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ABSTRACT: Reticular structures are the basis of major infrastructure projects, including bridges, electrical pylons
and airports. However, inspecting and maintaining these structures is both expensive and hazardous, traditionally
requiring human involvement.While some research has been conducted in this �eld of study,most e�orts focus on faults
identi�cation through images or the design of robotic platforms, o�en neglecting the autonomous navigation of robots
through the structure. �is study addresses this limitation by proposing methods to detect navigable surfaces in truss
structures, thereby enhancing the autonomous capabilities of climbing robots to navigate through these environments.
�e paper proposes multiple approaches for the binary segmentation between navigable surfaces and background from
3D point clouds captured frommetallic trusses. Approaches can be classi�ed into two paradigms: analytical algorithms
and deep learning methods. Within the analytical approach, an ad hoc algorithm is developed for segmenting the
structures, leveraging di�erent techniques to evaluate the eigendecomposition of planar patches within the point cloud.
In parallel, widely used and advanced deep learning models, including PointNet, PointNet++, MinkUNet34C, and
PointTransformerV3, are trained and evaluated for the same task. A comparative analysis of these paradigms reveals
some key insights. �e analytical algorithm demonstrates easier parameter adjustment and comparable performance
to that of the deep learning models, despite the latter’s higher computational demands. Nevertheless, the deep learning
models stand out in segmentation accuracy, with PointTransformerV3 achieving impressive results, such as a Mean

Intersection Over Union (mIoU) of approximately 97%. �is study highlights the potential of analytical and deep
learning approaches to improve the autonomous navigation of climbing robots in complex truss structures.�e �ndings
underscore the trade-o�s between computational e�ciency and segmentation performance, o�ering valuable insights
for future research and practical applications in autonomous infrastructure maintenance and inspection.
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1 Introduction

�e durability and mechanical resilience of lattice structures have established them as indispensable
components in a multitude of contemporary infrastructure systems. From telecom towers and power line
pylons to sca�olding and bridge frames (Fig. 1), lattice designs o�er a high strength-to-weight ratio, making
them ideal for large-scale constructions that require both durability and reliability.
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Figure 1: Sydney harbour bridge

�e geometric arrangement of multiple interconnected elements of these structures allows an e�cient
distribution of loads and forces across multiple nodes, reducing stress concentration and enhancing overall
stability. �is combination of characteristics has led to their widespread adoption in engineering and
architectural designs, where their inherent stability and adaptability contribute to the resilience and longevity
of critical infrastructure.

�eir metallic composition and common placement in outdoor areas require regular maintenance and
inspection to ensure their integrity. �ese tasks, traditionally carried out by human operators, expose them
to signi�cant risks, including falls, high voltages, and other hazards.

One of the principal methods used to mitigate the risk to operators is the use of robots, either for the
complete performance of the task or to provide assistance. During recent decades, a variety of solutions have
been proposed to increase the automation of inspection and maintenance tasks of complex truss structures
such as climbing robots [1,2] and drones [3–5].

Climbing robots generally have a longer lifespan, payload, stability, and are less a�ected by environmen-
tal factors [6,7]. In particular, bipedal climbing robots provide considerable �exibility, agility, and payload
capacity, allowing them to traverse the interior and exterior of lattice structures even when these structures
have a high density of lattice elements.�is capability arises from their numerous degrees of freedom, precise
control mechanisms, and ability to easily navigate around obstacles.

In contrast, drones are faster, easier to deploy (it is not necessary for the operator to be in close proximity
to the structure in order to initiate the task), and are not dependent on the surface of the structure. However,
this type of device is generally prone to di�culties when navigating within high-density structures, su�ers
instability in con�ned spaces due to proximity to structural elements, there is an increased risk of crashing,
colliding, or falling debris, and has a limited battery [6,7].

�e complexity of reticular structures poses unique challenges when it comes to modelling, analysing,
and inspecting them, particularly in 3D environments, mainly due to their complex geometry, overlapping
elements and potential occlusions. Consequently, accurate segmentation of spatial information is essential
for autonomous climbing robots to perform inspection, maintenance, and navigation tasks successfully.

�e acquisition of spatial information related to the environment requires sensors capable of mea-
suring depth. With the emergence of more a�ordable LiDAR sensors [8] and RGB-D cameras [9], spatial
information has been introduced to address 3D segmentation.
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RGB-D cameras are sensors that capture both colour (RGB) and depth (D) information from a
scene. �is is typically achieved by stereo vision in combination with a time-of-�ight (TOF) sensor. �e
combination of stereo vision and the TOF sensor allows building robust and accurate depth maps [10]. �e
TOF sensor enables the robot to construct a 3D depth map even when the RGB information of the stereo
vision is not enough for the 3D reconstruction. Despite this, RGB-D cameras are susceptible to �uctuations
due to the lighting conditions and have a relatively narrow operational range, typically between 0.5 and 5 m.

LiDAR, which stands for Light Detection and Ranging, uses laser pulses to measure distances to objects
or surfaces. Its operational principle is based on the emission of a series of rapid laser pulses, and timing how
long it takes for each pulse to bounce back a�er interacting with an object. LiDAR systems create detailed 3D
maps or “point clouds” of the environment with high accuracy. �e ability to capture high-resolution, long-
range (0.5–100 m), and accurate spatial information under various lighting and weather conditions makes
them more e�ective and advantageous sensors in mobile robot applications [11].

However, the large amount of information provided by these sensors can be both an asset and a liability.
Large volumes of data, which o�en include an important amount of noise and irrelevant information, can
negatively impact the performance of navigation algorithms. To address this, various �lters are typically
employed to reduce and re�ne the sensor data, such as voxel �ltering for down-sampling and statistical
methods for outlier removal. A�er �ltering, segmentation plays a crucial role, as it allows identifying di�erent
elements within the environment, enabling autonomous systems to make informed decisions for navigation
and task execution [12].

In this work, various methods are presented to achieve a binary segmentation between truss structures
and background, which will facilitate subsequent works on modelling, mapping, and navigating through
these types of structures. Neural networks have been widely used for 2D segmentation tasks in recent
years [13–15].

�is paper is structured as follows. First, an overview of the related work is presented in Section 2.
A�er this, Section 3 describes the robotic platform. Section 4 outlines the neural networkmodels studied for
the segmentation task. Section 5 presents an analytical algorithm to perform a similar segmentation using
conventional methods. Section 6 describes the experiments and discusses their results. �e study concludes
with Section 7, which presents a brief overview of the key �ndings and proposes future research directions.

�e respository with the source code is publicy available at https://github.com/Urwik/rs_seg_
methods.git (accessed on 20 May 2025).

2 RelatedWork

Although numerous studies have been conducted in the realm of structural inspection, autonomous
navigation through these environments remains poorly studied. Due to their intrincated nature, themajority
of the work related to climbing robots for truss structures has focused on the mechanical design and
control [9,16,17]. Furthermore, a signi�cant portion of the work in this �eld focuses on the visual analysis
of structural defects or structural health monitoring (SHM) [18–21]. Consequently, most of the work in this
�eld requires human intervention to guide the robot across the structure until the target points.

