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Abstract: Walnut (Juglans regia L.) exhibits a high sensitivity to water deficit, making it
crucial to comprehend this characteristic in order to optimize irrigation strategies to im-
prove its productivity. Deficit irrigation is widely used under drought conditions to achieve
water savings goals. This study examines the impact of sustained deficit irrigation (SDI)
strategies—applying 33%, 50%, or 75% of the crop water demand—on yield and quality
parameters of two walnut cultivars (Chandler and Cisco) over a three-year monitoring
period. These treatments were compared against control trees receiving full irrigation at
100% of crop water requirements (C100). The nut yield was significantly and proportionally
reduced under the SDI treatments. In the experiment, the average yield for cv. Chandler
amounted to 6.7, 6.4, and 12.2 kg tree−1 under SDI33, SDI50, and SDI75, respectively, which
were less than 13.9 kg tree−1 in the C100 plot. Similarly, cv. Cisco yielded 8.0, 11.6, 11, and
15.6 kg tree−1 under SDI33, SDI50, SDI75, and C100, respectively. These findings indicate that
the cultivar Cisco exhibits greater tolerance to moderate and intermediate levels of water
deficit. Furthermore, the SDI treatments notably influenced several morphological and
physicochemical kernel parameters. The key affected attributes include the weight, size,
color, profiles of specific sugars, and mineral content (notably potassium, iron, and zinc),
as well as the composition of unsaturated fatty acids (palmitoleic and cis-vaccenic) and
polyunsaturated fatty acids (linoleic and α-linolenic), with pronounced effects observed
particularly under the SDI75 treatment. Thus, deficit irrigation did not drastically affect
the kernel quality parameters, and it is also possible to augment them by selecting the
appropriate water stress level. Therefore, for both walnut cultivars, approximately 25% of
the irrigation water (SDI75), equivalent to an average of 1681 m3 ha−1, can be conserved
relative to the total crop water requirement without negatively impacting walnut tree per-
formance in the short to medium term. Here, we show the key role of adjusting irrigation
practices by stressing the benefits of SDI that can save water, foster water productivity, and
boost walnut health-promoting phytochemicals.

Keywords: deficit irrigation; walnut quality; fatty acid profile; Mediterranean semiarid
areas; mountainous farming
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1. Introduction
The walnut (Juglans regia L.) tree is extensively cultivated in temperate regions world-

wide and is one of the most marketable and important edible nuts [1–3]. This woody
fruit tree belongs to the family Juglandaceae that originated in Persia [4,5]. In 2021, China
had the highest area harvested of 279,853 ha, followed by the United States of America
(157,829 ha), Turkey (153,520 ha), Mexico (111,589 ha), Burkina Faso (91,370 ha), and Iran
(53,504 ha) [6]. In Spain, the area devoted to walnut cultivation amounted to 15,285 ha,
with ~53% of this total area being irrigated [7]. In this context, irrigation is one of the most
critical agronomic practices and plays a pivotal role in the successful cultivation of walnut
trees [8–11]. Historically, and under varying climatic conditions, a significant proportion of
walnut plantations were established without irrigation. However, given the walnut tree’s
positive response to water availability, manifested in both enhanced vegetative growth and
substantial increases in nut yield, most commercial walnut orchards today are irrigated.
Walnuts are widely regarded as a healthy food choice due to their bioactive composition
and medicinal properties. Nutritionally, they are a rich source of fatty acids, polyphenols,
flavonoids, tocopherols, essential amino acids, and minerals [12–15]. Notably, virgin walnut
oil is characterized by a high content of monounsaturated (MUFAs) and polyunsaturated
fatty acids (PUFAs) [16,17]. According to Das [18], PUFAs, particularly linoleic acid and
α-linolenic acid, constitute more than half of the total lipid content in walnuts. This is partic-
ularly significant, as the human body cannot synthesize these essential fatty acids. Walnut
is rich in tocopherols and essential fatty acids such as omega-3 (Ω3) and omega-6 (Ω6),
with important effects on human health [19,20]. Among the phytochemicals, the polyphe-
nol, flavonoid, and tocopherol contents in walnuts possess numerous health-promoting
attributes, such as their ability to act as antioxidants and provide antibacterial, antifungal,
anti-inflammatory, anti-aging, anticancer, and neuroprotective benefits [21,22].

Variations in phytochemical composition among different walnut cultivars have been
documented for the major commercially cultivated varieties [23,24]. The component vari-
ability among cultivars in different locations and climate zones is especially apparent [25].
In this regard, numerous studies have identified significant differences in the levels of
fatty acids, minerals, and polyphenols among walnut cultivars [21,26,27]. In addition
to cultivar-specific effects, climatic conditions have been shown to directly influence the
phytochemical composition. Research by Rabadán et al. [23,28] demonstrated that seasonal
climatic variability had a greater impact on the concentrations of fatty acids, polyphenols,
tocopherols, and essential minerals (e.g., iron) than the differences observed between cultivars.
According to Fuentealba et al. [29], lower minimum temperatures caused an increase in the
synthesis of unsaturated fatty acids, while rainfall directly impacted the contents of phenolic
compounds during kernel-growing seasons [30]. The year and genotype variability also led to
alterations in the tocopherol content of walnuts, as stated by Kodad et al. [31].

Today, certain walnut growing regions could be impacted by a changing climate,
particularly the European regions in the Mediterranean and temperate continental cli-
mates [32,33]. In this context, the effects of climate change are expected to manifest most
prominently through changes in water availability for agriculture, with potentially signifi-
cant and uneven consequences for farming activities [34,35]. Specifically, in the Mediter-
ranean basin, Gorguner and Kavvas [36] project a substantial decline in water availability
in the coming decades. This trend, combined with the ongoing expansion and intensifi-
cation of agricultural land use, is anticipated to lead to an increased demand for water
resources [37,38]. Arid and semiarid regions are currently experiencing water scarcity
for agricultural purposes, which represents the most critical environmental constraint
for woody fruit crops, adversely impacting both productivity and sustainable develop-
ment [39,40]. Therefore, water availability and scarcity clearly highlight the necessity
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for irrigated crops in Mediterranean regions to adopt alternative techniques in order to
enhance resilience under conditions of water shortage [41]. The walnut is a tree with a
high water demand and is markedly susceptible to water stress [42–44]. Accordingly, water
stress negatively affects its growth and productivity [45,46]; therefore, this may reduce the
viability of current mature orchards and the establishment of new ones.

Under drought conditions or high leaf-to-air vapor pressure deficit conditions, walnuts
have good stomatal regulation [47]; preventing the stem water potential from dropping
below −1.4 MPa is crucial, as this threshold corresponds to the onset of xylem cavitation,
as reported by Tyree et al. [48] and Cochard et al. [49]. Due to this behavior, the regulated
deficit irrigation (RDI), which withholds water at specific growth stages, has not proven to
be as effective in walnut as in other woody crops such as almond, pistachio, vineyard, or
olive [50]. For these crops, properly timed and controlled levels of water deficit decreased
the amount of irrigation water and benefited the yield or crop quality. By contrast, sustained
deficit irrigation (SDI) refers to a water restriction strategy in which the crop receives a
lower and uniform amount of irrigation water. That is, the water is applied below the crop
evapotranspiration, developing a progressive stress in the plant throughout the season;
furthermore, SDI is the simplest strategy used by farmers in areas with reduced available
water resources. Consequently, studies on the responses and adaptations of walnut trees
to water stress induced by deficit irrigation, as well as their implications for yield and
quality, are essential. Conversely, it is well-established that a water deficit can enhance
the accumulation of secondary metabolites in plants, thereby improving the functional
properties of edible products [51,52]. These secondary metabolites are key contributors to
the antioxidant activity of walnuts, playing crucial roles in plant adaptation to environ-
mental stresses and resistance to biotic factors while also offering significant benefits for
human nutrition and health [53]. Specifically, under a Mediterranean climate characterized
by hot and dry summers and predominantly humid winters, irrigation plays a critical role
in compensating for the water deficits caused by high crop evapotranspiration. In future
scenarios, the increasing demand for water resources will necessitate the development of
strategies to optimize water productivity (WP) and maximize water savings while sustain-
ing crop yield. In this context, deficit irrigation, applying controlled water restrictions that
minimally affect crop yield without compromising sustainability, has emerged as an effec-
tive approach to enhance water productivity (WP) [40]. Recent studies conducted across
diverse environments have demonstrated the benefits of deficit irrigation in improving
the WP and fruit quality in various nut tree species, including almond [54], hazelnut [55],
cashew [56], macadamia [57], pecan [58], pistachio [59], and pine nut [60].

This study evaluated the effects of SDI on the yield and quality of two walnut cultivars
(Chandler and Cisco) under water stress conditions over three consecutive growing seasons
in an orchard situated in the semiarid mountainous region of southeastern Spain.

2. Results and Discussion
2.1. Walnut Yield Response to Deficit Irrigation

Over the three monitoring seasons, the average yields of cv. Chandler walnuts from
water-stressed trees under the SDI33, SDI50, and SDI75 treatments were 6.7, 6.4, and 12.2 kg
tree−1, respectively. The yields under SDI33 and SDI50 were significantly lower compared
to the non-stressed control trees (C100), which produced an average of 13.9 kg tree−1

(Figure 1A). Similarly, for cv. Cisco, the walnut yields for SDI33, SDI50, SDI75, and C100

were 8.0, 11.6, 11.0, and 15.6 kg tree−1, respectively. Potentially, in terms of productivity
per area in such mountainous walnut plantations, the SDI33, SDI50, SDI75, and C100 for
cv. Chandler can be 1.8, 1.7, 3.3, and 3.8, and for cv. Cisco, they can be 2.2, 3.2, 3.0, and
4.2 t ha−1, respectively. This suggests that cv. Cisco seems to be more tolerant to water
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stress than cv. Chandler, even when the reduction in irrigation water is 50%. In this sense,
Aletà et al. [61] reported yields for cv. Chandler and non-water-stressed trees in Northern
Spain between 2.5 and 1.85 t ha−1. Due to the alternate bearing nature of walnut trees, the
impact of water stress induced by deficit irrigation is more accurately assessed using yield
data averaged across the monitored seasons. Accordingly, when averaged over time, the yield
reductions for both walnut cultivars under moderate (SDI75), medium (SDI50), and severe
(SDI33) water stress conditions were 21, 39, and 50%, respectively, relative to the non-stressed
control treatment (C100) (Figure 1B). These findings suggest that the yield of the non-stressed
trees was slightly less affected by the alternate bearing pattern, whereas the yield of the
water-stressed trees experienced a more pronounced decline during off-bearing seasons.

