrocarbon receptor; AHRKO, AHR knockout; ANOVA, analysis of variance; ATRA, all-trans retinoic acid; CAR, constitutive androstane 
receptor; CM, chylomicrons; CORA, 9-cis-4-oxo-1314-dihydroretinoic acid; CRABP, cellular retinoic acid-binding protein; CRABP2, cellular retinoic acid-binding 
protein type 2; CRBP, cellular retinol-binding protein; CRBP1, cellular retinol-binding protein type 1; CYP, cytochrome P450; EATS, estrogen, androgen, thyroid 
hormone, and steroidogenesis; FXR, farnesoid X receptor; HPLC, high-performance liquid chromatography; IA, interaction; LOD, limit of detection; LRAT, lecithin: 
retinol acetyltransferase; LXR, liver X receptor; NS, not significant; PPAR, peroxisome proliferator-activated receptor; PXR, pregnane X receptor; RAL, retinal; 
RALDH, retinal dehydrogenase; RAR, retinoic acid receptor; RARE, retinoic acid response element; RBP, retinol-binding protein; RE, retinyl ester; REOH, retinol; 
REPA, retinyl palmitate; RXR, retinoid X receptor; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; TEF, toxic equivalency factor; TEQ, toxic equivalency; TR, thyroid 
hormone receptor; VDR, vitamin D receptor; WHO, World Health Organization; WT, wildtype. 
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1. Introduction 

1.1. Preface 

Despite several lines of converging evidence and scientific regulatory 
discussions linking AHR biology and TCDD-induced toxicity to a retinoid 
system-associated mode of action, there are few published studies on the 
retinoid system in AHRKO mouse models [1–4]. Here, we report of an 
experimental study designed to determine the influence of AHR over- 
and inactivation on the overall retinoid metabolism by analysing con
centrations of a selected profile of endogenous retinoid compounds in 
liver, kidneys, and circulation of adult male and female mice using the 
AHRKO line developed in Prof. Chris Bradfield’s laboratory [5]. The 
“overall retinoid metabolism” covered in the current study is limited to 
concentration analyses of a small number of retinoid forms in selected 
organs and circulation. These analysed retinoid compounds reflect the 
metabolic steps regulating intracellular storage and release of retinyl 
esters, as well as intracellular synthesis and degradation of retinoic 
acids. Liver, kidneys, and serum were chosen for retinoid analyses in this 
study, as together these tissues are crucial in the overall whole-body 
absorption, metabolism, distribution, and elimination of the 
dietary-derived vitamin A. In many instances, and for the purpose of this 
study, this selection can be seen as representative for the retinoid system 
in most organisms since most, if not all, cells carry complete machineries 
to fulfil fundamental physiological roles played both by AHR and the 
retinoid system for health in general over the life-course. TCDD, in turn, 
may adversely affect these life processes in many, if not all, cells and 
organs. An important intention of this study is to support ongoing reg
ulatory initiatives dedicated to science-based incorporation of the reti
noid system into test programs for chemical safety evaluations in the 
many different domains of human and wildlife health as recently 
reviewed [6,7,169]. To this end, the obtained original retinoid data from 
the experimental part of this study were further evaluated in relation to 
previously published data and by the use of mode-of-action and 
weight-of-evidence types of analytical approaches to derive additional 
regulatory-relevant insights. The experimental study background, 
design, and results are therefore embedded and evaluated in compre
hensive, yet narrative, and review-style Introduction and Discussion 
sections of this article, with the aim to provide, in parallel, a broader 
context of both AHR and retinoid biology as a common background to 
the interpretation and conclusions of the presented original data. 

1.2. Physiological roles of the AHR 

The aryl hydrocarbon receptor (AHR) is an evolutionarily conserved 
over 600-million-year-old transcription factor, which is activated or 
repressed upon binding small endogenous or exogenous molecules [8]. 
It was discovered as a result of mechanistic studies to clarify the 
mode-of-action of dioxins3 [9,10] and related environmental pollutants 
among the aryl hydrocarbons. It is now well known that AHR is 
expressed from the earliest stages of life in virtually all vertebrate cells, 
and concentrations of the receptor varies widely among cell types, tis
sues, and life stages [11,12]. Generation and characterization of AHR 
knockout (AHRKO) models have been and continue to be important in 
unveiling and establishing fundamental roles of AHR in physiology and 
pathology. Initial characterizations of AHRKO mouse lines demon
strated that AHR plays important roles in growth, organ development, 

and endocrine and metabolic homeostasis over the life-course (reviewed 
by [11,13–15]). Decreased or slower perinatal growth was observed in 
all three mouse lines initially created [5,16–18], while survival, fertility, 
immunology parameters, as well as liver size development, pathology 
and biochemistry showed similarities but also differences among the 
three lines in these initial studies [19]. Studies in older AHRKO mice 
revealed cardiac hypertrophy and hypertension along with elevated 
HIF-1α protein expression in the absence of hypoxia [20–22,40]. In 
addition to this cardiac phenotype, AHRKO mice exhibited a premature 
ageing process accompanied by pathological lesions in multiple organs 
such as the liver (portal vascular hypertrophy, hepatocellular tumors), 
gastrointestinal tract (pyloric hypertrophy, rectal prolapse), uterus 
(hypertrophy, thromboses and mineralization of serosal vessels), spleen 
(T and/or B cell depletion), and skin (alopecia and ulcers) [20]. Addi
tional mouse phenotyping studies have revealed key roles of AHR in 
fibrosis [14,21], haematopoiesis [5,23], inflammatory processes [24, 
25], and reproduction, including proper pregnancy, teratogenicity, and 
fetal survival [26,27], normal ovarian germ cell dynamics [28–30], and 
functioning of seminal vesicles and the coagulation gland [31], while its 
role in normal testicular development is controversial [32,33]. Detailed 
investigations in one AHRKO mouse line have revealed that AHR is 
required for resolution of fetal vascular structures in the liver (ductus 
venosus), eyes (hyaloid artery), and kidneys (fetal-like vascular archi
tecture) [34]; it may further be necessary for regeneration of adult tis
sues, such as liver and lung [35,36]. Recent follow-up of the premature 
ageing phenotype revealed, in addition, that lack of AHR shortens the 
life-span and has an impact on behaviour as well as anatomical brain 
structures (enhanced astrogliosis in hippocampus and loss of white 
matter integrity) [24]. A finding that appears to be directly relevant to 
humans [37] is congenital nystagmus associated with an altered optic 
nerve myelin sheath and inflammatory gene expression in AHRKO mice 
[38,39]. 

Neither the markedly reduced liver size nor the enlarged heart 
phenotype that are observed in AHRKO mice are duplicated in the 
AHRKO rat; instead the AHRKO rat has a pronounced urinary tract 
phenotype, consisting of hydronephrosis and -ureter [40]. In a 
comparative study by Harrill et al. [40], both AHRKO rats and mice 
displayed enlarged kidneys, although in mice there was no associated 
pathology. In a different AHRKO mouse line, however, higher amounts 
of glomerular and interstitial fibrosis were observed in kidneys 
compared with the corresponding wildtype [21]. In addition to mouse 
line and rodent species variations in response to AHR ablation, there are 
some reported sex differences in e.g., serum clinical chemistry mea
surements and organ weights [40]. Studies in AHRKO models have 
overall revealed that experimental environment, genetic background, 
gene KO targeting strategies, sex, and species are factors which 
contribute to the precise physiological responses to AHR ablation re
ported so far, suggesting that the consequences of interference with the 
endogenous regulation of the AHR pathway are context-dependent. 
Taken together, phenotypic findings observed in mammalian AHRKO 
models convincingly demonstrate that AHR plays key roles in fetal 
growth and organ development and, throughout life, acts as a mediator 
of cellular homeostasis, including both metabolic and endocrine 
regulation. 

1.3. AHR as a mediator of TCDD toxicity 

In addition to the role of AHR in normal development and in post
natal physiology, there is also an important role of AHR as a mediator of 
cell defence and adaptation mechanisms in response to exposure to 
environmental toxicants. The best-studied and most potent exogenous 

3 The term dioxin includes the polychlorinated dibenzo-p-dioxins and di
benzofurans, and the dioxin-like polychlorinated biphenyls. These ubiquitious 
food contaminants also belong to the family of chemicals known as persistent 
organic pollutants (POPs), which are destined to international phase-out under 
the Stockholm convention [165] due to their toxicological properties in com
bination with their high physico-chemical and biological stability in the envi
ronment and in living organisms. 
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activator of AHR is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD),4 and 
numerous studies have established that exposure to TCDD causes a 
sustained over-activation of AHR in a large number of animal and cell 
models even at low environmentally relevant exposure levels. The 
toxicological manifestations following TCDD exposure depend on spe
cies and include a wasting syndrome associated with failure in body 
weight regulation, keratinization of epithelial linings and the skin con
dition chloracne, thymic atrophy and immunosuppression, hepatotox
icity, carcinogenesis, as well as reproductive, teratogenic and 
developmental toxicity, which is manifested in many organs and include 
behavioural deficits (reviewed in [10,41–46]). The reviewed toxico
logical studies have also revealed numerous clinical, biochemical, and 
endocrine end-points in response to TCDD exposure, including effects on 
various retinoid forms found in organs, cells and circulation of many 
species and strains. 

