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Abstract

Monitoring the development of greenhouse crops is essential for optimising yield and
ensuring the efficient use of resources. A system for monitoring hemp (Cannabis sativa
L.) cultivation under greenhouse conditions using computer vision has been developed.
This system is based on open-source automation software installed on a single-board com-
puter. It integrates various temperature and humidity sensors and surveillance cameras,
automating image capture. Hemp seeds of the Tiborszallasi variety were sown. After
germination, plants were transplanted into pots. Five specimens were selected for growth
monitoring by image analysis. A surveillance camera was placed in front of each plant.
Different approaches were applied to analyse growth during the early stages: two tradi-
tional computer vision techniques and a deep learning algorithm. An average growth rate
of 2.9 cm/day was determined, corresponding to 1.43 mm/◦C day. A mean MAE value
of 1.36 cm was obtained, and the results of the three approaches were very similar. After
the first growth stage, the plants were subjected to water stress. An algorithm successfully
identified healthy and stressed plants and also detected different stress levels, with an
accuracy of 97%. These results demonstrate the system’s potential to provide objective and
quantitative information on plant growth and physiological status.

Keywords: IoT; computer vision; hemp; monitoring; growth; water stress

1. Introduction
Crop control and monitoring are crucial for optimising farm management, ensuring

food security, and adapting to environmental changes. Various technologies are available
to monitor crop growth, divided into remote sensing and proximity sensing. Remote
sensing is a technique that uses satellites and unmanned aerial vehicles (UAVs) to obtain
information from a distance, which are widely used due to their ability to provide high-
resolution maps and data on crop growth. These systems allow systematic and constant
monitoring of crop phenological dynamics, facilitating the detection of growth anomalies
and enabling timely interventions in agricultural practices, such as irrigation and fertil-
isation, in order to increase yields [1,2]. These systems generate large amounts of data
that must be managed and processed efficiently using information access models that
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serve to extract relevant knowledge for decision-making in the field of precision agricul-
ture [3]. In proximity sensing, fixed or mobile sensors can be used, and they can be either
manual or automatic. Handheld portable devices are becoming more sophisticated and
more widely used. Among others, handheld devices based on hyperspectral cameras have
been developed for plant phenotyping and disease detection [4], fluorescence handheld
devices have been used to determine photosynthetic activity and the amount of antho-
cyanins [5], and portable near-infrared (NIR)-based equipment has been developed to
determine the ripening and quality of fruits, forages, and legumes [6–8]. Although the
information provided by this equipment is valuable, the measurements are punctual and
based on sampling, requiring human intervention. However, the use of automatic sensors,
generally fixed, allows for massive and continuous sampling over time with little or no
human intervention, increasing the amount of data available. This type of sensorisation is
based on the Internet of Things (IoT), which facilitates the automation of data collection,
sending, transformation, and analysis, being able to monitor different parameters such as
air and soil temperature and humidity, radiation, rainfall, pest and disease detection, soil
pH and nutrients, etc. [9–11].

Computer vision is a multidisciplinary field that allows machines to interpret and
understand visual information, simulating human vision. It integrates concepts from arti-
ficial intelligence; image processing, such as filtering, enhancement, and transformation;
and cognitive neuroscience with the aim of extracting relevant information from visual
data [12]. Such technology is increasingly being integrated into agricultural practices,
significantly improving data collection and management through the Internet of Things
(IoT). When combined with the IoT, machine vision systems provide non-invasive and
efficient solutions for plant health and growth monitoring, crop anomaly detection, irriga-
tion management, and agricultural yield estimation [13,14]. This technology allows for the
extraction of plant morphological variables such as height, leaf area, estimated volume, or
greenness index, which facilitates a better understanding of the phenological development
of the crop and its physiological state [13,15]. This integration facilitates the automation
of various agricultural processes, from land preparation to harvesting, using algorithms
based on traditional techniques and deep learning [13,15]. In recent years, machine vision
combined with IoT sensors has established itself as a key tool in precision agriculture.