Figure 1. Response of walnut yield to deficit irrigation treatments during a three-year monitoring
period: (A) average yield reduction (YR) and (B) water productivity (WP) for both walnut cultivars.
SDI, sustained deficit irrigation; SDI33, at 33% ETC; SDI50, at 50% ETC; SDI75, at 75% ETC; and
C100, control at 100% ETC. Values associated with the same letter among columns are not signifi-
cantly different using Tukey’s least significant difference test (p < 0.05). Vertical bars represent the
standard deviation.

Along these lines, according to a two-year monitoring study of Kornov et al. [62], the
yield reductions due to irrigation regimes based on 150% ETC, 50% ETC, and non-irrigated
trees were 24.4, 38.6, and 59.7%, respectively, compared to the full-irrigated walnut trees
at 100% ETC. Thus, the decline in yield was important and corroborated the sensitivity of
the walnut to water supply. Similarly, Goldhamer et al. [63] reported the yield for walnut
irrigated with 100% ETC, 66% ETC, and 33% ETC at 5.0, 3.3, and 2.5 t ha−1, respectively. A
study by Calvo et al. [64] for two monitoring seasons revealed the impact of a water deficit
using four applied water treatments of 50, 75, 100, and 125% of ETC, yielding 2.50–3.14,
2.97–3.50, 3.14–3.75, and 3.28–3.83 t ha−1, respectively. In addition, Goldhamer et al. [65],
in a six-year study, found that the yield of Chico walnut was reduced by 20 to 40% (SDI
strategy) when trees were supplied irrigation at 33% and 66% of ETC, respectively; two
years of irrigation at full ETC were required before the walnut trees returned to near-
normal yield potential. The findings of the present experiment aligned with those of
Perulli et al. [11], who reported that the adoption of deficit irrigation rates at 75 and
50% ETc did not affect Chandler walnut quality parameters and yield to a high degree.
Moreover, applying both irrigation strategies improved water-use efficiency during a
four-year monitoring period.

As expected, a reduction in yield and nut development occurred due to deficit irri-
gation; the visual impact of the latter on the nut size of the studied walnut cultivars with
respect to the full-irrigated control nuts is shown in Figure 2. Under the conditions of this
experiment, moderate water stress, corresponding to 75% of crop evapotranspiration (ETC),
appears to be a viable strategy for reducing irrigation water use without substantially
compromising the productivity of either walnut cultivar. However, the Cisco walnut was
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more tolerant to water stress at 50% ETC, yielding almost similar results to under 75% ETC.
This observation aligns with the findings of Buchner et al. [66], who reported that Chandler
walnut trees are not well suited for deficit irrigation due to their pronounced sensitivity to
water stress.

Figure 2. Walnut cultivars irrigated with different sustained deficit irrigation (SDI) levels. SDI,
sustained deficit irrigation; SDI33, at 33% ETC; SDI50, at 50% ETC; SDI75, at 75% ETC; and C100,
control at 100% ETC.

2.2. Water Productivity

The average WP for cv. Chandler under SDI33, SDI50, SDI75, and C100 during the
study period was 0.82, 0.52, 0.66, and 0.56, respectively, and for cv. Cisco, it was 0.98,
0.94, 0.59, and 0.63 kg m−3, respectively. Comparable improvements in water productivity
through deficit irrigation, relative to fully irrigated trees, have been documented for walnut
trees by Guiqing et al. [67] and Perulli et al. [11]. Cohen et al. [68] studied three irrigation
strategies: control at 100% ETC, regulated deficit irrigation (RDI) with 20% ETC (irrigated
June–September), and SDI at 70% ETC throughout the growing season. Both the RDI and
SDI strategies reduced the walnut yield by 40% with respect to the control. This meant
an increase in the WP for dry in-shell yield for the control, RDI, and SDI of 2.4, 5.6, and
4.7 kg ha−1 mm−1, respectively. Similarly, Calvo et al. [64] calculated the WP function for
walnut dry in-shell yield and total applied water over a season, estimating a maximum
yield of 9.93 t ha−1 with a maximum irrigation dose of 1350 mm ha−1. Finally, in a study
by Abdullah et al. [10] on irrigated walnut orchards, they saved around 1700 m3 ha−1 of
irrigation water, with average yield reductions of 145 kg ha−1 and a higher WP of roughly
0.02 kg m−3. The responses of walnut productivity to different irrigation water doses are
highly variable and sometimes contradict logic; however, these are field experiments, in
which there can be highly uncontrollable surrounding or environmental factors.

In relation to the water irrigation amount, Sadeghi-Majd et al. [69] reported drip
irrigation water for walnuts at 7000 m3 ha−1; the best yield was produced when 100% of
water needs were met, and increasing the irrigation by 25 or 30% unnecessarily enhanced
the plant development and growth [68]. In addition, based on their findings, a 20%
reduction in irrigation reduced the yield marginally but increased the crop quality, which
coincides with the results of the present experiment with SDI75 (5042 vs. 6723 m3 ha−1
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of control plot). A lower amount of water of 4130 m3 ha−1 for walnuts was reported by
Xue et al. [70]. According to Zhang et al. [71], optimal walnut tree growth and development
can only be achieved with drip and sprinkler irrigation and not with flood or rainfed systems.
Similarly, Apáti et al. [72] stated that the effectiveness of the irrigation system in terms of
walnut yield showed the following trend: sprinkler (2210 kg ha−1) > drip (2150 kg ha−1)
> flood (1620 kg ha−1). In another study, Lampinen et al. [73] showed that the impact of
pauper irrigation on yield was different and depended crucially on the tree’s age, cultivar,
soil conditions, cultivation techniques, etc. Finally, Fulton [8], through a study on walnut
trees in California (USA), reported that the walnut’s seasonal water need amounted to
10,620 m3 ha−1, which is much higher than that used for the full-irrigated trees in the
present study.

In general terms, the implementation of sustained deficit irrigation at 75% of ETC

enhanced the WP and moderately controlled the vegetative growth without considerable
negative implications on the walnut yield and with important water irrigation savings of
about 1681 m3 ha−1.

2.3. Walnut Quality Parameters
2.3.1. Morphological and Physical Features

Table 1 presents the effects of the irrigation regime and cultivar on the morpholog-
ical and physical characteristics of the walnuts studied. The irrigation regime induced
significant differences in walnut weight, kernel thickness, color, and kernel cutting force.
In terms of the cultivar factor, significant differences were observed for all morphological
parameters, except for the kernel weight, length, and thickness. The deficit irrigation treat-
ments, particularly the SDI33, significantly reduced the weight and size of walnuts with
respect to the C100 plot; similarly, important alterations for the a* and b* coordinates, hue,
and cutting force were found. In general, the decline in the morphology parameter values
was lower for walnuts at SDI75, and the pattern was in line with the level of water stress
imposed (Figure 2). In addition, the water-stressed walnuts have higher L* coordinate
values with respect to the non-stressed, and the lowest value for a* was denoted for the
severely water-stressed SDI33 trees. A harder texture was determined for walnuts from
SDI75 (33.7 N), and a softer texture was found for the remaining treatments, including the
control. In general, cv. Cisco produced walnuts with the highest weight and size, and
cv. Chandler had significantly lower values for all color parameters and higher hardness
(31.1 N), in contrast to the number of fractures (36.9 vs. 34.2). According to Charrier et al. [74],
walnut vegetative growth takes place fully in spring during the stage between bud break
and endocarp hardening, defining the fruit numbers and size. In other words, the reduction
in walnut quality, particularly in terms of size, can be attributed to potential water deficit
conditions [75]. Pakrah et al. [76] provided evidence that water stress during the maturation
phase may affect kernel color due to elevated temperatures caused by reduced hydraulic
conductivity, leading to the chemical and enzymatic oxidation of phenolic compounds in
the walnut kernel pellicle. Correspondingly, despite the decline in kernel color quality, the
nutritional value of walnuts may improve significantly in warmer seasons or environments,
such as semiarid Mediterranean regions, consistent with the findings of Calvo et al. [77].
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Table 1. Morphology, instrumental color, and instrumental texture of raw walnuts as affected by irrigation treatment and walnut cultivars during the monitoring
period.

Weight (g) Size (mm) Instrumental Color Cutting Force

Whole Kernel Shell Length Width Thickness L* a* b* C Hue Hardness
(N) NF

ANOVA Test †

Irrigation *** *** *** *** *** *** ** *** NS NS *** *** ***
Cultivar *** NS *** NS *** NS *** *** *** *** *** *** ***

Irrigation × Cultivar *** *** *** *** *** *** ** *** *** *** *** *** ***
Tukey’s Multiple Range Test ‡

Irrigation
C100 10.20 a 4.55 a 5.64 a 36.7 a 32.6 a 30.7 a 53.8 b 7.63 a 28.8 29.9 75.2 b 28.4 b 32.9 bc

SDI75 9.08 bc 4.06 b 5.02 ab 35.7 a 31.0 b 29.4 b 55.5 a 7.23 a 28.9 29.9 76.0 a 33.7 a 29.2 c
SDI50 9.35 ab 4.11 ab 5.24 ab 35.5 a 31.3 b 29.4 b 55.2 a 7.66 a 29.7 30.7 75.5 b 28.7 b 41.9 a
SDI33 8.22 c 3.53 c 4.68 b 32.9 b 29.7 c 28.2 c 56.5 a 6.84 b 29.2 30.1 76.9 a 29.3 b 38.4 ab

Cultivar
Cisco 9.59 a 4.08 5.51 a 35.2 31.5 a 29.3 56.3 a 8.16 a 30.6 a 31.7 a 75.0 b 29.0 b 36.9 a

Chandler 8.83 b 4.05 4.78 b 35.2 30.9 b 29.6 54.4 b 6.58 b 27.9 b 28.7 b 76.7 a 31.1 a 34.3 b
Irrigation × Cultivar

C100 × Cisco 10.5 a 4.61 a 5.86 a 36.5 a 33.1 a 30.6 a 54.8 b 8.90 a 31.7 a 33.0 a 74.1 b 26.4 c 35.0 b
SDI75 × Cisco 9.58 b 4.06 a 5.52 a 35.8 ab 31.2 b 29.3 ab 57.9 a 7.54 b 30.1 a 31.1 b 75.9 a 32.2 b 29.2 c
SDI50 × Cisco 10.5 a 4.51 a 6.04 a 36.7 a 32.9 a 30.4 a 54.3 b 8.97 a 30.4 a 31.7 b 73.5 b 26.6 c 42.0 a
SDI33 × Cisco 7.75 d 3.13 c 4.62 b 32.0 c 28.7 c 26.8 c 57.8 a 7.44 b 30.4 a 31.4 b 76.3 a 30.8 b 41.4 a