In addition to the inherent limitations, there are also few examples of research works using autonomous
robots on generic reticular structures. �e most comparable investigations are those focused on the inspec-
tion of metallic bridges. Table 1 summarizes the most relevant works similar to the �eld of segmentation of
reticular structures.

https://github.com/Urwik/rs_seg_methods.git
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2.1 Inspection and Navigation

Two principal methods for the inspection or maintenance of this type of structure are drones [22,23]
and climbing robots [24,25]. Drones facilitate faster and easier exploration, though their e�ectiveness is o�en
limited by the di�culty of navigating among the bars that compose the structures [6]. In contrast, climbing
robots are designed to adhere to the structure, o�ering greater ease, precision, and safety whenmanoeuvring
through complex and narrow environments such as lattice structures [7].

As stated previously, most current research is focused on the development of the robot itself or on the
detection of faults, rather than the creation of a model of the structure that enables the automation of the
task [26–28]. In the existing literature, there are only a few works that aim to provide a structure model
to automate the inspection or maintenance of a structure [29,30]. Lin et al. [29] propose a method for the
detection of trusses using a sliding window approach. However, the construction of a complete map of the
environment before the application of the algorithm limits the scalability of the method to large structures.
Bui et al. [30] propose a novel control framework to minimize human involvement by a switching control
that allows the robot to alternate its con�gurations according to the environment. �e control system uses
3D point clouds to identify the nearest �at surface to which the robot can attach. Nevertheless, this method
is only capable of detecting the closest planar surface, regardless of the surrounding environment or multiple
available surfaces.

2.2 Dataset Generation

In order to address the task of segmenting the environment and identifying faults, there is a growing
trend toward the use of emerging techniques such as neural networks. �ese methods require a substantial
amount of data for their implementation.

�e�eld of study addressed in thiswork is still in its early stages and, as a result, there is a dearth of exten-
sive databases that could facilitate the advancement of this research line. Consequently, some researchers
have developed novel databases, o�en resorting to synthetic environments due to the considerable cost
associated with capturing and labelling real data. �is cost increases when the objective environments are
typically found in large infrastructures at high altitudes and in hazardous locations. �erefore, acquiring
these data is a costly and risky undertaking. Failure in navigation or adhesion of the robot can cause a fall of
the robot, posing serious risks to the robot and the operators.

Some works [31–34] employ di�erent methodologies to generate synthetic datasets that can be used to
develop algorithms for the inspection and segmentation of structural elements. One of the advantages of this
type of database is that it facilitates the automation of data labelling, thereby enabling the direct acquisition
of ground truth from the simulation environment. �e following paragraphs provide a description of the
aforementioned works.

�e study by Cheng et al. [31] utilizes Blender in conjunction with a Python API to generate a database
of life-like images set within environments featuring six di�erent types of parametrically generated bridges.
Following this, the e�ectiveness of the dataset is veri�ed by training the DeepLabV3Plus neural network [35]
for semantic image segmentation, yielding promising results.

In parallel with previous research, Lamas et al. [32] have developed a MATLAB so�ware to create
di�erent types of reticular bridges and to implement diverse pro�les of the bridge structure. �e so�ware
is tailored to train the JSNet network model [36] to achieve semantic segmentation and segmentation by
instance of each constituent element within the point cloud.

�e approach outlined in [33] employs a combination of simulated data and real 3D LiDAR data to
increase the number of point cloud examples required for the training of deep learningmethods.�e authors



Comput Model Eng Sci. 2025 5

introduce two methodologies for data augmentation, illustrating that the integration of such processes with
the initial database yields improved results across all aspects of segmentation.

In addition, Jing et al. [34] address the dearth of databases containing structural elements with
information generated synthetically. �e authors evaluate the performance of their approach using neural
networks for semantic segmentation.�eir dataset comprises both real and synthetic clouds generated from
3D models. Furthermore, they propose a neural network model (BridgeNet) and compare its performance
with other segmentation models, including PointNet++ [37] and RandLA-Net [38].

In the present work a Gazebo plugin has been developed to generate the necessary datasets that
allow the implementation and test of the methods for the segmentation of reticular structures. �is plugin
facilitates the parameterization and automation of the process of generation and labelling of synthetic
datasets. Furthermore, the data generated through this method closely resembles the behaviour of the sensor
itself, eliminating the need for post-processing to obtain occlusions and noise.

2.3 Deep Learning Structure Segmentation

Neural networks stand out as one of the predominantmethodologies used for semantic segmentation of
objects. �eir widespread adoption is attributed to their commendable performance, versatility, and ability
to extract distinctive features for various objects. Leveraging this feature extraction capability, they can
e�ectively assign a semantic label to each point within a sensor scan.

Within the domain of structure inspection and maintenance, several studies use neural networks
to segment data acquired from LiDAR sensors. �is segmentation is commonly used to identify speci�c
elements of the infrastructure for evaluation and to focus attention on these elements.

Ji et al. [39] developed a neural network called Dual Attention-based Point Cloud Network (DAPCNet)
formulti-class segmentation in tunnel environments using point cloud data.�eDAPCNet uses an encoder-
decoder architecture with a dual attention module to improve the segmentation. �ey also propose a loss
function called Facal Cross-Entropy to address an imbalanced data distribution. �ey achieve better results
than other networks used for segmentation like PointNet [40] and Dynamic Graph CNN (DGCNN) [41].

Grandio et al. [42] use PointNet++ [37] to segment four di�erent scenarios with railway data. �ey use
the euclidean coordinates and the intensity value of each point to train the segmentation for eight di�erent
semantic classes.

In [43], three network models are evaluated for bridge segmentation. �e evaluated models are
DGCNN, PointNet, and PointCNN.�e best mean intersection over union (mIoU) is achieved by DGCNN
(86.85%) closely followed by PointNet (84.29%).

Kim et al. [44] present a PointNet-based neural network for the segmentation in three di�erent classes
of bridges. Background is considered a class so no pre-processing step of the cloud is needed.

�e present work applies semantic segmentation neural networks to achieve a binary segmentation
of metallic structures. To obtain models which are able to generalize, the present work proposes to train
the neural networks with simple geometric elements (parallelepipeds) and subsequently evaluate them with
complex structures. �e method employs single, sparse, and uncorrelated scans. A study has also been
conducted on the input features for the networks and how they a�ect the segmentation e�cacy.

2.4 Analytical Structure Segmentation

Analytical techniques can be used to achieve segmentation outcomes comparable to those obtainedwith
neural networks. However, these methods o�en have a limited ability to generalize. Notwithstanding that,
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their use can provide advantages in some scenarios where the use of dedicated hardware or neural network
training is unfeasible due to limited data availability.

In [45], an analytical method for the segmentation of metallic truss bridges is proposed. �e data
is acquired using a Terrestrial Laser Scanner (TLS). A preprocessing step is executed to homogenize the
density of each scan and remove noisy isolated points, improving the next steps of the segmentation.
Segmentation is achieved by analysing each face of the bridge (vertical, horizontal, interior) separately.
For each direction, a combination of Principal Component Analysis (PCA) with GPU-Density Based Spatial

Clustering GDBSCAN [46] is used to complete the bar segmentation.