The mandatory role of AHR in TCDD toxicity has been demonstrated 
for a wide range of these observed pathological and biochemical man
ifestations [1–4,17,33,40,47,48]. Similar to the AHR deficiency signs, 
also the signs and features of AHR over-activation by TCDD suggest that 
an endogenous overall whole-body and cell regulatory system is 
affected. First, depending on the dose of TCDD, duration of exposure, 
and life-stage when exposure starts, outcomes may span from mildly 
beneficial to severely detrimental. Next, TCDD lethality is markedly 
delayed (2–6 weeks after a single high dose), supporting a global, rather 
than a specific and local, type of toxicity. Likewise, the striking lack of 
cytotoxicity response to TCDD exposure in most cell lines, despite the 
dose-related and often pronounced biochemical response(s) to AHR 
over-activation in these cell lines, also suggests that a physiological cell 
context is required for the toxicity to manifest. In this regard, it has been 
demonstrated that AHR activation and signaling requires communica
tion among different cell types in order to convey its functions. For 
example, closure of ductus venosus and the associated small liver size 
phenotype require appropriate AHR activation and signalling both in 
endothelial and haematopoietic cells [175], while the cleft palate 
phenotype in mice requires appropriate activation and signalling both in 
nasal epithelium and mesenchyme [49]. Furthermore, the metabolic 
and inflammatory responses to TCDD exposure of the liver are depen
dent on AHR activation in the hepatocytes alone [50], while additional 
AHR activation in the non-parenchymal stellate cells seems to be needed 
for the full liver toxicity to manifest (reviewed by [14]). 

The most extensively examined AHR-regulated genes activated by 
TCDD encode the AHR battery of xenobiotic-metabolizing enzymes, 
inclusive of the cytochrome P450 (CYP) enzymes CYP1A1, CYP1A2, and 
CYP1B1, along with several Phase II enzymes. In addition, TCDD in
duces or represses a wide variety of other genes [170], but the con
nections between TCDD toxicity and gene expression changes are in 
need of much further investigation. 

1.4. Crosstalk between AHR and retinoids 

Apart from TCDD and related environmental toxicants, a large 
number of dietary, pharmaceutical, microbial and endogenous com
pounds can influence AHR activity. These include retinoic acid5, 
together with its metabolic and transcriptional machinery [49,51]. 
Using a medaka fish embryo model, Hayashida et al. [51] provided 
morphological and gene expression evidence that retinoic acid and its 
receptors, i.e. RARs and RXRs, are required for the expression of AHR 

mRNA, and thus for AHR-regulated gene transcription. The authors 
proposed a feed-back mechanism regulating in vivo retinoic acid-levels, 
in which excessive synthesis of retinoic acid activates AHR mRNA 
expression and then, in turn, increased activity of AHR stimulates con
version of retinoic acid to inactive metabolites [51]. Likewise, Jacobs 
et al. [49], who used a genetic approach in the mouse embryo to study 
palate development, demonstrated that the AHR transcript level in the 
nasal mesenchyme is controlled through a retinal dehydrogenase 
3-generated retinoic acid signal in the nasal epithelium, which is 
transduced by RARγ activation. However, these authors ruled out that 
retinoic acid would bind to and activate AHR, as a ligand, to produce 
cleft palate [49]. Together, these studies show that AHR expression is 
controlled by retinoic acid-activated RAR in several different developing 
tissue structures. Furthermore, these data indicate that these two 
cellular regulators work together to control growth, as well as organ 
development and function. 

1.5. Brief overview of the retinoid system 

As indicated in Fig. 1, the retinoid system as a whole is represented 
by the intake and absorption of different dietary forms of vitamin A6, 
and the in situ synthesis, distribution, and use of a variety of endogenous 
retinoid forms, among which the simple and small all-trans-retinoic acid 
(ATRA) molecule, is acting in a remarkably complex manner over the 
life-course, and furthermore, is strictly controlled on spatio-temporal 
scales and on cellular and whole organism levels. Chemically more 
complex transcriptionally active and endogenously formed retinoic acid 
molecules as compared with ATRA have been described during the last 
decades [52–55,161], while the apolar retinoid forms retinol (REOH) 
and retinyl esters (REs) were identified during the 1930s (reviewed in 
[56]) (Fig. 2). Processes controlled by retinoic acid(s) include morpho
genesis, transcriptional regulation, epigenetics, as well as extensive 
hormonal cross-talk with metabolic and endocrine sensors within the 
large and transcriptionally active family of nuclear receptors (reviewed 
in [57–61]). In contrast to the classical hormones, which are synthesized 
from endogenous precursors in response to physiological cues, retinoic 
acid isomers and metabolites are derived from a vital nutrient, which is 
equipped with a complex metabolic machinery operating on cell, organ, 
and whole-body levels (Fig. 1). The embryo is dependent on maternal 
supplies of these retinoic acids, and from birth onwards the organism is 
dependent on their dietary intake to continuously cope with times of 
deficiency as well as with excessive intakes. These fundamental features 
of the retinoid system in life-processes are well in line with the evolu
tionary conservation of the RARs and RXRs [62–64,174], which in turn 
is remarkably comparable to the evolutionary conservation of AHR [8]. 

1.6. Role of retinoids in TCDD toxicity 

The reported pathological changes following AHR over-activation by 
TCDD show striking resemblance with deficiency or excess conditions of 
vitamin A in many species and strains [65–68,69,83]. These similarities 
include disturbances in body weight regulation, coordination of cell 
differentiation processes, fertility and spermatogenesis. It has also been 
shown that retinoids play important roles in the pathophysiology of 
several hepatic diseases, including fatty liver, portal fibrosis, chirrosis 
and hepatocellular carcinoma [70–72], which are compatible with re
ports of dioxin-induced liver toxicity [73,74], as well as the adult liver 
phenotype of AHRKO mice (reviewed by [14]). Likewise, TCDD-induced 
bone lesions and developmental malformations, such as cleft palate 

4 TCDD is the reference compound for the regulated group of dioxin-like 
molecules, and is assigned a relative potency factor of 1 in the regulatory 
toxic equivalency (TEQ)-tool, which has been developed to assess the health 
impact of dietary exposures to mixtures of dioxins [86,87].  

5 Retinoic acid is endogenously synthesized from dietary sources of vitamin A 
and occurs in several forms in vivo, including all-trans and 13-cis retinoic acid 
and associated metabolites. 

6 Vitamin A is essential both for normal embryofetal development and for 
maintenance of homeostasis over the life-course [166]. Vitamin A-active sub
stances are defined as compounds which exhibit qualitatively the biological 
activity of REOH. The term retinoid on the other hand, includes both the nat
ural and synthetic analogues of REOH with or without biological activity [167]. 
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formation, bear similarities with signs and pathologies of vitamin A 
excess (reviewed in [49,51,67]). 

1.7. Aims of the current study 

The study aims were to determine the influence of AHR over- and 
inactivation on a profile of endogenous retinoid analytes in represen
tative organs of adult male and female mice, and to contrast the 
measured retinoid concentrations with previously published data on 
them. An additional aim was to evaluate how the results of the present 
study are compatible with the established AHR mode-of-action, and with 
published data on AHR-mediated TCDD toxicity. 

2. Materials and methods 

2.1. Chemicals 

TCDD (UFA Oil Institute, Ufa, Russia) was 99 % pure and dissolved in 
corn oil (Sigma Chemicals, St. Louis, MO). The acids, ATRA, 9-cisreti
noic, 13-cisretinoic, and also the internal standards, acitretin and retinyl 
acetate, were provided by Sigma-Aldrich Química (Madrid, Spain). The 
all-transretinoic acid metabolites, 13-cis-4-oxoretinoic acid, 13-cis-4- 

OH-retinoic acid, and CORA were kindly provided by the formerly 
named Institute for Food Toxicology and Analytical Chemistry, Uni
versity of Veterinary Medicine, Hannover, Germany. Ammonium ace
tate was supplied by Panreac (Barcelona, Spain), chloroform, ethanol, 
isopropanol and methanol (HPLC grade) by J.T. Baker. Other reagents 
were of analytical purity and supplied by local suppliers. Deionized 
water was purified by a Milli Q unit (Millipore, Molsheim, France). All 
solvents were HPLC grade at least, and obtained from Merck (Darmstadt, 
Germany) or Mallinckrodt Baker (Greisheim, Germany). 