C100 × Chandler 9.91 b 4.49 a 5.42 a 36.9 a 32.1 a 30.7 a 53.0 c 6.66 c 26.7 d 27.5 d 76.0 a 30.5 b 30.8 c
SDI75 × Chandler 8.57 c 4.06 a 4.51 b 35.6 ab 30.9 b 29.5 ab 53.4 c 6.94 c 27.8 c 28.7 d 76.0 a 35.2 a 29.1 c
SDI50 × Chandler 8.15 c 3.72 b 4.43 b 34.3 b 29.7 b 28.5 b 56.0 b 6.47 c 29.1 b 29.8 c 77.4 a 30.8 b 41.8 a
SDI33 × Chandler 8.69 c 3.93 ab 4.75 b 33.9 bc 30.8 b 29.5 ab 55.3 b 6.24 c 28.0 c 28.8 d 77.5 a 27.9 c 35.5 b

SDI, sustained deficit irrigation; SDI33, at 33% ETC; SDI50, at 50% ETC; SDI75, at 75% ETC; and C100, control at 100% ETC. † NS = not significant; ** and *** = significant at p < 0.01 and
0.001, respectively. ‡ Values associated with different letters within the same column and factor were significantly different (p < 0.05) according to Tukey’s least significant difference test.
L*, a*, and b* = color coordinates; C = chroma; and NF = number of fractures.



Plants 2025, 14, 1777 8 of 28

Texture parameters are widely recognized as critical factors influencing consumer
acceptance. In this context, both the deficit irrigation treatment and cultivar had signifi-
cant effects. Overall, the SDI75 treatment resulted in notable increases in kernel hardness.
Among the cultivars, Chandler exhibited the most favorable texture characteristics, demon-
strating the highest hardness values. The analysis of color coordinates indicated that cv.
Cisco possessed a lighter skin tone, while cv. Chandler exhibited a darker coloration.
Specifically, cv. Cisco showed the highest a* values (indicating a more reddish hue) but
the lowest b* values (indicating less yellow or more bluish tones). The interaction be-
tween the irrigation regime and cultivar resulted in significant differences across all the
measured parameters. Notably, substantial variations in key morphological traits were
observed for both cultivars, particularly under severe water stress conditions (SDI33), con-
sistent with the levels of water deficit imposed. However, compared to the control trees
(C100), no significant differences were detected for walnuts subjected to SDI50 in cv. Cisco,
and a similar trend was observed for SDI75 in cv. Chandler. These results are consistent
with the findings reported for other nut species, including hazelnuts [55], pistachios [59],
almonds [54], macadamias [78], and walnuts [66], where many quality attributes remained
largely unaffected by moderate or medium deficit irrigation treatments. Conversely, while
irrigation treatments significantly influenced both the kernel ratio and dry weight, the
cultivar factor alone did not exert a notable effect, although their interaction proved statisti-
cally significant (Table 2). Within the deficit irrigation regimes, SDI75 achieved the highest
kernel ratio at 40.7%, whereas SDI50 resulted in the highest dry weight, measuring 5.49%
among SDI strategies. These outcomes may be attributed to a decreased fruit load in trees
subjected to water stress, potentially facilitating a more efficient kernel-filling process due
to the reduced number of fruits per tree [79]. In terms of cultivar variation, no statistically
significant differences were observed for either parameter.

Table 2. Effect of irrigation dose and cultivar on the walnut kernel ratio, moisture content, and water
activity during the study period.

Kernel Ratio Dry Weight Water Activity
(%) (aw)

ANOVA Test †

Irrigation *** *** ***
Cultivar NS NS NS

Irrigation × Cultivar *** *** ***
Tukey’s Multiple Range Test ‡

Irrigation
C100 39.0 a 6.59 a 0.72 a

SDI75 40.7 a 3.26 c 0.61 b
SDI50 29.5 b 5.49 ab 0.67 a
SDI33 38.0 a 4.76 b 0.60 b

Cultivar
Cisco 36.1 5.23 0.66

Chandler 37.5 4.82 0.64
Irrigation × Cultivar

C100 × Cisco 38.1 ab 7.23 a 0.78 a
SDI75 × Cisco 36.7 ab 2.97 d 0.61 bc
SDI50 × Cisco 34.0 bc 5.17 abcd 0.68 b
SDI33 × Cisco 35.5 abc 5.56 abc 0.58 c

C100 × Chandler 39.9 ab 5.95 ab 0.66 bc
SDI75 × Chandler 44.6 a 3.55 cd 0.60 bc
SDI50 × Chandler 25.0 c 5.81 abc 0.67 bc
SDI33 × Chandler 40.5 ab 3.96 bcd 0.61 bc

SDI, sustained deficit irrigation; SDI33, at 33% ETC; SDI50, at 50% ETC; SDI75, at 75% ETC; and C100, control at 100%
ETC. † NS = not significant; *** = significant at p < 0.001. ‡ Values followed by different letters within the same column
and factor were significantly different (p < 0.05) according to Tukey’s least significant difference test.

The water activity (aw) was significantly influenced by the irrigation treatments, while
the cultivar factor had no notable effect (Table 2). All deficit irrigation regimes led to
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a reduction in aw compared to the fully irrigated control, with the most pronounced
decrease observed under SDI33. Despite these reductions, all measured aw values re-
mained within the optimal range for the safe storage of tree nuts under cool and dry
conditions [80]. Water activity plays a critical role in lipid oxidation in walnuts; maintain-
ing lower aw levels helps to minimize oxidative rancidity during storage [81]. In this regard,
Boaghi et al. [82] reported that the highest lipid oxidation occurred in walnuts stored at
aw ranges of 0.00–0.28 and 0.48–1.00. Thus, deficit irrigation appears to promote lower aw

levels, potentially enhancing the postharvest stability and storage quality of the nuts.

2.3.2. Antioxidant Activity and Total Phenolic Content

Table 3 presents the antioxidant activity (AA) and total phenolic content (TPC) ob-
served under various deficit irrigation strategies throughout the monitoring period. The
applied irrigation treatments and walnut cultivars exhibited highly significant effects
(p < 0.001) on both parameters.

Table 3. Antioxidant activity and total phenolic content of walnuts as affected by deficit irrigation
and cultivar factors.

ABTS•+ DPPH• FRAP TPC
(mmol Trolox kg−1) (g GAE kg−1)

ANOVA Test †

Irrigation *** *** *** ***
Cultivar *** *** *** ***

Irrigation × Cultivar *** *** *** ***
Irrigation Tukey’s Multiple Range Test ‡

C100 140 a 227 a 149 a 35.6 b
SDI75 122 b 221 a 141 b 36.4 b
SDI50 115 b 226 a 148 ab 39.1 a
SDI33 138 a 195 b 152 a 36.4 b

Cultivar
Cisco 148 a 237 a 159 a 40.2 a

Chandler 110 b 197 b 135 b 33.6 b
Irrigation × Cultivar

C100 × Cisco 164 a 254 a 168 ab 42.6 a
SDI75 × Cisco 136 b 248 a 136 cd 37.2 b
SDI50 × Cisco 131 b 250 a 159 b 42.2 a
SDI33 × Cisco 162 a 196 b 174 a 38.7 b

C100 × Chandler 117 c 200 b 130 d 28.7 d
SDI75 × Chandler 109 d 194 b 145 c 35.6 c
SDI50 × Chandler 98.3 d 201 b 136 cd 35.9 c
SDI33 × Chandler 115 c 193 b 129 d 34.0 c

SDI, sustained deficit irrigation; SDI33, at 33% ETC; SDI50, at 50% ETC; SDI75, at 75% ETC; and C100, control at 100%
ETC. ABTS•+, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid); DPPH•, 2,2-diphenyl-1-picryl-hydrazyl-
hydrate; FRAP, ferric reducing antioxidant power; TPC, total phenolic content; † NS = not significant; and
*** = significant at p < 0.001. ‡ Values followed by different letters within the same column and factor were
significantly different (p < 0.05) according to Tukey’s least significant difference test.

The AA was determined through three assays: ABTS•+, DPPH•, and FRAP. The
ABTS•+ results showed significant differences among cultivars and intermediate irrigation
treatments, with no significant changes for SDI33 in relation to the control walnuts. The
DPPH• activity was reduced by the severe water-stressed treatments, but no significant
impact was observed for the remaining treatments. In contrast, in the FRAP assay, SDI33

maintained the same level as the control. Regarding the cultivar factor, Cisco showed the
highest values for ABTS•+, DPPH•, and FRAP, demonstrating the importance of cultivar
identity. This result is in agreement with Bolling [83], who reported that different walnut
cultivars have their own antioxidant characteristics.

Overall, in terms of irrigation strategies, one can retain the same value as the non-
stressed walnuts for DPPH•, as well as for FRAP under SDI75 and SDI50; however, these
same strategies decreased ABTS•+ activity. Regarding the interaction irrigation × cultivar,
for Cisco walnuts, ABTS•+ and FRAP were less affected under SDI33, and DPPH• was less
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affected under the intermediate deficit irrigation treatments with respect to the control
walnuts. A similar pattern was determined with the interaction irrigation × cv. Chandler.
Consequently, these results highlight how the SDI strategies did not significantly affect the
walnuts’ AA, maintaining their levels with respect to well-watered trees, thus promoting
the water-saving programs.

Conversely, the total phenolic content (TPC) was significantly influenced (p < 0.001) by
both the SDI strategy and cultivar. Notably, the SDI50 treatment resulted in the highest TPC
value (39.1 g kg−1), indicating a marked enhancement under this condition. Comparable
to the AA, a higher content of TPC was determined for cv. Cisco walnuts. This pattern is in
line with Okatan et al. [84]; however, surprisingly, lower TPC values were determined for
the Chandler and Cisco cultivars (6.90 and 7.96 g kg−1, respectively), which, presumably,
could be ascribed to specific local conditions [85,86].