The use of commercial RGB (red, green, blue) cameras, such as IP surveillance cameras
or those integrated into low-cost boards (Raspberry Pi, ESP32-CAM), has gained popu-
larity thanks to their accessibility and ease of installation. These cameras allow images to
be captured at regular intervals to be processed by classical algorithms (edge detection,
clustering, morphometric analysis) or algorithms based on deep learning (convolutional
networks, YOLO, U-Net) [14,16]. Several studies have validated this strategy in crops such
as rice, tomato, lettuce, or grapevine, demonstrating that it is possible to detect water stress
or nutritional deficiencies through morphological differences or changes in leaf colouring
detectable by image [17–19]. In these cases, images are combined with environmental
data (temperature, humidity, light, substrate conductivity) to improve model accuracy and
generate early warning systems.

The use of IoT technologies has brought about a major change in greenhouse manage-
ment. Abiotic stresses, such as drought and water deficit, generate significant alterations
at various physiological, biochemical, and gene expression levels and in the proteomic
profile of numerous plant species [20]. These alterations have a direct impact on plant
development, leading to a decrease in both growth rate and final yield [21,22]. In arid and
semi-arid regions, water deficit represents one of the most limiting environmental factors
for agricultural productivity by restricting plant growth [23]. Furthermore, water limitation
interferes with photosynthetic processes, reducing the synthesis of essential compounds
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and, consequently, preventing the plant from expressing its maximum productive poten-
tial [23]. Water limitation also increases internal competition for water between roots and
aerial organs, decreasing the availability of photoassimilates to the stem, slowing its growth,
thereby reducing the overall height of the plant [24]. In response to these challenges, IoT
systems use sensors to continuously monitor environmental parameters such as temper-
ature, humidity, light intensity, and CO2 levels. These data are crucial for maintaining
optimal growing conditions and are often processed and stored in cloud platforms for easy
access and analysis [25–28]. These systems can automate various greenhouse functions,
such as irrigation, lighting, and climate control, based on collected data. This reduces the
need for manual intervention and ensures constant growing conditions [27,29,30].

The integration of the IoT with computer vision enables the development of intelligent
systems that can adapt to varying environmental conditions and optimise crop productivity,
allowing for more autonomous and efficient greenhouse management [31,32]. Camera-
based systems are integrated into greenhouses to automate plant monitoring. These
systems can track growth rates, detect stress, and manage environmental conditions to
optimise plant health and productivity [33–35]. Algorithms such as Otsu thresholding,
watershed thresholding, and YOLO v4 are used for tasks such as leaf detection, plant
extraction, and growth measurement [33,36]. These systems can operate in different lighting
conditions, including day and night, to provide continuous monitoring [36]. The integration
of computer vision with AI, including deep learning and neural networks, improves the
ability to detect and classify plant stressors, providing real-time monitoring and decision
support [37].

Despite its benefits, several challenges hinder the widespread adoption of the IoT in
greenhouse management. These include the high cost and accuracy of sensors, limited
adoption of smart technologies in commercial agriculture, and issues related to data security
and privacy. Wider adoption requires improving sensor technology and developing more
cost-effective solutions [38,39].