Riveiro et al. [47] present amethod to segment a dense point cloudmap ofmasonry arch bridges. In this
work PCA is used for normal estimation. �ey �rst classify points between vertical and non-vertical walls
using normal estimation. By transforming the normal vectors into spherical coordinates, a �nal segmentation
is obtained that classi�es the vertical walls into di�erent parts from the azimuth histogram.

In their study, Yan et al. [48] use a preprocessing step to remove irrelevant data, extract local point
features and downsample the cloud.�ey propose a segmentation method that sequentially identi�es points
in di�erent classes. Initially, the scan is classi�ed as either above the bridge or above the ground. Subsequently,
depending on the scan type, a distinct combination of PCA, Random Sample Consensus (RANSAC) and
Euclidean clustering is employed to achieve the �nal segmentation.

Lu et al. [49] present amethod to segment structural components in reinforced concrete bridges. In their
approach, a slicing algorithm is applied to separate deck points from pier points. Secondly, surface normals,
density histograms and oriented bounding boxes are used to segment pier parts. Finally, a merging stage is
applied to reduce over-segmentation results of the bridge.

�e present work proposes an analyticalmethod for the binary segmentation of reticular structures.�e
problem is approached through a two-step algorithm that employs the combination of normal estimation,
RANSAC plane detection, and eigenvectors computation to achieve the �nal segmentation. Furthermore,
this work compares the e�ciency and e�ectiveness of the analytical method and the neural network models.

Table 1: Summary of the most relevant works similar to the �eld of segmentation of reticular structures

Reference Paradigm Target Method Limitations

Ji et al. [39] Deep learning Tunnels DAPCNet Manually
labelled data

Grandio
et al. [42]

Deep learning Railways PointNet++ Limited labelled
test data

Kim et al. [43] Deep learning Concrete
bridges

DGCNN,
PointNet,
PointCNN

Manually
labelled data

Kim et al. [44] Deep learning Concrete
bridges

PointNet-based Manually
labelled data

Lamas et al. [45] Analytical Truss structures PCA, DBSCAN Requires a map
Riveiro
et al. [47]

Analytical Masonry arch
bridges

Normals, PCA,
Azimuth
Histogram

Requires a map

(Continued)
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Table 1 (continued)

Reference Paradigm Target Method Limitations

Yan et al. [48] Analytical Steel girder
bridges

Normals, PCA,
RANSAC,
K-medoid

Requires a map

Lu et al. [49] Analytical Concrete
bridges

Normals, density
histogram, sliding

window

Requires a map

3 Robotic Platform

3.1 Robot

�emethods proposed in this paper are designed for the robot developed in [50].�is robot, designated
HyReCRo, is a biped robot developed to perform maintenance and inspection tasks on three-dimensional
metallic lattice structures. Each of the robot’s legs is composed of two parallel mechanisms with two degrees
of freedom (DOF) placed opposite each other. Both parallel modules share a central link, which serves
as a slider. �e con�guration of two parallel modules per leg ensures symmetry and enhances the robot’s
robustness and payload capacity.

Both legs are connected in series to a common element, designated as the hip, through rotary joints.�e
connection of parallel modules in series results in the formation of a series-parallel con�guration, which will
henceforth be referred to as a hybrid con�guration. �e actual state of the robot prototype can be observed
in Fig. 2a. Due to its hybrid architecture, the robot has 10 degrees of freedom (DOF), making it a redundant
robot with considerable �exibility to navigate in complex environments like metallic lattice structures.

Figure 2: Example �gures of the HyReCRo robot: (a) Actual state of the HyReCRo prototype; (b) CAD representation
of the �nal HyReCRo robot
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�e adhesion mechanism is achieved through the use of a permanent magnets system, which is capable
of being mechanically switched.�is enables minimal power consumption.�e robot also has an automatic
adhesion process [51].

3.2 Sensors

To capture the necessary information from the environment, sensors that provide spatial information
have been used, which is common in current applications [8,29]. Within the category of spatial information
sensors, two types have been considered: RGB-D cameras and LiDAR sensors. Due to the enhanced quantity
of information and accuracy a�orded by a LiDAR sensor, this alternative has been selected.

�e Ouster OS1 sensor, equipped with 128 channels, serves as a LiDAR sensor of choice. �is sensor
uses a class 1 laser, enabling its operation without the need for safety equipment. Its primary characteristics
encompass a high precision of ±0.03m, an extensive operational range spanning from 0.5 to 100 m, and
con�gurable resolutions of 128 × 512, 128 × 1024, and 128 × 2048. Additionally, it o�ers a con�gurable
frequency of 10/20 Hz, along with a vertical �eld of view (FOV) ranging from −22.5 to 22.5 degrees and a
horizontal FOV of 360 degrees.

In the �nal prototype of HyReCRo, this sensor would be located at the centre of the hip. In Fig. 2b, a 3D
representation of �nal prototype is shown.

4 Deep Learning Segmentation

In this study, some of the most widely used neural network models for 3D semantic segmentation
are studied. �e aforementioned models include PointNet [40], PoinNet++ [37], MinkUNet34C [52] and
PointTransformerV3 [53].

4.1 PointNet

PointNet [40] is known for being the �rst network that enables the use of unorganized or sparse point
clouds directly as input. It can be used for a range of tasks, including object classi�cation, object parts
segmentation and scene semantic segmentation.

�e network is composed of severalmulti-layer perceptrons (MLPs), which sequentially extract features
from the local point to the global scene in a sequential manner. Due to its MLP architecture, the input
cloud is restricted to a �xed size, which generally requires preprocessing the initial scan to extract a �xed
number of points. Additionally, this network does not consider the neighbourhood of points, as the input is
an unordered set of points. Despite the aforementioned features, the system exhibits satisfactory performance
in segmentation and classi�cation tasks [54].

�e original PointNet architecture is designed to accept a maximum of three features (cartesian
coordinates) of input data for each point. However, a relatively straightforward modi�cation of the model
has been implemented to enable the number of input features to be parametrized.

4.2 PointNet++

PointNet++ [37] appears as an improvement of PointNet. It addresses the shortcoming of only evaluat-
ing individual point features but not their neighbourhood. PointNet++ extracts local features, by grouping
and applying hierarchically the PointNet backbone to each point neighbourhood. As a center for the local
regions, it uses the Farthest Point Sampling (FPS) algorithm, which samples the input point cloud to a �xed
size while preserving the global geometry of the point cloud.
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In order to consider the information of the point neighbourhood, the network groups nearby points
and extracts features from them. �is process is applied sequentially at di�erent resolutions (obtained by
sampling the input cloud). �e features extracted from point groups are combined sequentially to include
neighbourhood information. Finally, a propagation of the features is applied until the features dimension is
equal to the desired number of semantic elements.

�e results of the new version prove to be superior, exhibiting greater resilience to input clouds with
variable density. However, the training and inference times are signi�cantly longer compared to PointNet,
due to the required preliminary sampling and hierarchical learning at di�erent resolutions.