In relation to the interaction irrigation × cv. Cisco, SDI50 maintained the TPC level
with respect to C100; however, it was reduced under the remaining SDI strategies. By
contrast, the interaction irrigation × cv. Chandler showed that all SDI strategies augmented
the TPC content. The total phenolic content (TPC) observed in both walnut cultivars in the
present study exceeded the values reported by Neveu et al. [87], who documented a TPC of
15.76 g GAE kg−1. As highlighted by Bolling et al. [83], walnuts possess the most diverse
phenolic composition and the highest phenolic content among tree nuts. Their findings
indicated that the TPC in walnuts is approximately twice that of hazelnuts and four to six
times greater than that of almonds, a trend that aligns with the results obtained in this
study. The AA and TPC are parameters of great importance for health properties [22]. In
this context, Torabian et al. [88] stated that the acute bioavailability of polyphenols from walnuts
and almonds, as well as a concomitant reduction in plasma lipid peroxidation, increased the
antioxidant capacity. Ojeda-Amador et al. [89], when studying three walnut varieties, one
of which was Chandler, determined a TPC between 10.04 and 12.47 g GAE kg−1, which
contributed to an AA between 105 and 170 mmol kg−1 for DPPH•. These values are
lower for the TPC (33.6 g GAE kg−1) and AA (197 mmol kg−1) than those registered in
this experiment. However, our values doubled in comparison to those of Wu et al. [90],
who determined a TPC of 15.5 g GAE kg−1, and they were similar to those reported by
Tapia et al. [12], who reported a TPC ranging from 28.0 to 58.0 g GAE kg−1 depending
on the studied cultivar, with a content of 51.0 g GAE kg−1 for cv. Chandler. Furthermore,
Christopoulos and Tsantili [91] revealed a content of 22.0 g GAE kg−1 dry weight for
Chandler walnuts.

In summary, comparing the antioxidant activity (AA) and total phenolic content (TPC)
values across peer-reviewed studies is challenging due to variations in extraction solvents
and reference standards. Nevertheless, the findings of the present study suggest that deficit
irrigation had no significant effect on the AA and TPC in the monitored walnut cultivars,
except for the TPC, which showed a notable increase under the SDI50 treatment.

2.3.3. Sugars and Mineral Contents

The impact of the SDI strategies and walnut cultivar on the sugar content for the
monitored seasons is shown in Table 4. Regarding the sugars, sucrose was reduced un-
der SDI75 and SDI33, glucose increased under SDI75, and the sum of the total sugars was
significantly decreased under SDI33 with respect to C100. In this context, a similar pattern
was highlighted by Calvo et al. [92], who subjected the Chandler walnut to three irriga-
tion regimes based on 100, 75, and 50% of ETC, obtaining sucrose contents of 18.5 ± 5.02,
23.91 ± 4.49, and 22.31 ± 5.20 g kg−1, respectively. Additionally, Chen et al. [93] reported
that the total sugar content in walnut kernels was significantly higher under deficit irriga-
tion compared to conventional and over-irrigated treatments.
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Table 4. Sugar content in raw walnuts as affected by irrigation dose and cultivar.

Sucrose Glucose Σ Sugars
(g kg−1dw)

ANOVA Test †

Irrigation *** ** **
Cultivar NS ** NS

Irrigation × Cultivar *** ** **
Tukey’s Multiple Range Test ‡

Irrigation
C100 27.3 a 14.8 b 42.2 a

SDI75 24.4 b 16.2 a 40.6 a
SDI50 26.6 a 13.8 b 40.4 a
SDI33 23.4 b 14.7 b 38.1 b

Cultivar
Cisco 25.3 15.3 a 40.5

Chandler 25.6 14.5 b 40.1
Irrigation × Cultivar

C100 × Cisco 27.9 a 15.6 ab 43.5 a
SDI75 × Cisco 23.6 cd 16.0 ab 39.6 ab
SDI50 × Cisco 27.7 a 13.8 b 41.5 a
SDI33 × Cisco 21.9 d 15.6 ab 37.5 c

C100 × Chandler 26.8 b 14.0 ab 40.8 a
SDI75 × Chandler 25.1 c 16.4 a 41.5 a
SDI50 × Chandler 25.5 c 13.8 b 39.3 b
SDI33 × Chandler 24.9 c 13.8 b 38.7 b

SDI, sustained deficit irrigation; SDI33, at 33% ETC; SDI50, at 50% ETC; SDI75, at 75% ETC; and C100, control at
100% ETC. † NS = not significant; ** and *** = significant at p < 0.01 and 0.001, respectively. ‡ Values followed by
different letters within the same column and factor were significantly different (p < 0.05) according to Tukey’s
least significant difference test.

The predominance of sucrose as the main sugar in tree nuts, as observed in the present
experiment, is consistent with the findings reported in previous studies [94]. The contents
determined for both studied cultivars are in the range of those reported by Kazankaya et al. [95]
for glucose and sucrose contents in walnut genotypes, ranging from 1.3 to 62.6 and from
17.6 to 41.7 g kg−1, respectively. The total sum of sugars for the monitored walnut kernels
averaged 40.3 g kg−1, which was higher than those reported by Mitrovic et al. [96], who
registered an average of 29.3 g kg−1.

In relation to the interactions, for irrigation × cv. Cisco, sucrose decreased under the
SDI75 and SDI33 strategies, but glucose and the total sum of sugars decreased under SDI50

and SDI33, respectively. The interaction irrigation × cv. Chandler showed a reduction
under all SDI levels for sucrose and under the SDI50 and SDI33 strategies for glucose and
the total sum of sugars.

As observed, glucose was highly cultivar-dependent. In general, regarding the interac-
tion irrigation × cultivar, both walnuts were affected by deficit irrigation, although some
of them maintained levels similar to the control; this suggests the need to optimize the
applied water stress and thus promote water savings without significant alterations.

Significant effects (p < 0.001) of both the SDI treatments and cultivar on the concen-
trations of P, K, Mn, Fe, Cu, and Zn were observed (Table 5). Notably, all water-stressed
walnuts—particularly those subjected to the SDI33 treatment—exhibited significantly higher
levels of K, Fe, and Zn. These findings suggest that SDI strategies may offer a nutritional
advantage by enhancing the accumulation of certain essential minerals. The potassium
(K) content observed under SDI75 and SDI50 treatments (1446–1402 mg per 100 g), and
particularly under SDI33 (1546 mg per 100 g), may be considered a significant dietary source
of this mineral. These values represent over 70% of the recommended daily allowance
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(2000 mg per 100 g), as outlined in Annex 1 of Council Directive 90/496/EEC [97].
In addition, Cindrić et al. [98] reported Ca, K, and Mg contents of 1062, 2771, and
1426 mg kg−1, respectively, in walnuts, which are lower than those found in this experiment
for K and Mg and higher for the Ca content.

Table 5. Mineral content in raw walnuts as affected by the irrigation dose and cultivar for the study period.

B Mg P K Ca Mn Fe Cu Zn
(mg kg−1

dw)

ANOVA Test †

Irrigation NS NS * * NS *** *** *** ***
Cultivar NS NS * * NS *** *** *** ***

Irrigation × Cultivar NS NS * * NS *** *** *** ***
Tukey’s Multiple Range Test ‡

Irrigation
C100 14.8 10,617 35.3 a 12,940 c 7.43 475 a 5.33 b 182 a 14.8 b

SDI75 12.5 11,555 30.1 b 14,462 b 7.23 356 b 7.83 a 116 b 24.1 a
SDI50 14.2 11,450 34.3 a 14,024 b 7.42 354 b 8.66 a 107 b 25.5 a
SDI33 13.5 11,795 30.3 b 15,467 a 6.21 303 b 8.19 a 99 b 27.5 a

Cultivar
Cisco 14.4 10,963 34.8 a 13,401 b 7.40 326 b 9.10 a 109 b 28.7 a

Chandler 13.1 11,746 30.2 ab 15,045 a 6.75 418 a 5.89 b 143 a 17.2 b
Irrigation × Cultivar

C100 × Cisco 15.5 10,281 38.5 a 12,062 c 8.13 438 ab 6.37 bc 169 b 17.5 c
SDI75 × Cisco 12.7 11,867 32.6 b 13,728 b 7.83 345 b 9.92 a 110 cd 30.4 a
SDI50 × Cisco 15.1 10,897 37.2 a 12,969 b 7.57 323 bc 10.3 a 89.5 cd 31.4 a
SDI33 × Cisco 14.3 10,806 30.7 b 14,845 b 6.06 198 c 9.87 a 67.5 d 35.7 a

C100 × Chandler 14.0 10,952 32.0 b 13,818 b 6.73 511 a 4.28 c 195 a 12.1 c
SDI75 × Chandler 12.2 11,243 27.6 c 15,196 b 6.62 366 b 5.73 bc 122 c 17.9 c
SDI50 × Chandler 13.4 12,003 31.4 b 15,079 b 7.27 385 b 7.06 b 125 c 19.6 bc
SDI33 × Chandler 12.7 12,784 29.9 b 16,088 a 6.37 408 b 6.50 bc 131 c 19.3 bc

SDI, sustained deficit irrigation; SDI33, at 33% ETC; SDI50, at 50% ETC; SDI75, at 75% ETC; and C100, control at
100% ETC. † NS = not significant; * and *** = significant at p < 0.05, and 0.001, respectively. ‡ Values followed by
different letters within the same column and factor were significantly different (p < 0.05) according to Tukey’s
least significant difference test.

Regarding the micro-nutrients, there was a marked reduction for Mn and Cu due to the
SDI strategies, in contrast to the Fe and Zn contents. Similarly, Carbonell-Barrachina et al. [99]
reported increased Zn concentrations in tree nuts produced under water stress conditions.
In general, for this study, these minerals decreased in content in the following order:
Mn > Cu > Zn > Fe, which is similar to those highlighted by Cindrić et al. [98], who
reported an order of Mn > Fe > Zn > Cu in walnut kernels. In addition, Antora et al. [14]
reported higher contents of Fe (40 mg kg−1) and Zn (30 mg kg−1) for walnut kernels than
those found in the present experiment.

On the other hand, the cultivar factor showed that cv. Cisco had significantly higher
P, Fe, and Zn contents and that cv. Chandler had higher K, Mn, and Cu contents. The
interaction of deficit irrigation × cv. Cisco registered a general improvement for K, Fe, and
Zn and reductions for P, Mn, and Cu. The interaction irrigation × cv. Chandler augmented
the K content under SDI33 and Fe and Zn under SDI50, with significant declines in the P,
Mn, and Cu contents under the SDI75 strategy.