The IoT has led to the development of various communication and automation archi-
tectures. These architectures typically involve a combination of sensors, communication
protocols, and data processing systems. Communication technologies such as Wi-Fi, Lo-
RaWAN, mobile networks (2G, 3G, 4G), ZigBee, and Bluetooth are commonly employed to
facilitate data transmission between devices and central control units [40], with the most
commonly used protocols being Message Queuing Telemetry (MQTT) and the HyperText
Transfer Protocol (HTTP) [41]. To manage storage, processing, and visualisation, tools
or platforms are used that handle the integration of data from various devices and the
automation of tasks. The proliferation of open-source platforms for automation and sensor
integration, such as Home Assistant, Node-RED, OpenHAB, or ThingsBoard, has enabled
researchers and technicians to build complete low-cost solutions for climate management
and data acquisition. Open-source systems such as Home Assistant [42–44] have a large
and active global community that shares knowledge and offers technical support. In ad-
dition, while configuration can be carried out through YAML files, a user-friendly visual
interface is also offered, allowing automations to be set up without the need for advanced
programming [42,44]. These platforms can be installed on single-board computers such as
Raspberry Pi [45], which stands out for its compact size, low cost, and ease of collaborative
source code development using GitHub [46], a web platform that simplifies project man-
agement with Git and encourages the participation of a large community of developers.
These systems can easily integrate ArduCam- or Raspberry Pi-type cameras, with very
good quality, or surveillance cameras, which do not require special technical knowledge
for configuration and integration and have very affordable prices.
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This combination of computer vision, environmental sensors, and embedded IoT
represents an opportunity to improve the productivity and sustainability of the sector,
democratising access to automated analysis technologies through replicable, modular, and
low-cost solutions. The aim of this work is to implement a computer vision system, inte-
grated into an open-source domotic platform for the detailed monitoring of the growth of
Cannabis sativa plants in greenhouses. The system combines the capture of images through
surveillance cameras with the monitoring of environmental variables through various
sensors, allowing for a detailed analysis of the development of the crop. Our system priori-
tises ease of implementation, cost-effectiveness, flexibility, scalability, and interoperability,
aiming for widespread adoption by growers regardless of their greenhouse’s technological
sophistication or existing infrastructure and preventing technological dependence. This
addresses the significant gap between high-tech greenhouses utilising complex, high-cost
monitoring solutions and producers who currently lack any real-time crop monitoring capa-
bilities. This study aims to demonstrate the system’s viability for automated, real-time crop
monitoring, validating its performance as an effective tool for continuous crop tracking.

2. Materials and Methods
2.1. Experimental Setting and Plant Material

The trial was carried out in a greenhouse at the University of Alicante (38◦22′47′ N
0◦31′38′ W) (Figure 1). It is a glass greenhouse of 1000 m2, distributed in 8 independent
modules of about 90 m2 each. It is a medium–high-tech greenhouse. The module has an
automatic climate and irrigation control system. Figure 2a shows the temperature and
relative humidity of the air and the vapour pressure deficit, and Figure 2b shows the
average temperature and humidity of the substrate of the plants during the test. The mean
values were 21.3 ◦C, 55.3%, and 11.5 hPa and 20.5 ◦C and 52.5%, respectively.

 

Figure 1. Location of experimental greenhouse module in UA greenhouses, Alicante province, Spain.
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(a)  (b) 

Figure 2. (a) Temperature (red, ◦C), relative humidity (blue, %), and vapour pressure deficit (purple,
hPa) of the air; (b) temperature (red, ◦C) and volumetric humidity (blue, %) of the substrate. Dashed
lines represent the average values.

Seeds of Cannabis sativa L. cv Tiborszallasi were sown on 20 November 2024, after
being submerged in water for 24 h in darkness. The process of germination was conducted
within seed trays equipped with transparent lids under conditions of controlled humidity
and LED lighting. The seedlings were placed inside a 2 m × 1.20 m × 1.20 m growth
chamber, which was isolated from the greenhouse environment in order to maintain con-
trolled conditions. Subsequent to the germination process, on 12 December 2024, the plants
were transplanted into individual pots. The substrate was composed of a blend of blond
peat, a mixture of plant material, coconut fibre, perlite, and vermiculite, and was enriched
with nutrients. The irrigation dose was 2 L per week per plant, administered using the
Hoagland nutrient solution. During the vegetative stage, a photoperiod of 18 h of light
and 6 h of darkness was applied. The base temperature for calculating degree days was set
at 1 ◦C, as determined by previous studies in similar conditions [47,48]. Five plants were
selected for the experiment. Plant height measurements were conducted twice a week on
all five plants. For each plant, height was consistently measured using a measuring tape
with millimetre (mm) accuracy, from the stem’s insertion point to the highest discernible
growth point of the plant’s canopy, ensuring minimal disturbance to the plant structure.
The first growth phase of cannabis is crucial and has a major impact on the plant’s fu-
ture development, yield, and quality [49]. Therefore, our growth study was limited to a
20-day period.