2.2. Animals 

Wild-type and AHRKO mice in a C57BL/6J background (originally 
generated in Dr. Chris Bradfield’s lab [5]) were obtained from The 
Jackson Laboratory (Bar Harbor, ME; USA) and maintained using het
erozygous breeding. They were kept in a conventional laboratory animal 
unit subjected regularly to health surveys consisting of serological and 
bacteriological screening as suggested by FELASA [75]. These surveys 
indicated that the animals were free of typical rodent pathogens. The 
wild-type and AHRKO mice used in the present study originated from 
the same litters and were identified by PCR from auricular punches. The 
mice were acclimated to the experimental conditions for one week 

Fig. 1. Schematic presentation of the overall retinoid system (adapted from [58]). Briefly, dietary vitamin A (A) in the form of carotenes, retinol (REOH), or retinyl 
esters (REs) undergoes gastrointestinal absorption and transformation into the physiologically formed REs (B). Via lymph and blood circulation (C), and bound to 
chylomicrons (CM), the REs are internalized in the liver (D), where they are stored as such in lipid droplets of hepatocytes or in stellate cells, or they are released as 
REOH into the blood circulation (C) for distribution to extrahepatic organs, including the adipose tissue, which harbors 15–20 % of the retinoids in the body [168]. 
Local metabolism in target cells of virtually all organs and cell types, including the liver (E), facilitates the synthesis of additional functional retinoid forms, such as 
retinal (RAL), all-trans-retinoic acid (ATRA), and the recently described metabolites 9-cis-4-oxo-13,14-dihydroretinoic acid (CORA) and 9-cis-13,14-dihydroretinoic 
acid (Fig. 2), as well as their degradation products. As indicated in the target cell compartment of the figure (E), retinoids have important functions in many biological 
processes, perhaps most notably in gene transcription (F), which is mediated via the retinoic acid receptor families RARs and RXRs, of which the latter is an obligate 
heterodimer partner of the xenobiotic-, nutrient-, and hormone-sensing receptors CAR, PXR, LXR, FXR, PPAR, VDR, and TR. Retinoids have a central role in the 
patterning and specification of cells in most organ systems during embryogenesis and fetal development. In adult life, retinoids support growth, vision, maintenance 
of numerous epithelial tissues, reproduction and overall survival. The aldehyde form, RAL, is required for proper vision, while carefully regulated levels of retinoic 
acid, acting via RARs and RXRs, fulfill transcriptional functions. Multiple forms of the RARs/RXRs and their subtypes, response elements on the genome, and binding 
proteins (RBP, CRBP and CRABP) together with the large number of enzymes that are involved in retinoid metabolism, add to the complexity. For abbreviations used 
in the figure, see the Abbreviation list. 
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before commencing with dosing. At the start of the treatment, the mice 
were 8–12 weeks old, and randomized by body weight into treatment 
groups of 6 males and 6 females per genotype. The mice were housed 
individually in stainless steel wire-bottomed cages and given standard 
pelleted R36 feed (Lactamin, Stockholm, Sweden; contains vitamin A 
12,000 IU/kg) and tap water ad libitum. The room was artificially illu
minated from 7 a.m. to 7 p.m., and air-conditioned to provide about 8 air 
changes per hour. The ambient temperature was 21 ± 1 ◦C and the 
relative humidity 50 ± 10 %. The animals were individually identified 
by notching of pinnae, and the treatment groups were labeled with color 
codes. 

2.3. Ethical permit and experimental design 

The study protocol was approved by the Animal Experiment Com
mittee of the University of Kuopio (license No. 05-42) and complied with 
the European Communities Council Directive of 24 November 1986 (86/ 
609/EEC). The study was carried out as described by Herlin et al. [76]. 
Solutions of TCDD were mixed and ultrasonicated for 20 min before 
administration by oral gavage at 4 ml/kg. Control mice were given pure 
corn oil. To rapidly achieve the kinetic steady state, the total dose of 
TCDD (200 μg/kg) was divided into one loading dose (40 μg/kg) and 9 
maintenance doses (18 μg/kg), in weekly intervals (τ), which were 
calculated according to the formula [77]: 

x∗0 = x0

(
1

1 − e− Kτ

)

where x∗
0 = loading dose 

x0 = maintenance dose 

K = elimination rate constant 

⎛

⎜
⎝ = ln2

t 1 /

2

⎞

⎟
⎠

τ = dosing interval = 7 days 
t½ = half-life = 8 days in wild-type C57BL/6J mice [78] 
At the end of the treatment period of 10 weeks (one week after the 

last maintenance dose), the mice were anesthetized with CO2/O2 (70/30 
%). Blood samples were drawn from the left ventricle using Venoject 
needles (Terumo) and blood collection tubes, and the mice were killed 
by exsanguination. Liver, kidney, thymus, epididymis and testis were 

weighed, liver and kidney were snap frozen in liquid nitrogen and stored 
at − 80 ◦C for retinoid analysis. 

2.4. Retinoid analysis 

Retinoids were extracted from frozen samples of liver, kidneys, and 
serum as previously described [79,80]. ATRA and CORA were extracted 
from tissues and were analyzed as reported by Schmidt et al. [54]. 
Briefly, retinoids were extracted with isopropanol from tissue homoge
nate or serum. Separation of ATRA, CORA, REOH and REPA was ach
ieved by solid-phase-extraction using an aminopropyl-phase. ATRA and 
CORA were separated on a Spherisorb ODS2 column (Waters, Eschborn, 
Germany) using a binary HPLC (Shimadzu, Duisburg, Germany) 
gradient, and were detected with an UV detector at 340 nm. REOH and 
REPA were separated on a J’sphere ODS-H80 column (YMC Scherm
beck, Germany) using a binary gradient, and detected at 325 nm. Limits 
of detection (LODs) for ATRA and CORA were 0.6 and 1.0 pmol/g liver, 
respectively. LODs for REOH and REPA were 5.6 and 5.5 pmol/g liver, 
respectively. 

2.5. Statistical analysis 

The data are provided as mean ± SD. Three-way analysis of variance 
(ANOVA) with sex, genotype and treatment as fixed factors was used for 
the overall statistical assessment of the data. The normality of data 
distribution was analysed by Shapiro-Wilk’s test for each cell of the 
design, outliers were detected by boxplots, and variance homogeneity 
was evaluated by Levene’s test. In the case of skewed data distribution, 
extreme outliers, or non-homogeneous variances, log10 and square root 
transformations were attempted. If these failed to rectify the issue, the 
data were analyzed both with and without the outlier(s) and, occa
sionally, also after conversion of the outlier to a less extreme value 
retaining the original rank. Simple main effects were assessed using the 
overall error term. Statistics on the three-way and two-way interactions 
are provided for each variable analysed in Figs. 2–6 and Supplementary 
Figs. S1–S4. Moreover, one-way ANOVA was performed separately on 
male and female data broken down by genotype and treatment followed 
by the Student-Newman-Keuls post-hoc test for pairwise comparisons if 
the variances were homogenous, or by Welch’s ANOVA followed by 
Games-Howell multiple comparisons if they were not. For skewed data 

Fig. 2. Structural formulae of some retinoid species i.e. 1) retinol (REOH), 2) all-trans retinoic acid (ATRA), 3) retinyl palmitate (REPA), 4) 9-cis-4-oxo-13,14- 
dihydroretinoic acid (CORA), and 5) 9-cis-13,14-dihydroretinoic acid. 
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or extreme outliers, data transformation was first attempted as above for 
three-way ANOVA. If this was unsuccessful, the Kruskal-Wallis 
nonparametric ANOVA was employed followed by pair-wise multiple 
comparisons adjusted by the Bonferroni correction. The outcomes of 
these parametric and nonparametric one-way ANOVAs are also shown 
in Figs. 2–6 and Supplementary Figs. S1–S4. Finally, for direct com
parisons of the two sexes or genotypes, control groups were contrasted 

by the t-test or Welch’s t-test depending on variance homogeneity. Data 
distribution abnormalities and outliers were treated as above. The level 
of statistical significance was always set at p<0.05. 

2.6. Literature review 

A small narrative literature study, covering all published original 

Fig. 3. Effects of TCDD on body weight at termination and the relative (% of body weight) weights of the liver, kidneys and thymus in male (left panels) and female 
wild-type (WT) & AHRKO mice. Group mean + SD, n = 6. Columns with non-identical letters are statistically different at the significance level of p < 0.05. IA, 
interaction; NS, not significant. 
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studies where tissue retinoid concentrations were reported in mamma
lian AHRKO models, was performed. Retrieved data were tabulated 
together with detailed study design information of importance for reg
ulatory interpretations and assessments of scientific data. 

3. Results 

3.1. Body and organ weights 

At the onset, male mice were significantly (p < 0.001) heavier than 
females. Although females grew faster (p = 0.018 for body weight 

Fig. 4. Effects of TCDD on hepatic concentrations of ATRA, REOH, REPA and CORA in male (left panels) and female wild-type (WT) & AHRKO mice. Group mean +
SD; n = 4–6. Columns with non-identical letters are statistically different at the significance level of p < 0.05. IA, interaction; NS, not significant. 
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change over the study period), at termination their body weight was still 
lower compared with that of males (p < 0.001; Fig. 3; Suppl. Table S1). 
No other differences among the groups existed as assessed by 3-way 
ANOVA. As a corollary, absolute (Suppl. Figs. S1 & S2) and relative 
organ weights (Fig. 3; Suppl. Figs. S1–S2) exhibited similar TCDD 
treatment-, sex- and genotype-related changes. There was a highly sig
nificant (p < 0.001) treatment x genotype interaction in relative liver 

weight with TCDD exposure increasing the weight in wild-type mice 
alone (TCDD-treated groups, wildtype vs. AHRKO: p < 0.001). More
over, relative liver weight was conspicuously lower in control AHRKO 
vs. control wild-type mice (p < 0.001; Suppl. Table S2). In contrast, 
amongst untreated animals AHRKO mice had heavier kidneys than their 
wild-type counterparts (p < 0.001 for relative kidney weight; Suppl. 
Table S2). As expected, TCDD decreased thymus weight in wild-type 

Fig. 5. Effects of TCDD on serum concentrations of ATRA, REOH, REPA and CORA in male (left panels) and female wild-type (WT) & AHRKO mice. Group mean +
SD; n = 4–6. Columns with non-identical letters are statistically different at the significance level of p < 0.05. IA, interaction; NS, not significant. 
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mice alone (Fig. 3). Neither genotype nor TCDD dosing exhibited a 
statistically significant influence on absolute or relative testis or 
epididymis weights, although a marginally significant treatment x ge
notype interaction term existed for absolute testis weight (Suppl. 
Fig. S1). 