2.3.4. Walnut Fatty Acid Profile

Table 6 illustrates the significant influence of SDI strategies and cultivar on the fatty
acid profile over the monitored seasons. Specifically, the walnut lipid fraction is composed
primarily of monounsaturated fatty acids (MUFAs), with oleic acid as the predominant
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component, and polyunsaturated fatty acids (PUFAs), mainly linoleic acid. Saturated
fatty acids (SFAs), primarily palmitic and stearic acids, are also present in substantial
concentrations. The predominance was as follows: linoleic > oleic > palmitic > stearic
(decreasing content); other fatty acids with relevant concentrations were α-linolenic and
cis-vaccenic, and these concentrations in walnuts were higher than those reported for
almonds [100].

Table 6. Effect of irrigation dose and walnut cultivar on the fatty acid methyl esters (FAMEs).

Compound (FAMEs) ANOVA Test Irrigation Cultivar
Irrigation Cultivar C100 SDI75 SDI50 SDI33 Cisco Chandler

(g kg−1
dw)

C10:0 (Capric) *** *** 0.003 c 0.005 a 0.004 b 0.003 c 0.003 b 0.005 a
C12:0 (Lauric) *** *** 0.009 b 0.012 a 0.008 c 0.008 c 0.009 b 0.010 a

C14:0 (Myristic) *** *** 0.040 c 0.053 a 0.045 b 0.051 a 0.049 a 0.046 b
C14:1 (Myristoleic) *** *** 0.071 a 0.071 a 0.067 b 0.070 ab 0.071 a 0.068 b

C15:0 (Pentadecylic) *** *** 0.036 b 0.041 a 0.038 b 0.038 b 0.039 a 0.037 b
C16:0 (Palmitic) *** *** 26.9 b 31.6 a 24.8 c 25.8 bc 27.9 a 26.6 b

C16:1c7 (cis-Hexadecenoic) *** *** 0.19 b 0.21 a 0.18 b 0.18 b 0.19 a 0.18 b
C16:1c9 (Palmitoleic) *** *** 0.28 b 0.31 a 0.30 a 0.29 ab 0.31 a 0.29 b

C16:1c10 *** *** 0.012 d 0.018 a 0.016 b 0.013 c 0.02 a 0.01 b
C17:0 (Margaric) *** *** 0.15 b 0.19 a 0.14 b 0.15 b 0.17 a 0.14 b

C17:1 (cis-Heptadecenoic) *** *** 0.05 c 0.08 a 0.06 b 0.06 b 0.06 b 0.07 a
C18:0 (Stearic) *** *** 9.98 b 11.4 a 9.59 bc 9.23 c 11.3 a 8.82 b

C18:1t9 (Elaidic) *** *** 0.10 b 0.13 a 0.09 c 0.08 c 0.104 a 0.098 b
C18:1c9 (Oleic) *** *** 75.5 a 73.8 b 66.7 c 65.6 c 78.2 a 62.7 b

C18:1n7 (cis-Vaccenic) *** *** 3.91 b 4.21 a 3.44 d 3.63 c 3.84 a 3.75 b
C18:2 t8c13 (Linoleaidic) *** *** 0.19 b 0.25 a 0.19 b 0.20 b 0.20 b 0.21 a

C18:2n6cis 9,12 (Linoleic) *** *** 290 b 311 a 253 c 263 c 288 a 271 b
C18:3n6 (γ-Linolenic) *** *** 0.35 b 0.37 a 0.31 c 0.32 c 0.36 a 0.31 b

C20:0 (Arachidic) *** *** 0.16 c 0.27 a 0.21 b 0.22 b 0.18 b 0.26 a
C18:3n3 (α-Linolenic) *** *** 67.6 b 73.3 a 67.1 b 72.2 a 64.4 b 75.7 a
C21:0 (Heneicosanoic) *** *** 0.073 c 0.082 a 0.078 b 0.075 bc 0.079 a 0.075 b

C20:2n6 (Eicosadienoic) ** ** 0.07 b 0.10 a 0.08 b 0.09 ab 0.08 a 0.09 a
C20:3n3 (Eicosatrienoico) *** *** 0.09 b 0.21 a 0.10 b 0.10 b 0.14 a 0.12 b
C20:3n6 (Eicosatrienoico) *** *** 0.03 b 0.04 a 0.02 c 0.03 b 0.03 a 0.02 b

C23:0 (Tricosanoic acid) *** *** 0.030 a 0.030 a 0.029 ab 0.027 b 0.031 a 0.027 b
C20:5n3 (Eicosapentanoico) *** *** 0.016 b 0.019 a 0.015 bc 0.014 c 0.02 a 0.01 b

C24:0 (Lignoceric acid) *** *** 0.047 b 0.060 a 0.044 b 0.046 bc 0.05 a 0.04 b
Oleic:Linoleic *** *** 0.250 b 0.240 c 0.260 a 0.250 b 0.270 a 0.230 b

Ω 6:Ω 3 *** *** 4.31 a 4.24 a 3.86 b 3.68 c 4.47 a 3.57 b
Saturated (SFA) *** *** 37.5 b 43.7 a 35.0 35.6 c 39.8 a 36.1 b

Monounsaturated (MUFA) *** *** 80.1 a 78.8 a 70.9 b 70.0 b 82.8 a 67.1 b
Polyunsaturated (PUFA) *** *** 358 b 386 a 321 d 336 c 353 a 347 a

PUFA:SFA *** *** 9.81 a 8.81 c 9.16 bc 9.46 ab 8.87 b 9.75 a
PUFA:MUFA *** *** 4.78 a 4.89 a 4.61 b 4.82 a 4.33 b 5.22 a

(MUFA + PUFA)/SFA *** *** 11.9 a 10.6 c 11.2 b 11.4 ab 10.9 b 11.6 a
Atherogenic index *** *** 0.06 c 0.07 a 0.06 b 0.06 b 0.065 a 0.064 a

Thrombogenic index *** *** 0.09 b 0.10 a 0.09 b 0.09 b 0.10 a 0.09 b
Σ FAMEs *** *** 475 b 508 a 427 d 441 c 475 a 451 b

SDI, sustained deficit irrigation; SDI33, at 33% ETC; SDI50, at 50% ETC; SDI75, at 75% ETC; and C100, control at
100% ETC. ** and *** = significant at p < 0.01 and 0.001, respectively; Values followed by different letters within
the same row and factor were significantly different (p < 0.05) according to Tukey’s least significant difference test.
Σ FAMEs = fatty acids methyl esters.

Regarding the impact of deficit irrigation on fatty acids, significant increases
(p < 0.001) in the concentrations of palmitic, stearic, and linoleic acids were observed
under the SDI75 treatment. By contrast, oleic acid was reduced under all SDI treatments
in relation to the control walnuts. For most of the studied fatty acids, there were either
remarkable improvements or similar concentrations under the SDI75 strategy with respect
to the control, with reductions under the remaining SDI levels due to an increase in the
water stress level. The fatty acids were also significantly affected by the cultivar, with
higher concentrations for cv. Cisco than cv. Chandler, with the exception of capric, cis-
heptadecenoic, arachidic, and α-linoleic acids. Okatan et al. [84] reported a higher content
for cv. Cisco than cv. Chandler for α-linolenic, oleic, and stearic acids, which coincided



Plants 2025, 14, 1777 14 of 28

with the findings of the present study, with the exception of palmitic and linoleic acids.
Thus, in this study, for specific water stress levels, the content of fatty acids increased,
except for oleic acid. This pattern was similar to that found by Calvo et al. [92], reporting
the following for 100, 75, and 50% ETC deficit irrigation treatments: palmitic (1.66, 1.75,
and 1.92 g kg−1, respectively), linolenic (1.48, 1.76, and 1.95 g kg−1, respectively), oleic
(1.09, 1.54, and 1.48 g kg−1, respectively), and stearic acids (0.93, 1.17, and 1.04 g kg−1,
respectively). For cv. Chandler, the fatty acids in the present experiment are within the
intervals reported by Rébufa et al. [101]: palmitic (2.4–69.5 g kg−1), stearic (7.0–34.1 g kg−1),
oleic (61.0–178.4 g kg−1), linoleic (541–662 g kg−1), and α-linolenic acids (85.1–250.0 g kg−1).
Martínez and Maestri [102] investigated eight walnut cultivars, including cv. Chandler,
reporting considerable variation in unsaturated fatty acid concentrations: oleic acid ranged
from 161 to 254 g kg−1, linoleic acid ranged from 525 to 589 g kg−1, and linolenic acid ranged
from 114 to 165 g kg−1. This notable variability has been linked to geographic origin, with
multiple studies [103–105] highlighting strong correlations between fatty acid profiles and
the cultivation environment. In particular, the oleic acid content appears to be closely
associated with climatic factors, especially air temperature, in the growing region [106].
The substantial linoleic acid content observed in the present study (253–311 g kg−1) aligns
with findings by Ojeda-Amador et al. [89], who emphasized that the significant nutritional
value of walnuts is attributed to their high linoleic acid levels, reported to range between
600 and 620 g kg−1. Similarly, Cittadini et al. [107] found that linoleic acid predominated
(522–609 g kg−1) in Chandler walnut oils, whereas oleic acid was predominant in hazelnut
oils (784–844 g kg−1). Furthermore, Pereira et al. [108] registered contents that ranged
from 560 to 600, 160 to 200, and 130 to 170 g kg−1 for linoleic, oleic, and α-linolenic acids,
respectively.

Ratios, Fatty Acid Classes, and Their Benefits

The Ω6:Ω3 ratio was significantly reduced by increasing the water deficit to SDI50 and
SDI33 in comparison to the SDI75 and C100 walnuts. Correspondingly, the oleic/linoleic and
Ω6:Ω3 ratios were higher for cv. Cisco walnuts. However, the decrease in the oleic/linoleic
acid ratio observed under the SDI75 treatment may render walnuts more susceptible to
reduced oil stability. It is well-established that an imbalanced dietary Ω6:Ω3 ratio, ideally
maintained between 1:1 and 4:1, can negatively impact health, with some diets exhibiting
ratios as high as 15:1. Such imbalances have been linked to increased risks of cardiovascular
disease, autoimmune disorders, rheumatic diseases, diabetes, cancer, obesity, asthma, and
depression [109,110]. Notably, walnuts are recognized for their favorable Ω6:Ω3 ratio,
approximately 4:1, as reported by Zec and Glibetic [111] and Özcan et al. [112].