2.2. Architecture and Communications

In this study, Home Assistant (HA) version 2024.10.1 was used as a platform for
sensor integration and camera automation. The HA operating system was installed on a
Raspberry Pi 5 single-board computer by downloading the Raspberry Pi Imager and saving
the installer on an SD card. The project’s source code was managed using GitHub. For
the HA configuration, the Visual Studio Code version 5.18.4 development environment
was used. HA automatically detected and configured the sensors present in the local
network. InfluxDB version 5.0.1 was integrated to store the data collected by the sensors.
The TP-Link® Tapo C200 and Tapo TC70 surveillance cameras described in the following
section were integrated into the HA system, and the picture-taking was automated.

2.3. Image Acquisition

Plants selected for the experiment were arranged in a straight line on a cultivation
table, positioned against white panels to minimise image noise. Cameras were placed
directly in front of the plants (Figure 3). Cameras 1, 2, 4, and 5 were of the C200 model and
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camera 3 was of the TC70 model. The specifications were as follows: image sensor, 1/2.9′;
lens, F/NO: 2.4; focal length, 4 mm; night vision, 850 nm IR LED (9 m); resolution, 1080p
Full HD; swivel ranges, horizontal 340◦ and vertical 70◦; horizontal coverage, 360◦; and
vertical coverage, 114◦ (TC200) and 110◦ (TC70).

(a)  (b) 

Figure 3. (a) Plan view of the position and distance of the installed cameras; (b) details of the profile
of each of the cameras and their position in relation to the crop.

White extruded polystyrene (XPS) panels were used for the background, with dimen-
sions of 1000 mm × 500 mm × 10 mm. The distance from the camera lens to each of the
panels was 1.3 m (Figure 3a). At this fixed position, the pixel/cm ratio was determined for
each camera, after correction for lens deformation. The cameras were placed on 0.50 m
high supports. The camera lenses, at 80 mm from the base, were 580 mm above the table
surface (Figure 3b).

HA automation was configured to capture images of each plant at one-hour intervals.
The captured images were automatically stored in a designated folder in the Raspberry
Pi 5 storage system. A file naming system including date, time, and camera number was
defined to facilitate the organisation and post-processing of the images.

2.4. Image Processing and Growth Assessment

A series of procedures were carried out to process the images obtained from the
cameras until the geometrical parameters of the crop were obtained. Firstly, brightness
and contrast correction was carried out to standardize the histograms obtained by the
various cameras, and the area of interest occupied by the plant and the panel was cropped,
avoiding external objects (structures, supports, etc.). Two approaches were then taken, one
using traditional computer vision techniques, in which features are manually designed
and explicit algorithms are used [50,51], and the other using more modern deep learning
algorithms (Figure 4). In the traditional approach, on the one hand, pre-processing was
applied with a mask for the region of interest, a Gaussian filter (5 × 5 kernel) was used
to smooth the image, and edge detection was carried out using the Canny algorithm [52];
to measure the height, the position of the top edge was detected and the results were
saved in a csv file. On the other hand, clustering segmentation was carried out using the
K-means algorithm [53] with three groups: background, pot, and plant. The plant cluster
was identified based on the histogram of the red (R) and green (G) channel, and a mask
was generated, segmenting the plant.

For deep learning, the multipurpose algorithm YOLO v11 was used, which can per-
form detection, segmentation, classification, and pose detection tasks, its architecture being
a hybrid model between convolutional neural networks (CNNs) and transformers [16]. The
version used was yolo11x-seg.pt. Inference was performed without training the algorithm,
which was initialised with the weights of the COCO-seg dataset for the class ‘potted plant’
(class 58) [54]. Subsequently, to improve segmentation, the image was converted to HSV
(Hue, Saturation, Value) colour space and filtered by the V channel values (>200), generat-
ing a binary image. As the final stage of both approaches, the geometry of the binarised
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plant image was analysed with the PlantCV library [55], which is based on OpenCV and
commonly used in computer vision tasks.

Figure 4. Schematic of plant image processing for the determination of plant height and geometric
analysis.

In addition to the height, the geometric analysis of the plant yielded other parameters,
including the width, the convex hull area of the plant, and plant solidity. The latter two
shape parameters are defined as follows:

• Convex hull area: Area of the smallest convex shape completely containing an object.
• Solidity: The ratio of the plant area to the convex hull area.