4.3 MinkUNet34C

�e MinkUNet34C [52] architecture represents a solution to the challenge of reducing the computa-
tional time required for 3D convolutions within the Minkowski Engine project [52]. �is project introduces
a novel approach to convolutions, enabling sparse 3D convolutions that only operate on existing points,
in contrast with traditional convolutional network models, which divide the entire space and perform
convolutions for all cells regardless of their occupancy.

�ismodel requires two distinct inputs: on the one hand, the coordinates of the points, and on the other
hand, a feature vector per point. In order to prevent memory over�ow and reduce computational cost, the
coordinates of the points are discretized through voxelization. �e voxels that contain points are used to
build a sparse tensor. �e centre of each voxel is used as a convolution centre.

Subsequent operations on the point cloud, such as convolution, are applied to the mean of the features
of the points within each voxel. �e voxel size must be adjusted according to the speci�c application, with
typical values ranging from 0.05 to 0.15 m. �e model employs hierarchical learning, whereby the outputs
of the initial blocks serve as inputs for the subsequent blocks. Following an encoder-decoder structure, it
assigns a label to each voxel, which is then propagated to all points within that voxel in order to match the
size of the original point cloud.

4.4 PointTransformerV3

PointTransformerV3 [53] is considered one of the most e�ective neural network models for semantic
segmentation, particularly when applied to well-known datasets such as SemanticKITTI [55] or Scan-
Net200 [56]. �is model employs an architecture based on self-attention layers (transformers) for the
successful completion of tasks such as semantic segmentation, instance segmentation and object detection.
In regard to the operational principles of the transformers, the model employs a serialized input, followed
by a U-Net framework (encoder-decoder) to apply recursively pooling and self-attention layers. �e main
contribution of the work is the utilization of space-�lling curves (Z-order and Hilbert) for the serialization
of the input data. �is serialization enhances the e�ciency of the model, reducing the computational cost
and memory requirements in comparison to the previous work of the autors [57] and other state-of-the-art
models, such as MinkUNet34C [52].

5 Analytical Method for the Segmentation of Reticular Structures

�e proposed method for the analytical segmentation of the structures results in a binary segmentation
of lattice structures that emerge from the ground in outdoor environments. �e algorithm addresses the
challenge of segmenting structures within individual scans, without any correlation between them.
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�e algorithm employs a two-step approach (Fig. 3). Following the nature of the environment, the �rst
step aims to identify roughly the surface of the ground. �e second stage enhances the segmentation by
focusing on the contact areas between the structure and the ground.

Figure 3: Flowchart of the proposed algorithm

�e implementation of the point cloud processing was conducted using the Point Cloud Library
(PCL) [58].

5.1 Coarse Segmentation

�e �rst stage aims to detect a planar model that best �ts the ground nearby the structure.

�e extraction of a planar model from a point cloud is typically accomplished through the use of the
RANSAC algorithm. However, RANSAC is particularly sensitive to the density of points, a factor which
requires preprocessing to be applied prior to its use. In this instance, a voxel �lter is employed prior to the
application of RANSAC, with the objective of extracting the parameters of the plane that optimally align
with the ground plane in the vicinity of the truss. Given that the ground is not a perfect planar model, but
rather a curved surface, it is necessary to set high RANSAC thresholds in order to achieve the best possible
identi�cation of themain groundnormal direction. Empirical values of 0.5–1m are likely to provide su�cient
results for most cases.

�e voxelized cloud is employed solely for the extraction of the primary direction of the ground plane.
�e RANSAC thresholds determine the distance from the emerging plane at which the points of the original
point cloud should be considered inliers of the coarse ground.

At this stage, a signi�cant number of points of the lower sections of the truss are located within the
coarse ground and needs to be re�ned.

5.2 Fine Segmentation

�e objective of the �ne segmentation step is to enhance the previous segmentation. In this phase, the
algorithm focuses on the coarse ground points.

In this phase of the algorithm a clustering process is applied. As the components of the target structures
are composed of planar surfaces, region growing based on normals is employed to cluster planar segments in
the cloud.�e suitability of each cluster for inclusion in the truss is determined by examining its eigenvalues
and eigenvectors. A prior knowledge of the bars that compose the structure (length and width) is used
to evaluate whether a cluster belongs to the structure or not. �e next subsections detail the steps of
the algorithm.
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5.2.1 Region Growing

�e region growing algorithm is a clustering method based on the aggrupation of near points with
similar features.

In order to divide the cloud into planar clusters, region growing with the normal vector as feature for
each point is applied. �e implementation of the region growing method employed in this study is based on
the PCL library for C++. �is method requires the normal vector of each point and its Curvature (Eq. (2)).

�e growth of a region is initiated by the selection of an initial seed at the point of the lowest curvature
(a point that resides on a plane) and subsequent evaluation of the normals of the nearest neighbours.
If the speci�ed threshold is met, the points in question are designated as new seeds, and the growth
process continues.

Once the growing process exhausts all available seeds, a cluster is completed, and a new initial seed is
established at the next pointwith the lowest curvature in the remaining cloud.�is iterative process continues
until the entire cloud has been evaluated.

Normal Estimation and Curvature

A precise estimation of the normal vector is of paramount importance for the e�cacy of the clustering
process. In this article, the estimation of normal vectors is based on Principal Component Analysis (PCA)
applied to the covariance matrix of a point neighbourhood.

�e covariance, denoted as C is expressed in Eq. (1). Where k is the total number of neighbours, pi is
the current neighbour point, p is the centroid of the neighbourhood set, λ j is the eigenvalue, and v⃗ j is the
eigenvector for j.

�e PCA over the covariance matrix returns the eigenvectors and eigenvalues of the clusters. �e
smallest eigenvector is considered the normal vector.

C = 1

k

k

∑
i=1

(pi − p) ⋅ (pi − p)T

C ⋅ v⃗ j = λ j ⋅ v⃗ j , j ∈ {0, 1, 2}
(1)

Curvature (Eq. (2)) is used to establish cluster boundaries. Since the eigenvalues (λ j) are normalized
between 0 and 1, the maximum curvature value is λmax = 1/3, which occurs when λ0 = 1, since λ0 ≤ λ1 ≤ λ2
and λ0−2 ∈ {0, 1}. �is explanation can be found in [59].

With regard to the curvature equation, it represents the sparsity of points along the normal vector. Points
with low curvature indicate that their neighbouring points are situated on the same plane, whereas points
with high curvature (maximun value 1/3) indicate that their neighbourhood is uniformly distributed in the
three-dimensional space.

Curvature = λ0

λ0 + λ1 + λ2
(2)

5.2.2 Eigenvalues Evaluation

To determine if a cluster belongs to the structure or not, its eigenvalues and eigenvectors are evaluated.

�e eigenvalues and eigenvectors of a cluster are obtained with a PCA analysis of the cluster (Eq. (1)).
PCA results in three eigenvectors that follow the main directions of the spatial distribution of points, and its
associated eigenvalues that represent the scalar factor of the vectors.