The predominant lipid composition based on decreasing content was SFAs < MU-
FAs < PUFAs, which is one of the most important characteristics of walnuts and offers
health benefits (Table 7). Following the same pattern, Nogales et al. [17] reported higher
values for SFAs, MUFAs, PUFAs, and Σ FAMEs of 88.7, 144.4, 766.9, and 655.8 g kg−1,
respectively, for the Chandler cultivar. These differences can be attributed to the influ-
ence of the harvesting year, cultivation techniques, altitude, and different environmental
conditions, which may influence the nut chemical composition [85,86,113]. As a whole,
SDI75 significantly increased the SFA and PUFA contents or maintained the MUFA content
with respect to the walnuts from control trees (C100), registering a decline when the level
of water stress increased (SDI50 and SDI33). In the same way, the SDI75 treatment im-
proved FAME concentrations with respect to C100, with higher concentrations for cv. Cisco
than cv. Chandler. Previous research has identified polyunsaturated fatty acids (PUFAs)
as the predominant fatty acids in walnuts, with reported concentrations ranging from
652 to 757 g kg−1 [114–116]. In the present study, the highest PUFA content in extracted oils
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was 386 g kg−1, observed in samples under the SDI75 treatment, further confirming that
walnuts contain substantial amounts of PUFAs. The increase in PUFA levels under deficit
irrigation has also been noted in other tree nut studies [99,100]. These results are consistent
with the findings of Gutiérrez et al. [117], who demonstrated that deficit irrigation can
enhance the monounsaturated fatty acid (MUFA) content in nut crops such as almonds. The
PUFA:SFA ratio is a widely used index to assess the impact of diet on cardiovascular health
and to evaluate the nutritional quality of foods. A higher ratio is generally considered
beneficial, as supported by Chen and Liu [118]. According to EFSA [119], linoleic acid
plays a crucial role in cardiac cell function and is an essential Ω6 polyunsaturated fatty
acid, which is important for human health. The recommended daily intake for linoleic
acid is 10 g, and consumption of approximately 25 g of walnuts produced under the SDI75

treatment, particularly the Cisco cultivar, can provide nearly 78% of this requirement.
Conversely, the atherogenic index, which indicates the potential of a diet to promote

coronary diseases, showed a significant difference only under the SDI75 treatment, while
the cultivar factor had no significant effect on this index. Similarly, the thrombogenic index,
which reflects the tendency for clot formation in blood vessels, was elevated in walnuts
subjected to SDI75.

It is important to note that, depending on the severity of water deficit, there may be
an economic threshold beyond which deficit irrigation is insufficient to sustain walnut
tree growth and yield potential. Prolonged water stress can thus lead to considerable
economic losses. However, one potential strategy to offset this loss is the production of
walnuts with enhanced value through improved quality, particularly via increased levels of
bioactive compounds.
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Table 7. Descriptive sensory analysis of walnuts as affected by deficit irrigation.

Outer
Color Size Veins Sweetness Bitterness Astringency Overall

Nuts
Walnut

ID Floral/Fruity Woody Hardness Cohesiveness Crispiness Adhesiveness Aftertaste

ANOVA Test †

Irrigation *** *** *** *** NS ** *** NS *** *** NS NS NS NS NS
Cultivar *** *** *** *** * NS *** *** *** *** NS NS NS NS ***

Irrigation × Cultivar *** *** *** *** * ** *** *** *** *** NS NS NS NS ***
Tukey’s Multiple Range Test ‡

Irrigation
C100 4.2 b 6.0 a 6.4 a 4.6 b 0.6 1.7 c 7.2 a 7.6 0.8 a 2.9 c 3.2 7.1 2.0 7.9 8.1

SDI75 4.0 b 5.8 a 2.9 c 5.1 a 0.8 2.2 b 7.2 a 7.3 0.1 b 4.2 a 4.0 6.9 2.9 7.3 7.4
SDI50 5.3 a 5.8 a 4.7 b 5.1 a 1.2 2.0 b 7.4 a 7.8 0.1 b 2.8 c 3.5 6.8 2.8 7.5 7.9
SDI33 3.1 c 3.1 b 2.3 c 4.6 b 1.1 2.6 a 6.9 b 7.5 0.4 b 3.7 b 3.6 6.8 2.6 7.4 7.8

Cultivar
Cisco 5.2 a 4.5 b 4.6 a 4.3 b 0.7 b 2.1 8.1 a 8.3 a nd 3.8 a 3.3 7.0 2.5 7.6 7.5 b

Chandler 3.1 b 5.9 a 3.5 b 5.5 a 1.2 a 2.1 6.2 b 6.8 b 0.6 a 3.0 b 3.8 6.8 2.6 7.4 8.1 a
Irrigation × Cultivar

C100 × Cisco 4.4 c 4.8 c 6.2 3.8 c 0.5 b 2.0 b 8.0 b 8.4 a nd 3.0 d 3.0 7.2 2.0 8.0 8.0 a
SDI75 × Cisco 5.0 b 5.4 b 4.0 5.0 b 0.2 c 1.5 c 8.8 a 9.1 a nd 3.8 c 3.6 7.0 3.0 7.2 7.0 b
SDI50 × Cisco 7.6 a 5.4 b 5.5 5.0 b 1.2 b 2.4 b 8.8 a 8.8 a nd 3.2 d 3.3 6.8 2.8 7.7 7.5 b
SDI33 × Cisco 3.8 d 2.2 e 2.6 3.2 c 1.0 b 2.5 b 6.9 c 7.0 b nd 5.2 a 3.2 6.8 2.2 7.4 7.5 b

C100 × Chandler 4.0 c 7.2 a 6.6 5.4 a 0.7 b 1.3 c 6.4 d 6.8 b 1.5 a 2.8 d 3.4 6.9 2.0 7.8 8.2 a
SDI75 × Chandler 3.0 d 6.1 b 1.7 5.2 a 1.5 a 2.9 a 5.6 e 5.5 c 0.1 c 4.6 b 4.4 6.8 2.7 7.4 7.8 a
SDI50 × Chandler 3.0 d 6.2 b 3.8 5.6 a 1.2 b 1.5 c 6.0 d 6.8 b 0.2 c 2.4 e 3.6 6.8 2.7 7.2 8.2 a
SDI33 × Chandler 2.3 e 4.0 d 2.0 5.9 a 1.2 b 2.6 b 6.9 c 7.9 b 0.7 b 2.2 e 3.9 6.7 2.9 7.3 8.0 a

The scale ranged from 0 = no intensity to 10 = extremely strong intensity. SDI, sustained deficit irrigation; SDI33, at 33% ETC; SDI50, at 50% ETC; SDI75, at 75% ETC; and C100, control at
100% ETC. † NS = not significant; *, **, and *** = significant at p < 0.05, 0.01, and 0.001, respectively; and nd = not determined; ‡ Values (mean of 10 trained panelists) followed by different
letters within the same column were significantly different (p < 0.05) according to Tukey’s least significant difference test.
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2.4. Descriptive Sensory Analysis

The descriptive sensory analysis for the external appearance and internal properties
of the studied walnut cultivars in relation to the effect of SDI is shown in Table 7. Overall,
significant differences were detected in 7 of the 15 attributes used to evaluate walnut quality.
Specifically, the panelists noted that all SDI treatments led to reductions in the outer color,
size, vein prominence, overall nut appearance, and floral/fruity aroma, with these effects
being more pronounced in walnuts subjected to severe water stress (SDI33) compared to
the control group. However, the values could be maintained similar to control walnuts if
SDI75 is applied, with the exception of veins and floral/fruity attributes. According to the
sensorial analysis by the panelists, the sweetness was not affected under SDI33, but a slight
increase (4.6 vs. 5.1) was recorded for SDI50 and SDI75. In this context, sweetness is a key
attribute influencing the sensory quality of walnuts, and an increase in its intensity is expected
to enhance consumer satisfaction. The cv. Chandler was significantly (p < 0.001) sweeter
than cv. Cisco. In addition, the astringency increased with all SDI strategies, and the woody
parameter especially increased with SDI75. In this context, the results by Ingels et al. [120]
showed no differences in astringency among cultivars; however, cv. Chandler was judged to
be sweeter than the other studied cultivars (Howard and Chico). All sensory properties related
to appearance were evaluated visually, encompassing both color and geometric attributes,
which are essential parameters, as highlighted by Shepherd et al. [121].

Overall, the results for color and size were consistent with the findings presented in
Table 1, although variations in color assessments may arise due to the inherent difficulty of
perceiving subtle details with the human eye. The results of the sensory size were similar
to the instrumental size determined and discussed before. The outer color, veins, overall
nuts, walnut ID, and woody attributes were significantly higher for cv. Cisco, and the
size, sweetness, bitterness, and aftertaste were higher for cv. Chandler. Between the two
evaluated walnuts, Cisco was less bitter than Chandler; this characteristic makes cv. Cisco
kernels more marketable, and this could be appreciated by consumers. In addition, Sinesio
and Moneta [122] highlighted that walnut bitterness and astringency descriptors appeared to
be positively correlated, which can be significant in walnut quality perception by consumers.
In contrast, Peleg et al. [123] revealed that the main factor that affected the sensory properties
of bitterness and astringency was the molecular size of volatile flavonoids; as the molecular
size increased, the bitterness decreased and the astringency increased.

In relation to the interaction irrigation × cv. Cisco, higher values under the SDI75 and SDI50

strategies were found for the outer color, size, sweetness, and overall nuts, while under SDI33,

there were higher values for bitterness and astringency. Walnut ID and aftertaste significantly
declined in walnuts from SDI33 plots. Regarding the interaction irrigation × cv. Chandler, water
stress significantly decreased the values of the outer color and size, particularly under
SDI33, and the overall nuts, walnut ID, and floral/fruity attributes decreased under SDI75.
By contrast, the bitterness and astringency were augmented under the SDI75 strategy.

These results offer valuable insights into the sensory properties of the cultivars studied
under deficit irrigation conditions. Based on the findings, it is recommended that consumer
preferences be taken into account during cultivar selection, considering not only the walnut
variety but also the level of water stress applied throughout the production process before
making final decisions.

3. Materials and Methods
3.1. Study Area

The study area is located within the agroforestry watershed known as ‘El Salado,’
situated in the Sierra Nevada Mountains near Lanjarón, Granada, in southeastern Spain.
This watershed typifies a mid-altitude Mediterranean mountain environment, characterized
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by a mix of rainfed and irrigated crops, alongside reforested pine stands. The mean
annual precipitation in the study area is approximately 531 mm, exhibiting considerable
inter-annual variability. Most rainfall is concentrated in the winter and autumn seasons,
while intense short-duration storms are common in spring but infrequent during summer.
The average annual, maximum, and minimum temperatures are 15.0 ◦C, 20.8 ◦C, and
9.2 ◦C, respectively.