The following metrics were used to compare the manually measured growth results
with those obtained with the different estimation methods:

• RMSE (Root Mean-Squared Error): This measures the root mean-squared differ-
ence between the predicted values and the real values. It is calculated according to
Equation (1):

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (1)

where yi is the measured value, ŷi is the estimated value, and n is the number of samples.

• MAE (Mean Absolute Error): This calculates the average of the absolute errors between
the actual and predicted values. It is calculated according to Equation (2):

MAE =
1
n

n

∑
i=1

|yi − ŷi| (2)

where yi is the measured value, ŷi is the estimated value, and n is the number of samples.

2.5. Water Stress Assessment

Plants were subjected to water stress from 1 January 2025. To evaluate the ability of
a classification model to identify the degree of water stress based on the number of days
without irrigation, the YOLO11x-cls model was used. This model is designed for efficient
image classification, assigning a single class label and a confidence score to the entire image.
This is particularly useful in contexts where only the generic class of the image is required,
without the need to locate specific objects within it. The dataset was organised into four
classes corresponding to different levels of water stress: healthy plants (no stress); plants
with three days without irrigation; plants with six days without irrigation; and plants with
nine days without irrigation. Training and test sets were prepared for each class with the
following distributions (approx. 80% for training and 20% for testing):

• 81 images of healthy plants for training and 20 for testing;
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• 90 images corresponding to 3 days of stress for training and 20 images for testing;
• 70 images with 6 days of stress for training and 17 for testing;
• 64 images of plants with 9 days of stress for training and 16 for testing.

For the interpretability of the results obtained from the YOLO11x-cls prediction, the
Grad-CAM algorithm was employed. This algorithm uses the gradients of the class in the
final layer of a convolutional neural network (CNN) to generate a heatmap indicating the
areas that have the greatest influence on the prediction [56].

3. Results and Discussion
3.1. Growth Determination

Figures 5 and 6 show an example of the detection performed by the Canny edge
detector and the K-means clustering model for the same plant. The Canny detector suc-
cessfully captures the shape of the plant as well as the outer contour of the pot; however, it
encounters difficulties when extraneous elements are present in the image, as it is unable
to differentiate between entities within it. Regarding K-means, three groups were initially
identified (background, pot, and plant). However, the variation in illumination caused by
the sun’s position throughout the day created different tones and colours in the background
of the image. Therefore, four groups were established to mitigate this variation.

(a) 

 

(b) 

Figure 5. (a) Hemp plant at 1, 5, 10, 15, and 20 days after transplanting; (b) determination of the plant
contour corresponding to each date.

As can be seen in the image, the plant and the edge of the pot are grouped into the
same cluster based on the different colour channels (R, G, and B) [57], as the model has
no spatial information. Therefore, it is less robust and flexible in response to changes in
illumination, a problem that can be mitigated under controlled conditions or by employing
adaptive optimisation algorithms to improve performance [58].

Figure 7 shows the detection and segmentation of the plant using YOLO v11. Using
the pre-trained model weights, the model was able to detect the hemp plants with a high
level of confidence. Although the segmentation defines the contour of the plant, it also
picks up parts of the background, so post-processing is necessary. In certain segmentations,
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the model is unable to discern between the base of the plant and the pot. This can be
corrected by adjusting the image to the edge of the pot or by setting the detection bounding
box. Compared to the other two algorithms, it is more robust to the presence of foreign
bodies or changes in illumination levels [17,18,59].

(a) 

(b) 

Figure 6. (a) Segmentation with k-means (k = 4) of the hemp plant at 1, 5, 10, 15, and 20 days after
transplanting; (b) geometric analysis of the plant for each date.

(a) 

 

(b) 

Figure 7. (a) Detection and segmentation with YOLO v11 of the hemp plant at 1, 5, 10, 15, and 20
days after transplanting; (b) geometric analysis of the plant for each date.

Table 1 shows the performance of each algorithm and model used, alongside the
relevant metrics. The RMSE and MAE results are very similar, with mean values of 1.47 cm
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and 1.36 cm, respectively. The YOLO v11 model produced the lowest error value, followed
by the Canny edge detector and then the K-means clustering-based model. The latter
showed the highest variability in the measurements. However, no significant differences
were found between them (Kruskal–Wallis test, p > 0.05).