3.2. Tissue retinoid levels 

3.2.1. Liver 
Retinoid concentrations in the liver are shown in Fig. 4. Significant 

alterations in response to TCDD treatment were observed in wild-type 
mice, while concentrations in AHRKO mice did not differ from those 
in wild-type controls. TCDD administration caused an increase in ATRA 
in wild-type females and a slight, statistically non-significant increase in 

Fig. 6. Effects of TCDD on renal concentrations of ATRA, REOH, REPA and CORA in male (left panels) and female wild-type (WT) & AHRKO mice. Group mean + SD; 
n = 4–6 except for CORA in WT female controls, where n = 3. Columns with non-identical letters are statistically different at the significance level of p < 0.05. IA, 
interaction; NS, not significant. 
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males. The concentrations of CORA were strongly reduced in both sexes 
of TCDD-treated wild-type mice, down to the levels of only 1.7 % and 5.7 
% of the control value in females and males, respectively. Similarly, 
REPA concentrations were substantially lowered by TCDD in wild-type 
mice, although a statistically significant difference in comparison with 
the respective wild-type control was only reached in females. For ATRA, 
CORA and REPA, ANOVA confirmed a significant treatment x genotype 
interaction term. In pooled controls of both genotypes, females had 
higher hepatic concentrations of REOH (p = 0.010) and REPA (p =
0.011) but lower ATRA levels (p = 0.013) than males (Suppl. Table S1). 

When the contents of these retinoids in the whole liver were calcu
lated, the outcome closely resembled that of their concentrations (Suppl. 
Fig. S3). 

3.2.2. Serum 
Retinoid concentrations in the serum are depicted in Fig. 5. In wild- 

type mice, TCDD treatment resulted in a significant increase in female 
REOH levels and a downward tendency in male CORA concentrations. 
Males also showed a trend towards elevated REOH concentration. TCDD 
did not affect any of the measured retinoid forms in AHRKO mice. 
However, there were significant differences between the untreated 
AHRKO vs. wild-type mice in ATRA (p = 0.007) and REOH (p < 0.001) 
concentrations, the levels being higher in wild-type animals. When the 
genotypes were pooled, a sex difference was manifest in ATRA con
centrations of controls with females harboring higher levels (p = 0.005; 
Suppl. Table S1). Moreover, a significant interaction between TCDD 
treatment and mouse genotype was established for REOH (Fig. 5). 

3.2.3. Kidney 
Retinoid concentrations in the kidney are presented in Fig. 6. Simi

larly to the liver and serum, significant alterations after TCDD exposure 
were only observed in wild-type mice. The most conspicuous impact of 
TCDD was a drastic decline in CORA concentration in male mice, 
resembling the effect in the liver. Unlike in the liver, however, female 
mice were unaffected. Thus, in the case of kidney CORA concentration, 
the outcome depended critically on treatment, genotype and sex, which 

was confirmed by a highly significant interaction term of these three 
factors (p < 0.001). This was also true of renal CORA content (Suppl. 
Fig. S4). In addition to CORA, TCDD had an effect on REOH, whose 
concentration was elevated in wild-type females and also exhibited an 
upward tendency in the males of this genotype. Consequently, a highly 
significant interaction between treatment and genotype was observed in 
the ANOVA (Fig. 6). There were further marginally significant in
teractions between treatment and sex for REOH and ATRA. Among 
control animals (across genotypes), male mice harboured higher con
centrations of all the retinoids analysed compared with females (p <
0.001 for all except for REPA, where p = 0.014; Suppl. Table S1). 

The patterns for total amounts of these retinoids in the kidneys were 
again highly similar to those of their concentrations (Suppl. Fig. S4). 

3.3. Observed and previously published liver retinoid concentrations in 
AHRKO rodents 

Study design and hepatic retinoid concentrations determined in this 
study were compared with previously published data in AHRKO rodent 
models (Table 1). The listed studies represent three different AHRKO 
mouse lines and one AHRKO rat model [1–4,81] current study). The 
study protocols vary also in terms of sex analysed, age at tissue sampling, 
number of individuals analysed per group, retinoid forms analysed, and 
dietary vitamin A content, which was detailed in two studies alone 
(Table 1). The three previous mouse studies presented their data in a 
figure-format with the need to estimate the numbers for comparison 
with this study. One of those studies did not present data in a standard 
concentration format and it was therefore not possible to make detailed 
comparisons between absolute concentration values, not even for he
patic REPA concentrations that were analysed and presented in all five 
studies. A concluding main observation from the literature survey is 
clear: only one of the four AHRKO lines showed a clear genotype effect 
with 3-fold higher liver concentrations of REOH, REPA and ATRA in 
mice lacking the AHR. In addition, hepatic REOH concentrations 
showed small variations among studies, groups and sex, as did ATRA 
concentrations in the reported studies. 

Table 1 
Observed and published data on liver retinoid concentrations in AHRKO rodents.  

Publication      Hepatic retinoid concentration 

Species; strain Sex Age at start Study duration Age at sampling Genotype (n) REOH REPA ATRA CORA 
Original KO line  (weeks) (days) (weeks)  (nmol/g) (nmol/g) (pmol/g) (pmol/g) 

Andreola et al. [1]1 M 20 3 20 WT (3–5) 3.9 1140 130  
Mouse; C57BL6/ CNrX129/Sv M 20 3 20 Ahr +/- (3− 5) 6.3* 2380* 200*   

M 20 3 20 Ahr -/- (3) 10.8* 3810* 470*  
Andreola et al. [2,3] 1 M 3 21 6 WT (2)  267   
Mouse; C57BL6/ CNrX129/Sv M 3 21 6 Ahr -/- (2)  572*              

M 3 63 12 WT (2)  2191    
M 3 63 12 Ahr -/- (2)  4573*              

M 3 105 18 WT (2)  2705    
M 3 105 18 Ahr -/- (2)  4287*   

Nishimura et al. [4]2 M + F GD 12.5 28 3 WT (4–5) ~50 ~160   
Mouse; C57BL/6 J M + F GD 12.5 28 3 Ahr +/- (4− 5) ~55 ~145    

M + F GD 12.5 28 3 Ahr -/- (4− 5) ~60 ~175   
Esteban et al. 20203 F 8‒12 70 18‒22 WT (6) 17 721 16 113 
Mouse; C57BL/6     Ahr -/- (6) 15 833 11 92  

M 8‒12 70 18‒22 WT (6) 9 582 19 121      
Ahr -/- (6) 12 645 22 144 

Pohjanvirta et al. [81]3 M 7‒8 165 31‒32 WT (5) 3.6 59 13 8.9 
Rat; Sprague-Dawley M 7‒8 165 31‒32 Ahr-/- (7) 3.5 81 13 10.5 
SAGE/Horizon          

Empty spaces: no data reported. 
* Statistically significant difference vs. wildtype. 
1 Retinoid values extracted from original bar charts and converted from grams to molar by use of the molecular weights for each analyte. 
2 Retinoid values presented as “units/g liver” (not defined). 
3 Vitamin A concentration in the diet reported. 
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4. Discussion 

4.1. Retinoid data in the regulatory context 

The number of scientific reports which have addressed the retinoid 
system in relation to the toxicology of dioxins, other contaminants, or 
production chemicals is growing, and it is now well known that 
disruption of vitamin A homeostasis, and thereby tissue concentrations 
of various forms of retinoids, is a sensitive endpoint in toxicology, and a 
potentially significant contributor to a broad spectrum of toxicity out
comes (reviewed in [66–69,82,83]). Among early reports from regula
tory agencies, which also are increasing in numbers, was the World 
Health Organization (WHO) Environmental Health Criteria document 
on dioxins [84], which reported on similarities between symptoms of 
dioxin exposure and symptoms of inappropriate vitamin A status. He
patic vitamin A reduction was later included as an effect-biomarker for 
retinoid disruption in the WHO Toxic Equivalency Factor (TEF) system 
developed for the assessment of mixtures of persistent organic pollutants 
whose mode of action is based on AHR activation [85–87]. Later the 
Swedish Environmental Protection Agency developed a report on 
endocrine disruption in reproduction, which in addition to the estrogen, 
androgen, thyroid hormone, and steroidogenesis (EATS) pathways, also 
covered the retinoid system [88]. Currently, there are several ongoing 
international regulatory initiatives focusing on the retinoid system as an 
emerging target in toxicology including endocrine disruption as 
reviewed by Grignard et al. [6]. A Nordic working paper on male and 
female reproduction organ development and functions was recently 
published in support of these activities, and identified gaps and oppor
tunities for future research and regulatory measures to establish suitable 
tools and procedures for data interpretation and toxicological screening, 
which also capture the retinoid system [7]. One important starting point 
for some of these activities was the OECD Detailed Review Paper 178 
[89], which identified a number of pathways beyond EATS, including 
AHR and retinoic acid signaling, to be in need of additional regulatory 
attention. To support these regulatory efforts, we applied 
mode-of-action and weight-of-evidence types of analytical approaches 
to further evaluate and mine the obtained results. This additional 
evaluation of the obtained data on tissue concentrations of selected 
endogenous retinoid analytes is highly motivated as the selected reti
noid analytes reflect both the metabolic and transcriptional roles of the 
retinoid system. Therefore, beyond the comparative evaluation and 
interpretation of the obtained retinoid concentration results in relation 
to previously published data obtained under the influence of AHR 
inactivation (4.2) and over-activation by TCDD (4.3), respectively, we 
also evaluated the obtained results in relation to the published literature 
with the aim to provide regulatory relevant mode-of-action (4.4) and 
weight-of-evidence (4.5) insights. 