�ree di�erent ways of evaluating the eigenvalues have been established.
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Ratio

�is variant of the algorithmevaluates each cluster by the quotient of its two largest eigenvalues (Eq. (3)).
�is approach assumes that the elements of the structure have a slender and elongated geometry. �e
threshold for the ratio criterion can be established from the working principle of the algorithm and the
dimensions of the bars in the structure. From the algorithm’s principle, it could be deduced that the structure
bar length should not exceed the RANSAC threshold employed in the coarse step, as only points with a
distance to the ground plane lower than that value are fed to the �ne segmentation.�e bars’ dimensions can
be utilised to establish the maximum width at which planar clusters can be incorporated into the structure.
�e threshold for the ratio variant is then determined as the quotient between the width of the bars and the
RANSAC threshold employed in the coarse segmentation, which is set to 0.3 (0.15 m/ 0.5 m) in this study.

ratio = λ1

λ2
(3)

Magnitude

�e magnitude variant evaluates the length of the cluster along the largest eigenvector direction. �is
is done by estimating the eigenvectors of the cluster and applying a transformation to align the cluster basis
with the eigenvectors directions. To set a cluster as part of the structure, its maximum dimension along the
direction of the eigenvector λ2, should be less than a given threshold. Like in the case of the ratio variant,
the maximum length of the bars in the coarse segmented ground is the threshold employed for the ground
plane estimation. For the purposes of this study, the value of this threshold has been set to 0.5 m.

Hybrid

�ehybrid variant combines the two previous approaches in an attempt to exploit the strengths of both.
For a cluster to be identi�ed as a structure, it must meet both thresholds.

5.3 Density Filter

In the �nal step of the algorithm, and taking into account the proximity of the sensor to the structure,
a density �lter is applied to eliminate surrounding points. Points with low density are removed from the
structure class. Although this �lter could be applied at the beginning of the algorithm, preliminar tests
showed that applying it a�er the �ne segmentation process produced better results.

6 Experiments and Discussion

In order to ascertain the e�cacy of the proposedmethodologies, a series of experiments were conducted
with the objective of evaluating their performance across a range of metrics. �ese experiments aimed to
test the methods’ capabilities in terms of mIoU, F1-score, e�ciency, and reliability in di�erent scenarios.
Below, we outline the employed dataset, the key performance indicators and the experiments for both types
of methods.

In this study, two computational setups were used. �e �rst one, used for neural network training and
testing consists of a computer with two Intel Xeon Gold 6334 CPUs with 128 gigabytes of RAMmemory.�e
graphics processing unit (GPU) is an Nvidia GPU A30 Tensor Core with 24 GB of VRAM.�e experiments
were executed on the Ubuntu 22.04 operating system.

�e second setup was used for the study of the analytical algorithm, which consists of a desktop
computer with an Intel i7-10700K CPU, 32 GB of RAM, running under Ubuntu 20.04.
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6.1 Datasets

Even though reticular structures are widely used in contemporary architectural designs, to the best
of our knowledge, there is no widely established public database containing either images or metric data
relevant to these environments.�is absence of accessible information restricts the capacity to assess research
e�orts in this �eld.

Due to the lack of existing databases and the signi�cant expense involved in constructing one from
scratch, it is essential to employ an alternative approach for acquiring labelled 3D LiDAR datasets. In this
study, as in others within the academic literature [31,32,60], we have opted for using a simulated environment
to synthetically generate a su�ciently large and completely labelled 3D LiDAR dataset. An illustrative
example of the simulated environment is provided in Fig. 4.

Figure 4: Example of the simulated environment for the dataset generation

�e simulation platform employed is the Gazebo Simulator [61], an open-source application o�ering
a comprehensive collection of robots and sensors, which is continually expanding due to the contributions
of a broad community of developers. �is simulator is integrated with the Robot Operating System (ROS),
a widely recognised robotics so�ware development framework that is extensively used in academic and
research settings. Its integration with ROS, among other factors, has facilitated its widespread adoption and
contributed to the size of its user community.

For this section, we drew on Sánchez et al. [60] research, in which automatic labelling of data from a
LiDAR sensor is achieved using this simulator. �e simulated sensor provides 4 �elds of data per point, 3
for the cartesian coordinates of the point and one for the intensity related to that point. �e default intensity
value for each object in the environment is set to zero, but it can bemanually adjusted. By assigning a distinct
intensity value to each component of the environment intended for segmentation, this feature allows for the
generation of a point cloud with fully labelled information.

In contrast to Sánchez et al. [60], where the pose of the sensors is manually selected for each reading,
in our work, the process is entirely automated thanks to a plugin developed for this simulator, enabling
the generation of a dataset in a fully automated manner. �is plugin encompasses various functionalities,
including the assignment of distinct intensity values to individual components within the environment,
establishing random poses for designated elements within the environment, and saving point cloud infor-
mation alongside its corresponding label in “.pcd” format. Each point cloud is generated independently, with
its origin being the position of the sensor. To prevent issues during data capture, the plugin is manually
restricted to generate only one scan per second.
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Regarding the LiDAR sensor, Gazebo also permits the con�guration of its operating parameters. �e
sensor used to generate the data has been parameterized in accordance with the con�guration of the real
128-channel Ouster OS1 sensor. �e parameters that model the behaviour of the simulated sensor are the
resolution, the range of action, the vertical and horizontal �elds of view and the noise applied to the data.
In order to align the characteristics of the Ouster OS1 with those of the simulated sensor, the parameters
outlined in Table 2 have been con�gured.

Table 2: Con�guration parameters for the simulated sensor

Parameter Value

V. Resolution 128 points
H. Resolution 512 points
Min. Range 0.050 m
Max. Range 30.00 m
V. FOV. 45○

H. FOV. 360○

Noise 0.008 m

Two datasets have been built and used for this study.�e �rst dataset contains the information used for
training the neural network models, while the second contains the examples used to test the performance of
the proposed methods. An overview of both datasets is detailed below.

6.1.1 Truss Generation Module

As part of this work, a program has been developed which is capable of generating generic structures
to obtain a variety of environments to evaluate the proposed methods. Fig. 5 shows the structures generated
with this module.

Figure 5: Types of structures generated by the truss generation module: (a) Completelly orthogonal structure; (b)
Structure with crossed bars

�ese types of structures are modelled in an XML-based format called “.sdf ”. �is format is native to
the Gazebo so�ware and is used to describe any element in the simulation environment. Such �les allow
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the description of the element in question, encompassing both dynamic and kinematic properties, as well as
visual aspects.

By using Gazebo’s native format, the developed so�ware allows the generation of structures in which
each plannar face of a bar is described by a unique identi�er. �e LiDAR sensors implemented in Gazebo
can read this information and assign the corresponding identi�er to each point.

�anks to this structure generation module, di�erent examples with various dimensions and arrange-
ments can be created. In its current state, this module allows the generation of two types of structures: those
inwhich all elements are orthogonal to each other, and structures that also include inclined elements between
the bars, simulating more intricate environments.

�e program starts with a base model for the bars and replicates them, adjusting their dimensions to
construct the desired structure. In the current state of the program, the base model is a cube, which is scaled
along each of its axes directions based on the desired length and width of the bar. As the base model is a cube
with a square cross-section, only two values are required to de�ne the bar: the length and the width, which
fully de�ne its cross-section.