Table 1. Evaluation of hemp plant height growth using various approaches.

Approach Algorithm/Model RMSE (cm) MAE (cm)

Traditional
Canny 1.47 (0.57) 1,2 a 1.39 (0.59) a

K-means 1.54 (0.70) a 1.41 (0.70) a

Deep learning YOLO v11 1.41 (0.58) a 1.29 (0.54) a
1 Mean value of RMSE/MAE for each plant and the standard deviation in brackets. 2 Different letters indicate
significant differences (Kruskal–Wallis, p < 0.05).

These values are indicative of their possible use to accurately estimate the height
growth of the crop, which can generate greater uncertainty in the initial days after trans-
planting, when the hemp is still small in terms of height. The automated approach allows
real-time results to be obtained and has the potential to replace labour-intensive manual
methods, which are prone to inconsistencies and errors in data collection [60]. While this
approach can be useful, it is important to note that it is not without its limitations. One
notable challenge is the loss of information when representing a three-dimensional plant in
2D, leading to an inability to obtain additional parameters of interest related to biomass,
such as plant volume. This limitation has previously been observed by Carlson et al. [61].
This issue can be resolved through the implementation of a zenith camera, followed by the
estimation of its volume. This approach entails higher investment per plant. Alternatively,
the use of a zenith RGB-D camera, in conjunction with the D-channel (Depth) data, can
be used to estimate the real height through a calibrated method [62]. A further associated
constraint concerns the number of plants sampled. Given that the cameras are fixed, it is
necessary to have at least one camera per plant, resulting in a limited number of sampled
plants. This issue can be resolved by employing zenith cameras with rails, which would
facilitate movement and enhance the sample size [63]. However, it would require dynamic
adjustment of the camera due to lens distortion and could be less accurate compared to
fixed cameras. In addition to visible light (RGB), other studies have utilised cameras with
diverse spectral ranges. In their study, Story and Kacira [64] employed a device comprising
three commercial cameras: one RGB (DFK 23G445, Imaging Source), one thermal (A325,
FLIR), and one NIR (850 nm) (DFK 23G445, Imaging Source). The device was encased in a
metal frame with rails to provide support for the monitoring of lettuce in greenhouses. This
facilitated the extraction of substantial information, including morphological characteristics,
vegetation indices, and plant temperature. Other scientific and commercial cameras such
as the NetCam SC IR (StarDot Technologies) [65] and the CCFC (Campbell Scientific) [66]
have been used for the phenotyping of crops such as soybeans and wheat. These cameras
offer advantages in terms of robustness, lens properties, and image quality. However, they
require considerable investment and are difficult to integrate with other existing systems.

3.2. Growth Curves

Figure 8a shows the growth curves of the hemp plants based on their recorded heights
as captured by each camera. To create these curves, the median daily height values
obtained from processing the images from 8 to 17 h were calculated and then averaged
for the three models used. Some variability in the growth rate is observed, becoming
more pronounced as the crop develops. Figure 8b shows good fits for linear and quadratic
regressions of hemp height as a function of days since transplanting. According to the
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linear model, the daily height growth rate can be close to 2.9 cm. These daily growth
values depend on the cultivation stage and usually follow a sigmoidal function, generally
ranging from 1 to 3 cm [61,67]. This value may be influenced by variety, planting density,
environmental conditions, and management practices [47,67,68]. Additionally, plant height
is a key indicator correlated with biomass and fibre yield [69]. Therefore, determining the
growth rate may be useful for the early detection of possible anomalies so that problems
can be solved early on, crop yield can be predicted, and fertiliser and water use efficiency
can be improved, thereby reducing costs and inputs [19,70].

(a)  (b) 

Figure 8. (a) Growth curves of each tested plant from transplanting to 20 days after transplanting;
(b) fitting of a linear (blue) and quadratic (red) regression to hemp growth.