4.2. Retinoid status of AHRKO mice 

To our knowledge, this is the first study reporting on circulating, 
hepatic, and renal retinoid concentrations in both male and female 
AHRKO mice. In addition, this is the first report on retinoid concentra
tion data in the AHRKO mouse line developed in the laboratory of Dr. 
Chris Bradfield and co-workers [5]. Clearly, the lack of genotype effect 
on hepatic retinoid concentrations both in adult male and female mice of 
this AHRKO line in our study is in contrast to the reported sizeably 
(3-fold) elevated concentrations of ATRA, REOH, and REPA in the livers 
of adult male mice of the AHRKO line developed in the laboratory of Dr. 
Frank Gonzalez and co-workers [1,2,16]; Table 1). Instead, the hepatic 
retinoid data of AHRKO mice in the current study is more in line with 
findings in a third mouse line developed in the laboratory of Dr. Yoshiaki 
Fujii-Kuriyama [4,17], and in a rat AHRKO line (Pohjanvirta et al., 
submitted). In the mouse model, homozygous male Ahr-/- mice exhibi
ted a modest (9.4 %) elevation of hepatic REPA concentration compared 
with their wild-type counterparts, whereas heterozygotes displayed an 

identical reduction. In the rat model, AHRKO rats fed on a standard diet 
had a 36.9 % higher hepatic REPA concentration than their wild-type 
controls, but their hepatic ATRA, CORA, and REOH concentrations 
were comparable to those in wildtype animals (Pohjanvirta et al., sub
mitted), which is in line with the corresponding data from the current 
AHRKO mouse study (Table 1). It has been proposed that differences in 
the genetic approach, when developing the AHRKO mouse lines, can 
contribute to differences observed in their phenotypes [19]; a possibility 
which might be relevant also for the retinoid end-points analysed in the 
current study. 

Additional impact on reported retinoid results from the different 
AHRKO lines may come from differences in dietary vitamin A content 
and age of the study subject; however, such information is not always 
provided in the study reports (Table 1). As demonstrated in Table 1, it is 
in particular the hepatic REPA and CORA concentrations that are 
reflective of variations in the dietary vitamin A content, while hepatic 
REOH and ATRA concentrations remain within a narrower range even in 
cases of variable dietary vitamin A status. Currently, there are no pub
lished data on retinoid concentrations in extra-hepatic tissues of 
mammalian AHRKO lines to compare with. However, it is clear from 
previously reported rodent wildtype data that the retinoid concentra
tions in kidneys and circulation measured in this study are largely 
comparable to published data [90,91]. In general, the data variations 
observed among different studies can be accounted for by sex, age, ro
dent species, and dietary vitamin A content, as well as factors related to 
study design, such as TCDD dosing scheme and study duration. How
ever, results obtained in the present study are clearly suggestive of sex 
differences in retinoid concentrations in all three tissues analysed. In 
particular, there was a distinct difference in kidney concentrations with 
female mice having consistently lower concentrations than male mice in 
all four analysed retinoid forms. Clearly, this observation deserves 
further investigation, not least in the context of the complexities 
involved in endocrine disruption and reproductive toxicology 
end-points. 

In this study, none of the analysed hepatic or renal retinoid con
centrations were affected by AHR ablation neither in female nor in male 
mice. At first glance, these findings may give the impression that AHR 
does not have a major role in the physiological control of retinoid 
concentrations in central and metabolically active organs, such as the 
liver and kidneys. However, on a more detailed level, such a conclusion 
can only be drawn following additional investigations, which include 
impact-studies of AHR on the dynamics behind the whole-body regu
lation of the retinoid system; meaning that also the impact of AHR on the 
dynamics involved in retinoic acid metabolism and signaling on the 
cellular level needs to be addressed. It could well be that whole organ 
retinoid concentrations as analysed in the current study differ from 
concentrations in individual cell compartments. This is because different 
cell types within organs have their own profiles when it comes to the 
retinoid system. Profile differences could include basal concentrations of 
specific retinoid forms and their binding proteins, as well as basal ac
tivities and inducibilities of retinoid-specific as well as general enzymes 
that are involved in retinyl ester storage and/or retinoic acid metabolic 
and signaling pathways. As a result, there are differences among cell- 
types in retinoid kinetics and dynamics. For example, many organs 
host local stores of vitamin A in the form of retinyl esters in vitamin A- 
storing stellate cells7 and/or in lipid droplets of parenchymal cells 

7 Stellate cells are dendritic cells present in most organs and are well known 
for their key roles in collagen synthesis as well as in storage of vitamin A, other 
fat-soluble vitamins, triglycerides, cholesterol, and fatty acids [93,95]. They 
play important roles in organ development and regeneration, as well as in 
pathological conditions, such as steatosis and fibrosis [93,95,144,145]. Stellate 
cells are known under many different names, including Ito cells, pericytes, 
fat-storing cells, lipocytes, interstitial cells, vitamin A-storing cells and stern 
cells. 
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[92–95]. It is also well known that there is an extensive and continuous 
turnover, redistribution, and excretion of the stored body pool of 
vitamin A within and among organs to maintain proper overall and 
cellular homeostasis, and also to cope with times of normal as well as 
extensive variations in dietary vitamin A intake (reviewed by [96,97]). 

Thus, for these several types of reasons, additional knowledge 
delineating the impact of AHR ablation or over-activation on cellular 
retinoid-system processes should also be extended to include kinetic 
retinoid tracer and gene data in models which address dynamic retinoid 
system processes on cell and whole-body levels. Nevertheless, and 
despite the limitations in the design of the current study, we consider the 
observed reductions in circulating REOH and ATRA concentrations both 
in male and female AHR deficient mice in this study to suggest that AHR 
does have a role in the control of maintaining the overall retinoid ho
meostasis. In normal conditions, both REOH and ATRA in circulation are 
strictly maintained within homeostatic concentrations. It is only under 
circumstances, such as marked dietary vitamin A deficency, pharma
cological retinoic acid treatment, or some toxicological exposures that 
measurable changes in circulating retinoid concentrations will be 
observed [97]. Therefore, the reductions of 41.3 and 36.1 %, respec
tively, in circulating REOH and ATRA concentrations in the adult 
AHRKO mice in this study deserve further investigation. 

4.3. Retinoid status of AHRKO and wild-type mice following over- 
activation by TCDD 

AHRKO mice in this study did not display any retinoid system 
changes in response to over-activation by TCDD (Figs. 4–6), thus 
providing strong evidence to the full dependency on AHR mediation for 
the observed retinoid system changes in TCDD-exposed wild-type mice. 
This finding is in line with the response to TCDD in a considerably more 
limited study, where a different AHRKO mouse line was used to analyse 
combined apolar hepatic retinoid concentrations in pooled liver samples 
from offspring aged 3 weeks, which were exposed to TCDD during fetal 
development via the dams ([4]; Table 1). In the present study, 10-week 
exposure to TCDD resulted in decreased hepatic REPA and CORA con
centrations in both sexes of wild-type mice. These findings are in 
agreement with results from TCDD exposure studies in different species 
and at different life-stages demonstrating that AHR over-activation by 
TCDD typically leads to an inappropriate elevation of the overall reti
noid metabolism, which is characterized by decreased concentrations of 
apolar retinoids, i.e. mainly retinyl esters, in the liver, and associated 
changes in various retinoid forms in some, but not all extrahepatic tis
sues, as well as increased excretion of retinoid metabolites via urine and 
bile [4,67,91,98]. Detailed kinetic investigations in the rat have 
demonstrated that TCDD initiates a lasting mobilization of stored reti
noids from the large and slowly turning over stellate cell pool to the 
plasma compartment, followed by elimination via urine and feces [99]. 
The kinetic modelling revealed that the TCDD-induced mobilization 
from the retinoid stores is most likely preceded by transcriptional events 
[99], such as the well known induction by TCDD of numerous liver 
enzymes (reviewed by [41,100]). 