At the study site, the dominant soil parent material consists of colluvium and residuum
derived from mica-schist, with a weathered regolith layer only a few centimeters deep. The
soils are well-drained and classified as Eutric Cambisols [124]. The soil texture comprises
654 g kg−1 sand, 250 g kg−1 silt, and 96 g kg−1 clay. The soil pH is 7.6 (1:2.5 soil-to-water
ratio), and the bulk density is 1.16 g cm−3. The soil organic carbon and total nitrogen
contents are 10.0 and 0.60 g kg−1, respectively, while extractable P (Olsen method) and
available N concentrations are 6.3 mg kg−1 and 78.4 mg kg−1, respectively. The experimen-
tal walnut orchard, located at an elevation of 670 m a.s.l., is established on terraced land and
consists of 39-year-old trees from two cultivars, namely, Chandler and Cisco. The trees are
healthy and of uniform size and were planted at 6-m intervals, resulting in approximately
272 trees per hectare. Uniform fertilization was applied throughout the orchard, with each
tree receiving 280 g N, 195 g P2O5, and 242 g K2O. Standard local management practices,
including pruning, weed control, and pest and disease management, were consistently
implemented across the entire experimental area, alongside the irrigation treatments.

3.2. Irrigation Strategies and Experimental Design

Three sustained deficit irrigation (SDI) regimes were applied, supplying 33% (SDI33),
50% (SDI50), and 75% (SDI75) of the crop evapotranspiration (ETC) requirements. A control
treatment (C100) was also included, in which crops received full irrigation at 100% ETC to
meet the entire evapotranspiration demand throughout the irrigation period.

To estimate the irrigation requirements, reference evapotranspiration (ET0) was calcu-
lated using the Penman–Monteith method, based on data obtained from a weather station
located within the experimental walnut orchard. Crop coefficient (Kc) values were deter-
mined according to the guidelines outlined by Allen et al. [125]. The irrigation system
implemented for each treatment included two lateral drip lines per tree row, positioned
50 cm from either side of the trunk. Each line was equipped with a combination of pressure-
compensating drip emitters delivering flow rates of 4 and 8 L h−1, spaced at 50 cm intervals.
In general, the experimental plots were irrigated on alternate days from May to September.
During the peak evaporative demand period (June to August), irrigation was applied daily
for 4–5 h. Following this period, in September, the irrigation frequency was reduced to
one or two times per week, with each session lasting 2–3 h. The irrigation reductions
according to each SDI strategy were applied uniformly throughout the growing season
across all tree walnut development phases. Water stress was induced by reducing the water
irrigation doses, with the average irrigation per season during the study period for the
C100, SDI75, SDI50, and SDI33 plots amounting to 6723 ± 346, 5042 ± 435, 3361 ± 387, and
2218 ± 214 m3 ha−1, respectively.

The experimental design was a completely randomized block design with three repli-
cations per irrigation treatment (four trees per experimental unit plot with an area of about
70 m2); the two central trees from each row were included for fruit yield measurements,
and the others served as border trees. Harvesting operations were performed using a me-
chanical vibrator; later, walnuts were air-dried and weighed once they reached a humidity
content below about 6%. At the end of each season, walnut production was measured in
terms of the in-shell yield for SDI treatments as well as for control trees, and the water
productivity (WP) for each irrigation strategy was estimated. From these harvested nuts,
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kernel samples of each replication and irrigation treatment were selected for quality and
descriptive sensorial analyses.

3.3. Physical and Chemical Walnut Nut Analysis
3.3.1. Morphological, Moisture Content, Instrumental Color, Cutting Force, and Water
Activity Measurements

Walnut samples were randomly selected and analyzed through the determination of
the kernel weight and dimensions (length and width). The kernel weight was measured
using an analytical balance (Mettler Toledo model AG204, Barcelona, Spain), while size
measurements were obtained with a digital caliper (Mitutoyo 500-197-20, Kawasaki, Japan).
The data were determined as the mean of 20 repetitions. The moisture content was de-
termined using the standard method [126]; for this, 2 g of a ground sample was placed
on a metallic tray and dried in an oven at 60 ◦C until a constant mass was achieved. The
color of the walnut kernels was determined using a Minolta Colorimeter CR-300 (Minolta,
Osaka, Japan), using CIEL*a*b* coordinates, defined as three numerical values in a three-
dimensional space. For this analysis, twenty measurements were made on each sample; the
values for L*, a*, and b* were averaged, and from these data, the hue values were estimated.
The cutting force of walnuts was analyzed using a texture analyzer (Stable Micro Systems,
model TA-XT2i, Godalming, UK) loaded with a 30 kg cell and a probe (Volodkevich Bite
Jaw HDP/VB, Stable Micro Systems, Godalming, UK). The trigger was set to 15 g, with
a test displacement rate of 1 mm s−1 over 3 mm, to determine two parameters, namely,
hardness (N) and number of fractures (peak count), as the mean value of twenty measure-
ments. Finally, the water activity (aW) was determined using a meter device (Novasina
AW-SPRINT TH500; Pfaffikon, Zurich, Switzerland).

3.3.2. Antioxidant Activity and Total Polyphenol Determination

Samples of ground walnuts were used for the extraction of the antioxidant activity
(AA) and of polyphenols using a methanolic extractant (MeOH:H2O; 80:20; v:v + 1% HCl).
The AA, as mmol of Trolox kg−1 in walnuts, was determined using ABTS•+ (2,2′-azino-
bis(3-ethylbenzthiazoline-6-sulphonic acid) according to the methodology described by
Re et al. [127], and DPPH• (2,2-diphenyl-1-picryl-hydrazyl-hydrate) radicals were mea-
sured according to the procedure described by Brand et al. [128]. Additionally, AA was
also measured by the ability to reduce iron ions (FRAP) [129]. All measurements were
made using an ultraviolet–visible (UV–Vis) spectrophotometer (Helios Gamma model,
UVG 1002E; Helios, Cambridge, UK).

The total phenolic content (TPC) was determined using the Folin–Ciocalteu colorimet-
ric method, according to Gao et al. [130]. The walnut extract (0.1 mL) was mixed with the
Folin–Ciocalteu reagent (0.2 mL) and 2 mL of distilled water. After 3 min, 1 mL of a 20%
aqueous solution of sodium carbonate (Na2CO3) was added. The absorbance at 765 nm
was measured after 1 h. The results are presented as g of gallic acid equivalent (GAE) kg−1.

3.3.3. Sugar and Fatty Acid Methyl Ester Determination

The sugar profile was analyzed using high-performance liquid chromatography (HPLC).
The extraction consisted of the homogenization of 1 g of ground walnuts with 5 mL of phosphate
buffer (pH = 7.8), and a sample was filtered (0.45 µm Millipore membrane filter) and injected
into a Hewlett Packard (Wilmington, DE) series 1100 HPLC. For the elution buffer, 0.1%
orthophosphoric acid was used. For the separation of compounds, a Supelcogel TM C-610H
column (30 cm × 7.8 mm) with a pre-column (Supelguard 5 cm × 4.6 mm; Supelco, Bellefonte,
PA, USA) was used. The sugar contents were measured using a refractive index detector.

The fatty acid methyl esters (FAMEs) were determined using methylation, as described
by Lipan et al. [131], with some modifications. Methyl esters of fatty acids were separated
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in a Shimadzu GC17 (Shimadzu Corporation, Kyoto, Japan), a gas chromatograph coupled
with a flame ionization detector and a DB-23 capillary column (Agilent Technologies, Santa
Clara, California, United States). The carrier gas was He with an initial flow rate of 1.2 mL
min−1, while the detector gases were H2 (30 mL min−1) and air (350 mL min−1), with He
(35 mL−1) as the make-up gas. The injector and detector temperatures were 250 and 260 ◦C,
respectively, with an injection volume of 0.6 µL and a split ratio of 1:10. The preliminary
temperature was 175 ◦C for 10 min, with a temperature gradient of 3 ◦C min−1 to 215 ◦C,
and 215 ◦C was retained for 15 min. The identification of FAME peaks was conducted by
comparing the results with the retention times of the standards (FAME Supelco MIX-37,
Merck KGaA, Darmstadt, Germany). The contents are presented in g kg−1, with methyl
nonadecanoate as the internal standard.

3.3.4. Mineral Content Determination

The mineral contents were determined using a microwave digestion unit, namely,
Ethos Easy, Milestone (Milestone, Sorisole, Italy), equipped with a rotor for ten TFM
(chemically modified PTFE) vessels for sample mineralization and an inductively coupled
plasma mass spectrometry (ICP-MS) instrument, namely, Agilent 7500× Octopole Reaction
System (ORS) (Agilent Technologies, Tokyo, Japan), for mineral determination, as described
by Cano-Lamadrid et al. [132]. The measurements were conducted in lyophilized samples,
and the results (mean of 4 replications) are presented as mg kg−1 of dried matter.

3.3.5. Descriptive Analysis

The descriptive analysis was carried out by a trained panel, consisting of 10 highly
qualified panelists from the Food Quality and Safety Group (Miguel Hernández University
of Elche, Orihuela, Alicante, Spain). The descriptive sensory analysis was performed
according to the method described by Lipan et al. [100] to estimate the differences among
SDI treatments. The walnut samples were served in an odor-free 30 mL covered plastic
cup and randomly coded with three digits. Water and unsalted crackers were served in
order to cleanse the palate between samples. The samples of walnuts were presented
based on a randomized block design to avoid biases. A numerical scale from 0 to 10, with
0.5 increments, was used by the panelists to quantify the intensity of the walnut attributes,
where 0 represents no intensity and 10 means extremely strong. The reference products
used by the panelists for flavor and texture characterization are shown in Table 8, and
Figure 3 displays the reference scales for the descriptive sensory analysis of walnuts.

Table 8. Sensory attributes, reference materials, and their corresponding intensities used for the
descriptive analysis of walnuts.

Descriptor Definition Reference ‡ Intensity
Appearance

Color The intensity of the color from light to dark Figure 1 1.0−9.0
Size The visual width of the almond from side to side Figure 1 1.0−9.0
Veins The visual vessels on the walnut skin Figure 1 1.0−9.0

Basic Taste and Flavor

Sweetness The basic taste associated with a sucrose solution
1% sucrose 5.0
2% sucrose 7.0

Bitterness The basic taste associated with a caffeine or quinine solution 0.01% caffeine 2.0
0.02% caffeine 4.0

Astringency A drying and puckering sensation on the mouth’s surface 0.05% alum 3.0
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Table 8. Cont.