Hemp growth can also be expressed in terms of degree days, taking into account the
base temperature. As can be seen in Figure 9b, there is a significant positive correlation
between height growth and accumulated degree days (r = 0.95), with an approximate value
(R2 = 0.90) of 1.43 mm/◦C day. It is evident from the observation of both (Figures 8 and 9)
that a close relationship exists between the days since transplanting and the accumulated
degree days. This is because in our study, controlled temperature conditions were estab-
lished (M = 21.3 ◦C, SD = 2.5 ◦C) with slight variations throughout the day (CV = 11.7%)
and in the average daily temperature (CV = 4.8%), so that the accumulation of degree days
and that of natural days were close to constant proportionality. However, this information
can be useful for predicting plant development stages and comparing the growth of hemp
under different test conditions in protected environments or outdoors in the field [47,48,71].

With regard to other plant parameters, including width, area, convex hull area, and
robustness, analysis was only possible up to the first 10 days after transplanting. This was
due to the camera framing and the width of the image, with the plant exceeding the outer
edges of the photograph. During the initial 10-day period, the growth rate for height was
found to be lower, with an average of 2.1 centimetres per day (R2 = 0.77). A high positive
linear correlation was observed between plant width and height, with a Pearson correlation
coefficient of 0.79 and a p-value of less than 0.05. This indicates that the width of the plants
increased by approximately 1.2 centimetres per day (R2 = 0.76), which is 43% less than
the height growth rate. The correlations between plant area and both height and width
were found to be positive (r = 0.93 and r = 0.78, respectively). The rate of growth in area
was found to be 9.4 cm2/day (R2 = 0.77). The solidity levels exhibited a decline from 0.45
on day 1 to 0.25 on day 10 following transplantation, thereby indicating that the convex
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hull plant area exhibited a marked increase in comparison to the area of 40.7 cm2/day
(R2 = 0.83). This finding suggests that, as the plant matured, it underwent a transformation
from a more compact and denser configuration to a more open architecture characterised
by increased separation between leaves and branches. This change was accompanied by a
marked vertical growth, predominantly exhibiting apical dominance, a phenomenon that
is commonly observed in fibre and grain varieties [61].

(a)  (b) 

Figure 9. (a) Growth curves of each tested plant in terms of accumulated degree days since trans-
planting; (b) fitting of a linear (blue) and quadratic (red) regression to hemp growth in terms of
accumulated degree days.

3.3. Water Stress Detection

The confusion matrix depicted in Figure 10 reflects the performance of the YOLO11x-
cls model in classifying Cannabis plants subjected to different levels of water stress
(0, 3, 6, and 9 days without irrigation). The model correctly classified all images labelled
as ‘healthy’ (no water stress), reaching an accuracy of 100%. This shows that the model
identifies healthy plants very effectively. In the ‘water stress 3 days’ category, 95% of the
images were correctly classified, while 5% were confused with the ‘water stress 6 days’
group. This is foreseeable, given that the visual differences between the initial stress states
can be subtle. For the ‘water stress 6 days’ class, the model correctly classified 94% of the
images. The remaining 6% were erroneously assigned to the ‘water stress 3 days’ category,
which is also consistent considering that symptoms between 3 and 6 days of stress are
progressive and difficult to distinguish visually. Finally, in the ‘water stress 9 days’ and
‘healthy’ classes, the model showed optimal performance, with 100% success. This suggests
that plants subjected to 9 days without irrigation show distinctive visual signs that the
model can readily recognise.

Figure 11 shows the results of the automatic classification process for identifying
water stress in hemp plants using the YOLO11x-CLS model. This model was trained using
images of plants at different stages of stress caused by a lack of irrigation, ranging from
healthy plants to those experiencing 3, 6, or 9 days of water stress. The figure also shows
the GradCAM activation maps corresponding to each category. As the number of days
without irrigation increases, there is a progressive loss of turgor and leaf drop, as well as
other visual signs that are characteristic of water stress. These differences are precisely what
the YOLO11x-cls model has learnt to recognise in order to assign a class label to each image.
GradCAM maps allow the regions of an image that the model considers most relevant for
classification to be visualised. For healthy plants, the model focuses on the largest leaves.
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For plants with a higher level of water stress, however, the areas of activation shift towards
fallen leaves or areas where stress symptoms are more evident. This visualisation suggests
that the model could correctly classify images according to the number of days of stress
based on physiologically consistent morphological characteristics.