�e con�guration �le allows the user to specify the number of bars in each of the three main directions
(X, Y, Z). Furthermore, the appearance of the �nal structure (with or without texture) and the labelling
process (label each bar or label each bar face) can be speci�ed. A structure with a label per bar face results in
a higher memory cost, but it enables a more �ne-grained segmentation.

�e base model determines whether the structure will exhibit a textured appearance, a label per bar, or
a label on each planar face of the bar.

6.1.2 Training

In order to train the neural networks as broadly as possible, it was determined that a dataset should
be generated containing parallelepipeds with dimensions and proportions that closely resemble those of the
target structures.

Also, to ensure that the database is as comprehensive as possible, each parallelepiped is labelled di�er-
ently on each of its planes.�e label assigned to each plane is incrementally set for all planes belonging to the
environment.�is methodology enables the future retrieval of the ground truth regarding the segmentation
of each individual plane, if necessary. If it is only necessary to distinguish between the parallelepipeds and
the environment, it is su�cient to set all points with a label di�erent from 0 as parallelepipeds. If no label is
assigned to a model, a value of 0 is used by default.

�e simulated environment is an outdoor terrain on which trees have been introduced to generate a
more realistic scenario (Fig. 4). �e database was generated using a variant of the developed plugin, which,
in addition to modifying the position and orientation of the elements of the environment, allows the scale of
themodel to bemodi�ed along each of its axes individually.�is enables the parallelepipeds to have di�erent
measures and orientations, covering a wide range of possible lengths and widths within a user de�ned scope.
In this instance, the bars may vary in length and width between the speci�ed limits. At the same time, the
surrounding elements (trees) are also placed in random positions and their scale is modi�ed.

In order to generate data, a process is employed that entails the maintenance of a constant sensor
position while varying the orientation randomly. Next, an environment is created around the sensor,
comprising parallelepipeds and trees exhibiting random pose and scale. Finally, the point cloud is stored
under these circumstances, and a new random environment and sensor orientation are established.
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For the training process, a dataset of approximately 10,000 point clouds has been generated.�e dataset
has been randomly partitioned into an 80% training set and a 20% validation set. �e appearance of the
segmentation ground truth of a training cloud can be appreciated in Fig. 6, in which the points that belong
to the parallelepipeds are shown with green color and the rest of the points with black color.

Pytorch library has been employed for the training of all the models. PointNet, PointNet++, and
MinkUNet34C adhere to the same training procedure, using the following parameters: loss function
BinaryCrossEntropy, Adam optimiser, ReduceOnPlateau as scheduler with a reduction factor of 0.1, patience
of 3 and threshold of 0.0001. No epoch limit has been set, however, the training is terminated when the
model demonstrates no improvement in the loss function over 10 epochs. Sigmoid is applied as the activation
function to the last layer of themodel. As Sigmoid returns values between [0, 1], a threshold is estimated using
the Precision-Recall (PR) curve or the Receiver-Operating Characteristic (ROC) curve to complete binary
segmentation.�is threshold is calculated during the validation phase and is subsequently employed for the
testing phase.

Figure 6: Example of training cloud. Sensor pose is represented by a purple sphere with the correspoinding axes

PointTransformerV3 has been trained using the same methodology as the original authors describe
in [62] and does not need threshold estimation.

�e MinkUNet34C and PointTransformerV3 models have been trained with a discretization size of
0.05 m. �e coordinates of the input vector are le� unnormalized for all models except PointNet++.

6.1.3 Test

Realistic reticular structure models are used for the generation of the test dataset. Two structures were
created with the Truss Generation Module (Section 6.1.1): one with orthogonal elements (Fig. 5a) and a
more complex structure featuring crossed elements (Fig. 5b). �e dimensions of the crossed structure are
40m × 8m × 4m (length, width and height, respectively).�e orthogonal truss measures 10m × 8m × 18 m.
In both structures, the horizontal and vertical bars are 2.0 m in length and 0.15 m in width.

For the automatic generation of single scans, the structure and the environment are static, and the
developed plugin moves the sensor pose randomly within the range de�ned by the dimensions of the
structure. For each structure (orthogonal and crossed) 1000 point clouds were generated.
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6.2 Metrics

To measure the success of the experiments, we de�ned key performance indicators for each test. �e
selected indicators the F1-score, mIoU and computation time. In this section, these metrics are outlined.

�e metrics employed are derived from the calculation of the confusion matrix, which represents the
ground truth in relation to the estimated segmentation.�is matrix contains the values: True Positives (TP),
False Positives (FP), True Negatives (TN) and False Negatives (FN).

F1-score

From the values in the confusion matrix, it is possible to estimate the Precision (Eq. (4)) and Recall

(Eq. (5)), which respectively represent the degree of con�dence of the model and the percentage of data that
the model is able to correctly segment. �ese metrics can be combined simultaneously to form the F1 score
(Eq. (6)), which provides a more accurate representation of the model’s overall performance.

Precision = TP

TP + FP
(4)

Recal l = TP

TP + FN
(5)

F1 = 2 × Precision × Recal l

Precision + Recal l
(6)

Mean Intersection over Union (mIoU)

�is metric is widely used for the evaluation of segmentation tasks. It evaluates the overlap between the
prediction and the ground truth. It measures howwell themodel can separate both classes, truss and ground.

mIoU = TP

TP + FP + FN
(7)

6.3 Results

�is section shows the results of a bunch of experiments carried out for each segmentation method.
Moreover, the sensitivity of the methods is studied considering di�erent types of input features (for the deep
learning methods) or the di�erent ways of evaluating the eigenvalues for the analytical method.

�e results of the analytical method are evaluated considering both orthogonal and crossed datasets.
In the Table 3, three eigenvalues evaluation modes are considered: R (Ratio), M (Magnitude), H (Hybrid).
Additionally, the performance of the algorithm is studied if only one of the two steps is run: WF (Without
Fine Segmentation), andWC (Without Coarse Segmentation). WC followed by the su�x, R, M or H, means
that only the �ne step is applied for the whole cloud, with the corresponding variant of the �ne step ratio,
magnitude or hybrid. �e values representing the F1-score and mIoU are calculated as the mean value of all
of the corresponding dataset point clouds.

Table 3: Performance of di�erent variants of the analytical method considering either orthogonal or crossed structure
datasets. �e best results are highlighted in bold

Mode Dataset F1-score mIoU

R ortho 84.62% 73.34%
M ortho 89.77% 81.43%

(Continued)
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Table 3 (continued)

Mode Dataset F1-score mIoU

H ortho 89.78% 81.45%
WF ortho 89.64% 81.22%

WC_R ortho 51.56% 34.73%
WC_M ortho 54.48% 37.43%
WC_H ortho 51.91% 35.06%

R crossed 79.59% 66.10%
M crossed 93.16% 87,19%
H crossed 93.13% 87.14%
WF crossed 93.11% 87.10%

WC_R crossed 44.10% 28.29%
WC_M crossed 52.44% 35.54%
WC_H crossed 40.64% 25.50%

�e voxel leaf size, the RANSAC threshold, and the density �lter parameters were empirically deter-
mined and consistent across all experiments: 0.1 m for the voxel leaf size, 0.5 m for the RANSAC threshold
and a search radius of 0.25 m with a threshold of 10 points for the density �lter.