Descriptor Definition Reference ‡ Intensity
Appearance

Flavor
Overall nuts The aroma notes related to all nutty characteristics Mix of ground Hacendado 7.0
Walnut ID The aromatics associated with walnut Ground Hacendado walnuts 8.0

Floral/Fruity The sweet, light, and slightly perfumy impression associated with
flowers and fruits such as apples and pears

Floral and fruity aroma of SOSA
Ingredients® 8.0

Woody The sweet, musty, dark, and dry aromatics associated with the tree bark Ground Hacendado walnuts 3.0

Aftertaste The longevity of key attributes after swallowing the sample
1 min 3.0
2.5 min 5.0
2.0 min 7.0

Texture

Hardness
The force needed to complete a bite through the sample with molar
teeth, evaluated on the first bite down with the molars

Hacendado walnuts 8.0
Hacendado almonds 10.0

Cohesiveness
The deformation degree of the sample prior to breaking when
compressed between molars

Hacendado almonds 1.0
Hacendado raisins 10.0

Crispiness The intensity of audible noise perceived at first chew with molars
Biscuit “Galleta María”
Hacendado 6.0

Nestlé fitness 8.0

Adhesiveness The work performed to completely eliminate the sample from the teeth Hacendado almonds 3.0
Hacendado raisins 10.0

‡ Intensities are based on a 10-point numerical scale with 0.5 increments, where 0 means “none” and 10 means
“extremely strong”.

Figure 3. Reference scales for the descriptive sensory analysis of the walnut’s appearance. Numerical
scale, where 1 means “very weak” and 10 means “very strong”.
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3.4. Statistical Analysis

Walnut yield was analyzed using Tukey’s least significant difference test (p < 0.05).
The fruit quality parameters were analyzed using two-way analysis of variance (ANOVA)
to characterize the data; then, the data were subjected to Tukey’s multiple range test.
XLSTAT Premium 2016 (Addinsoft, New York, NY, USA) was used to calculate statistically
significant differences, with significance levels of p < 0.05, p < 0.01, and p < 0.001.

4. Conclusions
This study highlights the environmental, agronomic, and potential health benefits for

walnut consumers by implementing deficit irrigation within sustainable intensification
frameworks for walnut production. Concretely, we showed the advantageous effect of SDI
on walnut tree performance, as it enhances the water productivity and reveals walnut’s
tolerance to moderate and medium water deficits, particularly cv. Cisco. The experiment
demonstrated that reducing the irrigation water by 25% and 50% resulted in yield reduc-
tions of 21% and 39%, respectively, accompanied by an increase in WP. A 67% reduction
in irrigation produced variable yield effects depending on the cultivar; however, WP gen-
erally reached its highest levels compared to fully irrigated control trees. Nonetheless,
severe deficit irrigation (SDI33) caused a significant yield reduction of approximately 50%.
Considering water savings alongside potential economic returns, factoring in the yield and
fruit size, the SDI75 treatment emerges as the most favorable irrigation strategy, balancing
acceptable yield losses (21% relative to non-water-stressed trees) with efficient water use.

The effects of deficit irrigation on the morphological and physicochemical character-
istics were particularly pronounced under the severe SDI33 treatment. Conversely, the
SDI75 strategy appears to be a viable approach for optimizing the walnut lipid profile, as
it enhanced the concentrations of essential fatty acids such as Ω3 and Ω6 as well as other
unsaturated fatty acids, all of which hold significant dietary value. However, the SDI50 and
SDI33 treatments were associated with substantial reductions in productivity compared
to SDI75. Therefore, SDI75 represents the most suitable irrigation regime, achieving a sus-
tainable balance among fruit yield, quality, and water conservation. Accordingly, walnuts
from moderately water-stressed trees may offer superior health benefits, particularly due
to their elevated levels of bioactive phytochemicals.
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Abbreviations
The following abbreviations are used in this manuscript:

AA Antioxidant activity
ETC Crop evapotranspiration
FAMEs Fatty acid methyl esters
MUFAs Monounsaturated fatty acids
PUFAs Polyunsaturated fatty acids
RDI Regulated deficit irrigation
SDI Sustained deficit irrigation
SFAs Saturated fatty acids
TPC Total phenolic content
WP Water productivity
YR Yield reduction
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115. Yerlikaya, C.; Yucel, S.; Erturk, U.; Korukluoğlu, M. Proximate composition, minerals and fatty acid composition of Juglans regia
L. genotypes and cultivars grown in Turkey. Braz. Arch. Biol. Technol. 2012, 55, 677–683. [CrossRef]

116. Simsek, M. Chemical, mineral, and fatty acid compositions of various types of walnut (Juglans regia L.) in Turkey. Bulg. Chem.
Commun. 2016, 48, 66–70.

117. Gutiérrez, G.S.; Lipan, L.; Durán, Z.V.H.; Sendra, E.; Hernández, F.; Hernández, Z.M.S.; Carbonell, B.A.A.; García-Tejero, I.F.
Deficit irrigation as a suitable strategy to enhance the nutritional composition of HydroSOS almonds. Water 2020, 12, 3336.
[CrossRef]

118. Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [CrossRef]
119. EFSA. Labelling reference intake values for n-3 and n-6 860 polyunsaturated fatty acids. EFSA J. 2009, 1176, 1–11. [CrossRef]
120. Ingels, C.A.; McGranahan, G.H.; Noble, A.C. Sensory evaluation of selected Persian walnut cultivars. HortScience 1990, 25, 1446–1447.

[CrossRef]
121. Shepherd, R.; Colwill, J.S.; Daget, N.; Thomson, D.M.H.; McEwan, J.A.; Lyon, D.H. Sensory evaluation. In Encyclopaedia of

Food Science, Food Technology and Nutrition; Macrae, R., Robinson, R.K., Sadler, M.J., Eds.; Academic Press: London, UK, 1993;
pp. 4023–4075.

122. Sinesio, F.; Moneta, E. Sensory evaluation of walnut fruit. Food Qual. Prefer. 1997, 8, 35–43. [CrossRef]

https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1990L0496:20081211:EN:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1990L0496:20081211:EN:PDF
https://doi.org/10.3390/ijerph15122674
https://doi.org/10.1002/jsfa.7027
https://doi.org/10.3390/foods8020064
https://doi.org/10.1016/j.jfca.2022.104534
https://doi.org/10.1002/ejlt.200800121
https://doi.org/10.1007/s11746-006-5016-z
https://doi.org/10.22034/jon.2017.530389
https://doi.org/10.1016/j.chemolab.2017.10.014
https://doi.org/10.1002/aocs.12097
https://doi.org/10.1007/s00217-020-03453-8
https://doi.org/10.1016/j.fct.2008.02.002
https://doi.org/10.1136/bmjdrc-2015-000115
https://doi.org/10.3390/nu8030128
https://doi.org/10.1016/B978-0-08-100596-5.22511-0
https://doi.org/10.5650/jos.ess17162
https://doi.org/10.1111/j.1745-4557.2009.00249.x
https://doi.org/10.1021/jf030451d
https://www.ncbi.nlm.nih.gov/pubmed/14664531
https://doi.org/10.1590/S1516-89132012000500006
https://doi.org/10.3390/w12123336
https://doi.org/10.3390/ijms21165695
https://doi.org/10.2903/j.efsa.2009.1176
https://doi.org/10.21273/HORTSCI.25.11.1446
https://doi.org/10.1016/S0950-3293(96)00005-5


Plants 2025, 14, 1777 28 of 28

123. Peleg, H.; Gacon, K.; Schlich, P.; Noble, A.C. Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. J. Sci. Food
Agric. 1999, 79, 1123–1128. [CrossRef]

124. FAO. World Reference Base for Soil Resources; World Soil Resources Report 84; FAO: Rome, Italy, 1998.
125. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements); FAO—

Irrigation and Drainage, Paper 56; FAO: Rome, Italy, 1998.
126. AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995.
127. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS

radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [CrossRef]
128. Brand, W.W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995,

28, 25–30. [CrossRef]
129. Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal.

Biochem. 1996, 239, 70–76. [CrossRef] [PubMed]
130. Gao, X.; Björk, L.; Trajkovski, V.; Uggla, M. Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems.

J. Sci. Food Agric. 2000, 80, 2021–2027. [CrossRef]
131. Lipan, L.; Martín, P.M.J.; Sánchez, R.L.; Cano, L.M.; Sendra, E.; Hernández, F.; Burló, F.; Vázquez, A.L.; Andreu, L.; Carbonell-Barrachina,

A.A. Almond fruit quality can be improved by means of deficit irrigation strategies. Agric. Water Manag. 2019, 217, 236–242. [CrossRef]
132. Cano-Lamadrid, M.; Girona, D.; García, G.E.; Dominguis, R.V.; Domingo, C.; Sendra, E.; López, L.D.; Carbonell, B.A.A.

Distribution of essential and non-essential elements in rice located in a Protected Natural Reserve “Marjal de Pego-Oliva”. J. Food
Compos. Anal. 2020, 94, 103654. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/(SICI)1097-0010(199906)79:8%3C1123::AID-JSFA336%3E3.0.CO;2-D
https://doi.org/10.1016/S0891-5849(98)00315-3
https://doi.org/10.1016/S0023-6438(95)80008-5
https://doi.org/10.1006/abio.1996.0292
https://www.ncbi.nlm.nih.gov/pubmed/8660627
https://doi.org/10.1002/1097-0010(200011)80:14%3C2021::AID-JSFA745%3E3.0.CO;2-2
https://doi.org/10.1016/j.agwat.2019.02.041
https://doi.org/10.1016/j.jfca.2020.103654

	Introduction 
	Results and Discussion 
	Walnut Yield Response to Deficit Irrigation 
	Water Productivity 
	Walnut Quality Parameters 
	Morphological and Physical Features 
	Antioxidant Activity and Total Phenolic Content 
	Sugars and Mineral Contents 
	Walnut Fatty Acid Profile 

	Descriptive Sensory Analysis 

	Materials and Methods 
	Study Area 
	Irrigation Strategies and Experimental Design 
	Physical and Chemical Walnut Nut Analysis 
	Morphological, Moisture Content, Instrumental Color, Cutting Force, and Water Activity Measurements 
	Antioxidant Activity and Total Polyphenol Determination 
	Sugar and Fatty Acid Methyl Ester Determination 
	Mineral Content Determination 
	Descriptive Analysis 

	Statistical Analysis 

	Conclusions 
	References