Figure 10. Normalised confusion matrix of hemp plant water stress classification using YOLO v11.

 

Figure 11. Hemp water stress classification results for the test set and heatmaps associated with
activation maps corresponding to Grad-CAM.
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The wilting observed in the water-stressed plants in this study is primarily attributable
to the reduction in water content in the tissues, a direct consequence of the decrease in water
availability in the substrate. In instances where the plant is unable to compensate for the
loss of water through root uptake, a loss of cell turgor ensues, culminating in the collapse of
metaphyll cells and leaf wilting, which is characterised by a visible manifestation of wilting.
This response is commonly observed in conditions of water deficit, where the plant closes
the stomata to reduce transpiration. However, this also results in limited CO2 entry, which
in turn affects photosynthesis and thus energy and biomass production [23,72]. Moreover,
the imbalance between reactive oxygen species (ROS) production and antioxidant capacity
exacerbates cell damage, affecting the structural integrity of leaves and accelerating visual
deterioration of the plant [24,73]. Consequently, the observed wilting is not only an early
indicator of water stress but also a reflection of a profound physiological alteration that
compromises plant health and yield.

3.4. The Potential of Internet of Things (IoT) Systems and Low-Cost Platforms

A key advantage of the developed system is its modular, replicable, and cost-effective
nature, enabling its implementation with readily available components such as Raspberry
Pi, commercial sensors, and IP cameras. This configuration of an embedded IoT architecture
is consistent with the approaches documented in the literature, wherein analogous systems
have been employed for the purposes of growth monitoring and stress diagnosis [70].

The integration of climate sensors (temperature, humidity, illuminance, conductivity)
with computer vision has been proven to enrich phenotypic analysis. In this instance, plant
growth measured by image analysis was quantified as a function of thermal time, expressed
as degree days. This integration facilitates the early detection of growth deviations due to
water stress or nutritional deficiencies. This convergence of visual and environmental data
has been identified as a fundamental aspect in the progression towards autonomous and
intelligent agricultural systems [13,14].

Moreover, the use of open-source platforms such as Home Assistant confers a strategic
advantage over proprietary solutions. This is due to the fact that it does not require ad-
vanced programming knowledge, facilitates system customisation, and allows integration
with storage (InfluxDB) and automation (MQTT, HTTP, etc.) services. This approach has
already been validated in domestic environments and is now being successfully transferred
to the agricultural sector, promoting a model of digital agriculture that is accessible to small
farms [44].

Overall, this study aligns with a growing trend towards the development of solutions
based on the IoT and artificial intelligence. This tendency facilitates the democratisation
of access to crop monitoring through the implementation of simple, cost-effective, and
efficient technologies that can be adopted by agricultural technicians, researchers, and
farmers who lack substantial resources.

4. Conclusions
A system was implemented to monitor the growth of Cannabis sativa L. plants in green-

houses using artificial vision based on surveillance cameras integrated into an embedded
IoT system that automates image capture and storage.

The captured images were analysed using traditional computer vision techniques,
consisting of edge detection using the Canny algorithm and segmentation by clustering
using the K-means algorithm, along with the use of the YOLO v11 algorithm based on
deep learning.

These three methods made it possible to determine plant characteristics such as height
and geometry and to analyse growth. The model that presented the lowest RMSE and MAE
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values was the one based on deep learning. However, no significant differences were found
between the three models. Furthermore, image analysis facilitated the automated identi-
fication of water stress. The YOLO11x-CLS model demonstrated an ability to accurately
classify images according to the number of days of stress.

It has been demonstrated that it is possible to implement an embedded artificial
vision and IoT system for monitoring growth and detecting water stress in industrial
hemp, without the need for sophisticated cameras or advanced programming knowledge.
The system is based on open-source platforms, low-cost sensors, and conventional video
cameras, allowing it to be replicated in various environments. This approach facilitates
non-invasive, automatic, and efficient analysis of crop development, thereby establishing a
foundation for simple and economical agricultural decision-making support systems.
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