A particularly interesting and novel finding in the wild-type mouse 
part of this study was the striking drop in renal CORA concentration and 
content caused by TCDD in male mice exclusively. In wild-type males, 
CORA concentrations were reduced by TCDD also in serum and liver, 
whereas females displayed a reduction only in CORA liver concentra
tions. Also other studies have identified CORA as an especially respon
sive retinoid form, which is drastically reduced in the liver not only in 
response to TCDD [101] or mixtures of dioxin-like compounds [102, 
103], but also to AHR agonists of low toxicity [80] and to the 
non-dioxin-like molecule PCB180 [104]. There are only few studies on 
the CORA-metabolite to date both in terms of occurrence and functional 
data. The mechanism by which TCDD interferes with CORA tissue 
concentrations is not yet known. Likewise, the CORA metabolic pathway 
and its exact relationship to ATRA metabolism and signalling are only 

beginning to be explored; CORA is the first 9-cis-configured endogenous 
isomer of retinoic acid that has been detected in tissues of several spe
cies, including humans [53]. The synthesis and chemistry of CORA has 
been published [52], and based on a limited biological characterization 
using the chicken limb bud and cell transfection studies, the present 
view is that CORA’s biological activity resembles that of ATRA, for 
example in terms of gene regulation associated with retinoic acid re
ceptors [55]. Additional characterization is needed to clarify if CORA, in 
addition to RARα and RARβ, also may play a role in the activation of 
RXRs [55,105,171]. 

It is tempting to speculate that the nearly depleted renal CORA 
concentrations in male mice may be involved in the pathogenesis of 
acute TCDD lethality as there is a reported sex divergence of male mice 
being over 10-fold more susceptible to the acute lethality of TCDD 
[106]. On the other hand, along the same line of speculation it can be 
assumed that the female-specific responses to TCDD exposure observed 
in the current study, i.e. increases in circulating and renal REOH along 
with hepatic ATRA concentrations in wild-type mice, may represent a 
protective type of response towards acute TCDD lethality. 

4.4. Mechanistic interpretation of obtained retinoid concentration data 

Together, the reported retinoid concentration data, and especially 
the markedly decreased hepatic REPA and almost depleted renal CORA 
concentrations following TCDD exposure, point to a critical role of 
overactivated AHR in the control of enzymes, which are involved in 
retinoic acid metabolism and retinoid storage, release, and distribution 
processing (Fig. 1). Indeed, it is striking that several of the highly TCDD- 
responsive CYP enzymes, i.e. CYP1A1, CYP1A2, and CYP1B1, as well as 
several glutathione transferases (GTs), uridinediphosphoglucuronosyl 
transferases (UGTs), and aldehyde dehydrogenases (ALDHs) [107–113], 
at the same time are key enzymes involved in retinoic acid synthesis and 
degradation [114–119]. These TCDD-inducible enzymes, often referred 
to as the “AHR battery genes” [100,120], are important members of the 
Phase 1 and II metabolizing enzymes [121–123], which play important 
roles in the cell by controlling the synthesis, degradation, and kinetics of 
numerous endogenous, as well as dietary and other exogenous mole
cules. Some of the AHR-controlled, and/or TCDD-inducible genes, are 
also controlled by retinoic acid via a retinoic acid response element 
(RARE) in the gene promoter region [124,125]. In particular, it is 
striking that the highly TCDD-inducible AHR battery gene CYP1B1 
under physiological conditions spatially complements the retinoic acid 
synthesising enzyme retinal dehydrogenase (RALDH), and in this way 
can mediate embryofetal tissue development at specific sites through 
retinoic acid independently of RALDH [126]. Moreover, retinoid re
ceptor agonists have been shown to potentiate the induction of CYP1A1 
mRNA by TCDD in vitro [127]. 

In addition to the Phase I and II enzymes, AHR over-activation by 
TCDD also impacts on the expression and/or activity of enzymes and 
binding proteins specifically dedicated to retinoic acid synthesis and 
signaling, as well as retinyl ester storage, release, and distribution pro
cesses. Included among the TCDD-induced retinoic acid synthesis and 
signaling gene activations are repression of retinol dehydrogenase 9 
[112], which converts REOH to retinal in the rate-limiting step of reti
noic acid synthesis [128], induction of ALDH/RALDH ([109,129] [this 
issue] [110,112,113]), which converts retinal to retinoic acid [59,126, 
130,131], and repression of cellular retinoic acid-binding protein type 2 
(CRABP2) ([129] [this issue]), which facilitates the translocation of 
retinoic acid from the cytoplasm to the nucleus [59,126,130]. Included 
among the TCDD-modulated gene activities which impact on retinyl 
ester storage, release, and distribution processes, are repressions of two 
major hepatic retinyl ester hydrolases, i.e. esterase 2 and carbox
ylesterase 3 [109], repression of lecithin:retinol acetyltransferase 
(LRAT) [132], which is the predominant enzyme responsible for REOH 
esterification and thus vitamin A storage, and repression of the cellular 
retinol-binding protein type 1 (CRBP1) [112], which is indispensable for 
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efficient retinyl ester synthesis and storage [133]. Finally, it is striking 
that retinoic acid has been reported to down-regulate the expression of 
central components of the AHR signaling machinery, i.e. AHR itself, and 
its partner and repressor proteins, i.e. the aryl hydrocarbon receptor 
nuclear translocator (ARNT) and aryl hydrocarbon receptor repressor 
(AHRR), respectively, although a canonical RARE has not been reported 
in those genes [124,134]. Together, these data suggest that a substantial 
part of the variations in tissue retinoid concentrations observed in this 
study can be accounted for by the combined activation and/or repres
sion of the general high capacity and highly inducible Phase I and II 
enzymes on the one hand, and the more specific retinoic 
acid-metabolizing and retinoid storage enzymes, and binding proteins 
on the other hand. More specifically, we propose that critical events 
following AHR over-activation, e.g. by TCDD, include inductions and/or 
repressions of multiple metabolizing enzymes and binding proteins. In 
turn, these modulations can affect intracellular retinoic acid concen
trations and expression of genes regulated by it, with the potential to 
eventually interfere with vital cell processes. Although no gene expres
sion measurements were carried out in the present study, the data cited 
above from the Tijet et al. [112] study emanate from the same line of 
AHRKO and WT mice. Nevertheless, for firm conclusions to be drawn on 
this proposed sequence of molecular events, more studies, including 
more genes and quantitative information, are needed. 

4.5. Organ weight results in relation to the retinoid data 

We found, as expected, decreased liver and increased kidney weights 
in the AHRKO mice, which confirm and support a role of AHR in the 
control of liver and kidney development both in male and female mice as 
has been reported earlier in this line [40]. Although there were no 
changes in hepatic or renal retinoid concentrations in this AHRKO line, 
it is tempting to speculate, based on the observed reductions in circu
lating REOH and ATRA concentrations, that dynamic modulations of the 
retinoid system might be present in these mice on the cellular or tissue 
levels. Such a speculation is motivated, as it is well known that appro
priate retinoic acid signaling is crucial in liver and kidney organogenesis 
as well as in the regeneration of these tissues [135,136,172]. Support for 
the speculation that decreased circulating retinoid concentrations may 
reflect a dynamic change in retinoid processing being present on the 
cellular and tissue levels, can be inferred from results presented in two 
independent human studies. A prospective study showed associations 
between decreased concentrations of circulating retinoic acid and 
severity of non-alcoholic fatty liver disease [137], while in an older 
study progressively worsening stages of a more severe hepatic disease, 
classified as normal, persistent hepatitis, fatty liver, alcoholic hepatitis, 
and chirrosis, were associated with decreasing hepatic concentrations of 
REOH and retinyl esters [138]. More recently, it was shown that hepatic 
stellate cells of human origin are susceptible to AHR over-activation by 
TCDD exposure in cell cultures [73], suggesting that 
background-exposures to persistent high-affinity AHR modulators may 
be contributing to fatty liver disease in human populations as well. 
Together these results indicate that retinoid concentrations in circula
tion and in tissues both have the potential to serve as markers for fatty 
liver disease. However, many more experimental as well as observa
tional details need to be clarified before useful tools for predictions, 
preventions, or treatments can be established. 

We also found that the two well-established organ weight indices of 
sustained AHR over-activation by TCDD exposure, i.e. elevated relative 
liver weight and diminished relative thymus weight, were observed in 
the TCDD-exposed wild-type mice, but not in the AHRKO mice of this 
study. These findings are well in line with the established knowledge 
that both the increased liver weight and thymic atrophy require the 
presence of a functional AHR [139,140]. It is also well known that 
TCDD-induced liver enlargement is connected to marked induction of 
xenobiotic-metabolizing enzymes, foremost CYP1A1, CYP1A2 and 
CYP1B1, along with hepatic steatosis [41], while a key role of the 

retinoid system in the pathophysiology of several hepatic diseases is 
only beginning to be explored and understood in relation to the toxi
cology of different categories of chemicals, including dioxins (reviewed 
by [67,74,141,142,173]). In this study, we did not perform any histo
logical analyses of the organs collected for weight and/or retinoid 
concentration analyses. However, the pronounced decreases in hepatic 
REPA and CORA concentrations observed in the AHR over-activated 
wild-type mice are well in line with the pathological phenomena un
derlying progressive liver toxicity from fatty liver/steatosis to steato
hepatitis, fibrosis, chirrosis, and eventually hepatocellular carcinoma as 
described in situations of compromised retinoid status [2,3,14,70–72], 
exposure to TCDD and related compounds [41,107,143], and partly also 
in the murine AHR ablation phenotype [5,40]. 