�e results show comparable outcomes for the three variants, with themagnitude and hybrid exhibiting
superior performance for both datasets. �e distinction between magnitude and hybrid variants is not
signi�cant, due to two factors. Firstly, the limited data on which the �ne segmentation is applied. Secondly,
the greater tendency of the hybrid variant to bemore restrictive.�is results in fewer positives being detected.
�e choice of variant depends on the distribution of points in the dataset. In this case, the orthogonal dataset
has a higher number of negative points during �ne segmentation than the crossed dataset.

As �ne segmentation is designed to identify small regions of the structure with few points, the di�erence
in results between applying and not applying �ne segmentation is minimal, typically within the range of
0.05%–0.2%.

Additionally, the con�gurations that solely use �ne segmentation across the entire cloud, regardless of
the eigenvalues evaluation mode, yield diminished outcomes. �is is attributed to the rigorous nature of the
thresholds and the calculation of the eigenvector for each set.

�e limitations of the ad hoc algorithm can be traced back to two primary sources. Firstly, the clustering
of planar pathways requires an accurate normal estimation to ensure e�ective segmentation through region
growing techniques. �is process requires precise parameter adjustment to ensure optimal outcomes.

�e second limitation comes from the occlusions and partial views of the bars as they are perceived
from the sensors. �e consequence of the aforementioned scans is the potential for miscalculation of the
two largest eigenvectors. Occlusions may result in an eigenvector that is not aligned with the bar’s primary
direction. �is could lead to an inaccurate estimation of the bar’s dimensions, with misclassi�cation of the
points in the structure. �is limitation could be observed in the variants of the algorithm that only use �ne
segmentation, achieving poorer results due to misalignment of the eigenvectors with the bars.

�e disparities between the two datasets, i.e., the orthogonal and the crossed, are attributable to the
density of the structure and the inherent characteristics of the employed algorithm. As previouslymentioned
in Section 6.1.3, the crossed structure exhibits a lower height, higher density and more occlusion of points
at greater distances. �is con�guration is advantageous to the algorithm in terms of the density �lter, as the
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points of the structure are closer to the sensor, resulting in amore compact anddense point cloud. Conversely,
the orthogonal structure with greater height, fewer bars and reduced occlusions, results in a sparser and less
dense con�guration which increases the likelihood of misclassi�cations when using the density �lter.

�e outcomes of the analytical method are encouraging, with both the magnitude and hybrid variants
demonstrating optimal performance. �e �ndings suggest that the algorithm performs more e�ectively in
dense structures with a higher number of bars. Nevertheless, the algorithm relies on point clouds containing
a substantial number of points on a surface to accurately estimate the direction along which the structure
emerges. �is surface does not necessarily have to be the ground, it could also be the roof of a bridge
or a wall. Nonetheless, the algorithm depends on the structures emerging from some surface to ensure
accurate identi�cation.

A summary of the results obtained using deep learningmethods is presented in Fig. 7.�is �gure shows
the performance of the optimal model with regard to each deep learning model and type of input feature.
In this experiment di�erent combinations of input features are considered: V represents the 3D coordinate
vector (x,y,z), N represents the normal vector (nx,ny,nz), and C represents the curvature. Two methods for
estimating the threshold are employed for each dataset, the Receiver-Operating Characteristic (ROC) curve
(righ-hand), and the Precision-Recall (PR) curve (le�-hand).

Figure 7: Mean intersection over union (mIoU) for each deep learning method. (a) shows the results with the
orthogonal dataset, and (b) with the crossed dataset. Best results are highlighted in bold

�e ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR), illustrating the
classi�er’s performance in di�erentiating between classes.�e optimal threshold is chosen at the point where
the geometric mean, de�ned as gmean = √TPR ⋅ (1 − FPR), reaches its maximum value. Here, TPR, FPR ∈
R

x , and x is the number of thresholds tested.
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�e PR curve plots the Precision against Recall at di�erent thresholds. For each pair of Precision and
Recall, the F1-score is calculated. �e optimal threshold is selected to maximize the F1-score.

As discussed in Section 6.1.2, PointTransformerV3 is not in�uenced by the threshold, its metrics are
duplicated for PR and ROC threshold estimation to improve the �gure’s symmetry.

Fig. 7 reveals that the models that use ROC curve threshold estimation perform better than PR curve
across all cases, positioning the ROC curve as a more robust and e�cient estimator to achieve best mIoU
results in planar binary segmentation.

Leaving aside the threshold estimation and focusing on the input features, the Fig. 8 provides some
key �ndings. First, the curvature (C) or the combination of it with other features (V+C) positions it as the
best feature for characterizing planar environments and discretizing planar features with neural networks.
PointNet++, MinkUNet34C and PointTransformerV3 achieve their best mIoU with this input feature.

Figure 8: Deep Learning model against mIoU for each input feature. �e denomination of the input features is the
same as in the previous �gure

For PointNet model, the absence of spatial coordinates in the input reduces considerably the perfor-
mance of the model, for example using just the curvature achieves 73% of mIoU and this metric grows to
91% in combination with spatial coordinates. �e low performance of PointNet without spatial coordinates
could be also seen with the normal vector as input (N) with a minimal performance of 44% mIoU.

Moving on to themodels, PointNet has proved to signi�cantly improve the results by combining normal
vector with spatial coordinates (V+N), highlighting its pro�ciency in exploiting spatial and geometrical
features. In comparison to other models, PointNet++ demonstrates reduced sensitivity to input features,
achieving a comparable mIoU with di�erent input features. �e MinkUNet34C model demonstrated
suboptimal performance in this study, a factor that could be a�ected by the voxel size used during the training
phase (0.05 m), which may have been too small for the model to capture the details of the structure.

Finally, PointTransformerV3 emerges as the top deep learning model for binary segmentation in
structures achieving an mIoU of 98.31% as mean of both datasets, followed by PointNet++ with 95.98% in
the same situation. Furthermore, an analysis of this model reveals that it demonstrates a reduced sensitivity
to the input features when compared to alternative models. �e �ndings suggest that PointTransformerV3
is the optimal model for binary segmentation of planar structures, as evidenced by the absence of threshold
estimation, independence of input features and the high mIoU results.

Fig. 9 visually shows the results obtained with a sample point cloud captured from (a) the orthogonal
dataset and (b) the crossed dataset. �e ground truth of the segmentation is presented in the �rst row,
the second row exhibits the results of the analytical method, where the hybrid solution is employed for the
orthogonal dataset (a) and the magnitude solution for the crossed dataset (b). �e third row represent the
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predictions from PointTransformerV3, using curvature as input feature. In each �gure, the sensor pose is
represented by a purple sphere and its corresponding axes.

Figure 9: Performance comparison between the hybrid analytical method and PointTransformerV3, across di�erent
datasets. (a) Orthogonal dataset; (b) Crossed dataset

�e results demonstrate the remarkable capacity of PointTransformerV3 for data segmentation, with
a representation that closely aligns with the ground truth. Conversely, the analytical method yields lower
segmentation results, with satisfactory segmentation of the structure but exhibiting challenges in segmenting
regions proximate to the sensor that do not belong to the structure (nearby trees).