On the cellular level, it is well known that stellate cells, in addition to 
their key role in vitamin A storage [58], and their significant involve
ment in liver development and in wound healing [144,145], play 
important roles in pathological conditions such as steatosis and fibrosis 
[14,93,95,144,146]. Becker et al. [147] proposed that TCDD-induced 
depletion of hepatic retinoid stores, largely localized to the stellate 
cell population of the liver [132,148,149], is causally linked to 
enhanced cell proliferation, biliary fibrosis and cholangiosarcoma, 
which is the observed adverse outcome progression to chol
angiosarcoma in carcinogenicity studies with TCDD in rats [150]. 
Further support for this proposal comes from the observation that 
several of the xenobiotic-metabolizing enzymes that are immediately 
induced upon TCDD-binding to AHR, also play key roles in retinoic acid 
synthesis (e.g. CYP1A1, CYP1B1 and ALDHs) and degradation/elimi
nation reactions (e.g. UGTs and GTs). Of special note is the finding that 
CYP1B1 in stellate cells is abundant and highly inducible by TCDD [50, 
151], while CYP1A1 is neither inducible by TCDD nor abundant in 
stellate cells [152]. Together, these data suggest that the molecular 
initiating event (MIE) of the proposed adverse outcome pathway (AOP) 
for liver tumor promotion [147] impacts on retinoic acid homeostasis 
both in the hepatocyte and stellate cell compartments. Furthermore, on 
the molecular level it has been demonstrated that a large number of 
genes related to fat metabolism, a major task of the liver, are tran
scriptionally regulated by retinoic acid [124,153]. Intriguingly, AHR 
signaling also regulates hepatic lipid metabolism in mice via, e.g., CD36, 
a major fatty acid transporter [154,155], and global AHR deficiency 
protects mice from high-fat diet-induced obesity and fatty liver 
(reviewed in [156]). 

In contrast to the TCDD-induced liver pathology, which seems to be 
largely AHR-mediated, it appears as if the TCDD-induced reduction in 
thymus weight as observed also in the current study is a result of several 
parallel phenomena in addition to AHR-mediation [41]. Recent data 
emphasize the role of retinoic acid as a transcriptional regulator in the 
homeostasis of thymic epithelial cells, which is essential for their func
tion and for normal thymopoiesis [157]. These results are in line with 
previous data demonstrating that TCDD in the thymus specifically tar
gets the epithelial cell population [158]; thereby, these data propose 
that an interactive AHR–retinoic acid-mediated phenomenon could be 
directly involved in TCDD-induced thymic atrophy. 

Clearly, data presented in this study call for more research on 
AHR–retinoid interactions, not only in liver and immune system physi
ology and pathology but also for human and animal health in general. By 
choosing TCDD as the model compound in this study we know that 
basically all organ systems will be affected depending on dose and time, 
as TCDD is targeting most tissues and brings about distinct, specific and 
sustained AHR over-activation that can be detrimental to any health 
outcome both in animals and humans. Although more detailed studies 
on the cellular and molecular levels are needed, it is prudent to propose 
that the findings of this study are largely representative of other tissues 
and thereby support the view that disruption of the retinoid system is a 
significant component in the broad scope of AHR-mediated biology and 
toxicology. As both AHR and RARs/RXRs are universal transcriptional 
regulators present in virtually all cells and tissues across vertebrate 
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species [159,160], it is also a cautious speculation that intact hormonal 
cross-talk between AHR and retinoic acid metabolism and signalling is 
of general relevance also in other species, including humans, and over 
the life-course. In a broader context of receptor-mediated toxicology, we 
propose, based on data from this study in combination with a large body 
of literature from the broad fields of cell biology, nutrition, and toxi
cology research, that the diet-derived and in situ-synthesized small ret
inoic acid molecule, together with its metabolic and transcriptional 
machinery, at the same time contributes to the control of, and is 
dependent on AHR in biology and toxicology, including endocrine 
disruption, over the life-course. 

4.6. Conclusions 

In the present study, we have demonstrated that AHR is necessary for 
normal concentrations of REOH and ATRA in the circulation of adult 
mice. Hepatic and renal retinoid concentrations were not influenced by 
AHR deficiency, and thus the elevated hepatic retinoid concentrations 
reported in another AHRKO mouse line [1–3] were not confirmed in this 
study. Furthermore, we have identified AHR as a prerequisite for the 
typical TCDD-induced reductions in hepatic REPA and CORA concen
trations in both sexes, and in renal CORA concentration in male mice 
exclusively. In female mice, a functional AHR was found to be required 
for the TCDD-induced elevation of hepatic ATRA concentration and of 
renal and circulating REOH concentrations. Our data on organ weights 
in wild-type vs. AHRKO mice support a role of AHR in the control of liver 
and kidney development in male and female mice as previously reported 
[40]. Finally, we observed for the first time in adult mice a distinct sex 
difference in concentrations of several retinoid forms and in several 
tissues, with the difference being most notable in the markedly lower 
kidney concentrations of all analysed retinoid forms in female mice. 

Declaration of Competing Interest 

The authors report no declarations of interest. 

Acknowledgments 

We thank Janne Korkalainen, Ulla Naukkarinen and Arja Moilanen 
for excellent technical assistance. This work was supported by the Eu
ropean Commission under the project BoneTox (QLK4-CT-2002-02528) 
and the authors are solely responsible for the contents of this paper, 
which does not necessarily represent the opinion of the European 
Community. Dr. Esteban received a grant (Reference A/07/09165) from 
Deutscher Akademischer Austauschdienst (Bonn, Germany). 

Appendix A. Supplementary data 

Supplementary material related to this article can be found, in the 
online version, at doi:https://doi.org/10.1016/j.reprotox.2021.02.004. 

References 

[1] F. Andreola, P.M. Fernandez-Salguero, M.V. Chiantore, M.P. Petkovich, F. 
J. Gonzalez, L.M. De Luca, Aryl hydrocarbon receptor knockout mice (AHR-/-) 
exhibit liver retinoid accumulation and reduced retinoic acid metabolism, Cancer 
Res. 57 (14) (1997) 2835–2838. 

[2] F. Andreola, D.F. Calvisi, G. Elizondo, S.B. Jakowlew, J. Mariano, F.J. Gonzalez, 
et al., Reversal of liver fibrosis in aryl hydrocarbon receptor null mice by dietary 
vitamin A depletion, Hepatology 39 (1) (2004) 157–166. 

[3] F. Andreola, G.P. Hayhurst, G. Luo, S.S. Ferguson, F.J. Gonzalez, J.A. Goldstein, 
et al., Mouse liver CYP2C39 is a novel retinoic acid 4-hydroxylase. Its down- 
regulation offers a molecular basis for liver retinoid accumulation and fibrosis in 
aryl hydrocarbon receptor-null mice, J. Biol. Chem. 279 (5) (2004) 3434–3438. 

[4] N. Nishimura, J. Yonemoto, Y. Miyabara, Y. Fujii-Kuriyama, C. Tohyama, Altered 
thyroxin and retinoid metabolic response to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin 
in aryl hydrocarbon receptor-null mice, Arch. Toxicol. 79 (5) (2005) 260–267. 

[5] J.V. Schmidt, G.H. Su, J.K. Reddy, M.C. Simon, C.A. Bradfield, Characterization 
of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and 
development, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 6731–6736. 

[6] E. Grignard, H. Håkansson, S. Munn, Regulatory needs and activities to address 
the retinoid system in the context of endocrine disruption: the European 
viewpoint, Reprod. Toxicol. 93 (2020) 250–258. 

[7] TemaNord, Retinoids in mammalian reproduction, with an initial scoping effort 
to identify regulatory methods, TemaNord (2020) 507, https://doi.org/10.6027/ 
temanord2020-507. ISBN 978-92-893-6530-7 (pdf). ISBN 978-92-893-6531-4 
(online). 

[8] M.E. Hahn, S.I. Karchner, R.R. Merson, Diversity as opportunity: insights from 
600 million years of AHR evolution, Curr. Opin. Toxicol. 2 (2017) 58–71. 

[9] A. Poland, E. Clover, A.S. Kende, M. DeCamp, C.M. Giandomenico, 3, 4, 3’, 4’- 
Tetrachloro azoxybenzene and azobenzene: potent inducers of aryl hydrocarbon 
hydroxylase, Science 194 (4265) (1976) 627–630. 

[10] A. Poland, J.C. Knutson, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and related 
halogenated aromatic hydrocarbons: examination of the mechanism of toxicity, 
Annu. Rev. Pharmacol. Toxicol. 22 (1) (1982) 517–554. 

[11] P.A. Harper, D.S. Riddick, A.B. Okey, Regulating the regulator: factors that 
control levels and activity of the aryl hydrocarbon receptor, Biochem. Pharmacol. 
72 (3) (2006) 267–279. 

[12] E.C. Hoffman, H. Reyes, F.F. Chu, et al., Cloning of a factor required for activity of 
the Ah (dioxin) receptor, Science 252 (5008) (1991) 954–958. 

[13] M.N. Avilla, K.M.C. Malecki, M.E. Hahn, R.H. Wilson, C.A. Bradfield, The Ah 
receptor: adaptive metabolism, ligand diversity, and the xenokine model, Chem. 
Res. Toxicol. 33 (4) (2020) 860–879. 

[14] C. Duval, E. Blanc, X. Coumoul, Aryl hydrocarbon receptor and liver fibrosis, 
Curr. Opin. Toxicol. 8 (2018) 8–13. 
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H. Håkansson, R. Pohjanvirta, Toxicological characterisation of two novel 
selective aryl hydrocarbon receptor modulators in Sprague-Dawley rats, Toxicol. 
Appl. Pharmacol. 1 (July (326)) (2017) 54–65. 

[81] R. Pohjanvirta, I. Karppinen, S.G. Velázquez, J. Esteban, H. Håkansson, Effect of a 
high-fat diet on factors related to energy balance and inflammation in AH 
receptor-deficient rats, Toxicol. Lett. (2019), 314S1:S1–S309 (abstract P-Late-12). 

[82] A.H. Piersma, E.V. Hessel, Y.C. Staal, Retinoic acid in developmental toxicology: 
teratogen, morphogen and biomarker, Reprod. Toxicol. 72 (2017) 53–61. 

[83] I.O. Shmarakov, Retinoid-xenobiotic interactions: the ying and the yang, 
Hepatobil Surg Nutr. 4 (4) (2015) 243–267. 

[84] WHO/IPCS, IPCS Environment Health Criteria 88: Polychlorinated Dibenzo-Para- 
Dioxins and Dibenzofurans, World Health Organization, Geneva, 1989. 

[85] U.G. Ahlborg, A. Brouwer, M.A. Fingerhut, et al., Impact of polychlorinated 
dibenzo-p-dioxins, dibenzofurans, and biphenyls on human and environmental 
health, with special emphasis on application of the toxic equivalency factor 
concept, Eur. J. Pharmacol. 228 (4) (1992) 179–199. 

[86] M. Van den Berg, L. Birnbaum, A.T. Bosveld, et al., Toxic equivalency factors 
(TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife, Environ. Health 
Perspect. 106 (12) (1998) 775–792. 

[87] M. Van den Berg, L.S. Birnbaum, M. Denison, M. De Vito, W. Farland, M. Feeley, 
et al., The 2005 world health organization reevaluation of human and 
mammalian toxic equivalency factors for dioxins and dioxin-like compounds, 
Toxicol. Sci. 93 (2) (2006) 223–241. 

[88] P.E. Olsson, B. Borg, B. Brunström, H. Håkansson, E. Klasson-Wehler, Endocrine 
disrupting substances. Impairment of reproduction and development. Report 
4859 from the Swedish Environmental Protection Agency, 1998, pp. 1–150. 

[89] OECD, Detailed Review Paper State of the Science on Novel In Vitroand In Vivo 
Screening and Testing Methods and Endpoints for Evaluating Endocrine 
Disruptors. Series on Testing & Assessment No. 178, 2012 (ENV/JM/MONO 
(2012)23). 

[90] P.A. Bank, K.L. Salyers, M.H. Zile, Effect of tetrachlorodibenzo-p-dioxin (TCDD) 
on the glucuronidation of retinoic acid in the rat, Biochim. et Biophys. Acta 
(BBA)-Gen. Subj. 993 (1) (1989) 1–6. 

[91] A. Brouwer, H. Håkansson, A. Kukler, K. Van den Berg, U. Ahlborg, Marked 
alterations in retinoid homeostasis of sprague-dawley rats induced by a single i.p. 

J. Esteban et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0170
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0170
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0175
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0175
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0175
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0180
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0180
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0180
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0185
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0185
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0185
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0185
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0185
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0190
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0190
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0190
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0195
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0195
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0195
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0195
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0200
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0200
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0200
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0200
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0205
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0205
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0205
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0210
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0210
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0215
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0215
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0220
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0220
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0220
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0225
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0225
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0230
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0230
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0235
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0235
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0235
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0235
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0240
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0240
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0240
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0245
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0245
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0245
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0250
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0250
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0250
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0255
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0255
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0255
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0255
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0260
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0260
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0265
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0265
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0265
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0270
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0270
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0270
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0270
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0275
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0275
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0275
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0275
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0280
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0280
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0285
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0285
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0290
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0290
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0295
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0295
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0300
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0300
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0305
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0305
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0310
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0310
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0310
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0315
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0315
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0320
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0320
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0320
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0325
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0325
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0330
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0330
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0330
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0335
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0335
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0340
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0340
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0340
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0345
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0345
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0345
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0350
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0350
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0355
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0355
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0355
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0360
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0360
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0365
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0365
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0365
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0365
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0370
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0370
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0370
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0375
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0375
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0375
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0375
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0375
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0375
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0380
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0380
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0380
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0380
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0380
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0385
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0385
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0390
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0390
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0390
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0395
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0395
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0395
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0395
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0400
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0400
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0400
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0400
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0405
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0405
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0405
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0410
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0410
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0415
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0415
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0420
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0420
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0425
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0425
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0425
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0425
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0430
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0430
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0430
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0435
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0435
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0435
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0435
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0440
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0440
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0440
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0445
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0445
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0445
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0445
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0450
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0450
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0450
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0455
http://refhub.elsevier.com/S0890-6238(21)00042-3/sbref0455


Reproductive Toxicology 101 (2021) 33–49

48

dose of 10 micrograms/kg of 2,3,7,8-tetrachlorodibenzo-p-dioxin, Toxicology 16 
(October (58)) (1989) 267–283. 

[92] N.E. Nagy, K.B. Holven, N. Roos, et al., Storage of vitamin A in extrahepatic 
stellate cells in normal rats, J. Lipid Res. 38 (4) (1997) 645–658. 

[93] H. Senoo, Y. Mezaki, M. Fujiwara, The stellate cell system (vitamin A-storing cell 
system), Anat. Sci. Int. 92 (4) (2017) 387–455. 

[94] E. Yamada, K. Hirosawa, The possible existence of a vitamin A-storing cell system, 
Cell Struct. Funct. 1 (2) (1976) 201–204. 

[95] K. Wake, Hepatic stellate cells: three-dimensional structure, localization, 
heterogeneity and development, Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 82 (4) 
(2006) 155–164. 

[96] M.H. Green, J.B. Green, Vitamin A intake and status influence retinol balance, 
utilization and dynamics in rats, J. Nutr. 124 (12) (1994) 2477–2485. 

[97] M.H. Green, J.B. Green, The use of model-based compartmental analysis to study 
vitamin A metabolism in a non-steady state, Adv. Exp. Med. Biol. 537 (2003) 
159–172. 

[98] S.K. Kelley, C.B. Nilsson, M.H. Green, J.B. Green, H. Håkansson, Use of model- 
based compartmental analysis to study effects of 2,3,7,8-tetrachlorodibenzo-p- 
dioxin on vitamin A kinetics in rats, Toxicol. Sci. 44 (1998) 1–13. 

[99] S.K. Kelley, C.B. Nilsson, M.H. Green, J.B. Green, H. Håkansson, Mobilization of 
vitamin A stores in rats after administration of 2,3,7,8-tetrachlorodibenzo-p- 
dioxin: a kinetic analysis, Toxicol. Sci. 55 (2) (2000) 478–484. 

[100] Q. Ma, Overview of AHR functional domains and the classical AHR signaling 
pathway: induction of drug metabolizing enzymes, in: R. Pohjanvirta (Ed.), The 
AH Receptor in Biology and Toxicology, John Wiley & Sons, Hoboken, NJ, USA, 
2012, pp. 35–46. 

[101] P. Högberg, C.K. Schmidt, N. Fletcher, C.B. Nilsson, C. Trossvik, A. Gerlienke 
Schuur, A. Brouwer, H. Nau, N.B. Ghyselinck, P. Chambon, H. Håkansson, 
Retinoid status and responsiveness to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 
in mice lacking retinoid binding protein or retinoid receptor forms, Chem. Biol. 
Interact. 156 (September (1)) (2005) 25–39. 

[102] L.E. Elabbas, D. Borg, J. Esteban, X. Barber, W.J. Bowers, J. Nakai, G. Hamscher, 
H. Nau, A. Åkesson, H. Håkansson, Gestational and lactational exposure to 
environmental contaminants detected in Canadian arctic human populations 
alters retinoid homeostasis in rat offspring, J. Toxicol. Environ. Health 77 (2014) 
223–245. 

[103] J. Esteban, L.E. Elabbas, D. Borg, M. Herlin, A. Åkesson, X. Barber, G. Hamscher, 
H. Nau, W.J. Bowers, J.S. Nakai, M. Viluksela, H. Håkansson, Gestational and 
lactational exposure to the polychlorinated biphenyl mixture Aroclor 1254 
modulates retinoid homeostasis in rat offspring, Toxicol. Lett. 229 (2014) 41–51, 
https://doi.org/10.1016/j.toxlet.2014.04.021. 

[104] M. Viluksela, P. Heikkinen, L.T. van der Ven, et al., Toxicological profile of 
ultrapure 2,2’,3,4,4’,5,5’-heptachlorbiphenyl (PCB 180) in adult rats, PLoS One 9 
(8) (2014) e104639. Published 2014 Aug 19. 
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