In addition, the performance of PointTransformerV3 is analysed considering several models of realistic
structures formed by elements completely unknown to the neural network (Fig. 10 �rst column).

�e evaluation of PointTransformerV3 with other di�erent structures demonstrates highly satisfactory
results. It exhibits robust performance on structures comprising diverse bar types and is even capable of
di�erentiating the roof from the bars. �e process of segmentation begins to present di�culties in areas
situated at a notable distance from the sensor. Visual results are shown in Fig. 10.
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Figure 10: Inferences of PointTransformerV3 over complex additional structures. Column (a) represents the environ-
ment; (b) shows the ground truth segmentation; (c) shows the inference of the best PointTransformerV3 model

�e encouraging results of PointTransformerV3 can be attributed to its key distinction from other
models: the utilisation of transformers in place of conventional convolutions. �ese blocks incorporate
internal attention mechanisms, which possess a remarkable capability to discern intricate correlations
between the input data.�is positions them as a leading choice for semantic segmentation within the current
state of the art.

Notwithstanding the promising results obtained with neural networks, limitations within the deep
learning paradigm persist. As demonstrated in Fig. 11, two analogous point clouds yield divergent outcomes
when processed by the PointTransformerV3 neural network model. �is discrepancy is di�cult to justify,
given the comparable sensor location, point con�guration, and density in the regions with the classi�cation
errors.While it is possible to theorise about the causes of this behaviour, the solution is to conduct numerous
training sessions, varying the model architecture or input features through a trial-and-error approach. �is
behaviour is a commonoccurrence in the deep learning paradigm,where themodel acts as an opaque system,
yielding a limitation in the control and results interpretation.
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Figure 11: Inconsistency of neural network models against similar point clouds. Examples of inferences of PointTrans-
formerV3; (a) Point cloud with lower mIoU (93.52%); (b) Point cloud with higher mIoU (99.86%). Orange points
represents misclassi�cations

Finally, to assess the e�ciency of each method, the execution time and memory consumption are
evaluated. �e metrics for each model are computed considering the same conditions, with a batch size of 4
for all the models and the memory used a�er the �rst epoch. To calculate the metrics the best model of each
method for the orthogonal dataset is employed.

Memory value corresponds to reserved memory in the CUDA device given from Pytorch. For the
analytical method, only inference metrics are established. �e results of this analysis are shown in Table 4.
�e analytical method is the most e�cient in terms of memory as expected.

Table 4: Latency and required memory of the segmentation methods. PointNet (PN), PointNet++ (PN++),
MinkUNet34C (MKN34C), PointTransformerV3 (PTV3), Analytical method with the Hybrid variant (H). Inference
results for the orthogonal dataset. �e best results for each metric are highlighted in bold

Methods
Training Inference

Latency Memory Latency Memory

PN [40] 15 ms 3.68 Gb 117 ms 0.41 Gb
PN++ [37] 82 ms 4.34 Gb 345 ms 1.11 Gb

MKN34C [52] 41 ms 1.56 Gb 260 ms 0.36 Gb
PTV3 [53] 105 ms 16.18 Gb 599 ms 0.72 Gb

H – ms – Gb 212 ms 0.09 Gb

As demonstrated in Table 4, PointTransformerV3 is not the most e�cient model in terms of memory
and latency. �is �nding indicates that despite the enhanced e�ciency of transformers blocks, simple
convolutions prove to be more e�cient in terms of latency and memory. �e deployment of models such as
PointTransformerV3 may be restricted when operated on mobile devices, including climbing robots, due to
its requirement for greater memory and computing capabilities compared to alternative models.
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Conversely, the analytical method has been shown to produce satisfactory results with fewer resources,
making it more suitable for small devices.

With regard to the application of these methods to real-world data, a decrease in performance is to be
expected due to the limitations arising from the simulation. However, it is considered to be a su�ciently
realistic simulation, since it includes data noise, LiDAR occlusions and realistic environment models, so
that the main limitation will depend on the environment in which it is applied. Real-world environments
similar to those used in this work should not present issues when applying any of the proposedmethods. It is
hypothesised that the performance ofmore generalistmethods, such as PointTransformerV3,will exceed that
of more specialized approaches, including the analytical approach, as demonstrated in Fig. 10. Nevertheless,
the analytical method may o�er enhanced results due to its �exibility in adjusting parameters and adapting
to speci�c environments. �e selection of the method to be used will depend on the characteristics of the
environment and the resources available on the robot.

7 Conclusions

�is work introduces several methods for the segmentation of lattice structures. Due to the limited
availability of databases for such structures, simulated environments have been employed to obtain data.
A custom plugin for Gazebo has been developed to automatically generate labelled 3D LiDAR datasets.
Furthermore, a so�ware module has been created to automatically generate structures based on parameters,
thus enabling the assessment of the methods across diverse environments with minimal development cost.

Two distinct approaches have been employed to address the issue of segmentation.�e initial approach
employed analytical algorithms while the second one used deep learning techniques. In the evaluation of the
analytical paradigm, the hybridmethod has presented optimal results formIoU,with amean value of 84.32%.
�e �ndings indicate that this method is themost e�cient in terms of memory, and the secondmost e�cient
in terms of execution time. However, its performance is constrained by the precision of the eigenvectors
calculation, whose misalignment with the real principal direction of the bars may lead to erroneous bar
classi�cation. Additionally, the method is hindered by the challenge of accurately classifying points that
are distant from the sensor, due to the low density of these points. Notwithstanding these limitations, the
method’s e�ciency, parameters accessibility, low resource requirements, such as large amounts of data or
dedicated hardware, and its overall performance make it a compelling option for small robots with limited
capacities or for situations where a fast adjustment of the operation to a speci�c environment is necessary.

With regard to the application of deep learning methods, this study provides a compelling demonstra-
tion of the viability of employing generalised training, initiated exclusively from parallelepipeds, to achieve
a satisfactory segmentation of intricate elements such as reticular structures. Furthermore, it is evident that
these methodologies consistently yield superior performance in comparison to analytical approaches.

Another noteworthy aspect pertains to the estimation of the decision threshold in PointNet, PointNet++
and MinkUNet34C models, wherein the ROC curve exhibits an average increase of approximately 12% in
mIoU in comparison to the estimation of the threshold with PR curves. �ese models also demonstrate a
certain degree of dependence on the input features, with the utilisation of curvature, in conjunction with
other features, proving to be the optimal approach for binary segmentation of reticular structures, resulting
in an enhancement of 10–20% in mIoU compared to alternative features.

In the realm of deep learning methodologies, PointTransformerV3 has emerged as the preeminent
model for the segmentation of truss structures. It has attained a maximummIoU of 98.31%, which surpasses
the second-best PointNet++ model by 2.33%. �e superiority of PointTransformerV3 can be attributed to
several factors, including the incorporation of transformers, the absence of threshold estimation, and its
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independence from the input features. �is results in superior performance in terms of mIoU and better
generalisation to new environments and complex structures. Nevertheless, its excellent performance in
segmentation is constrained by its substantial demand for resources, both in terms of memory and execution
time, being the second most memory intensive model.

Another key limitation of these methods is the lack of consistency between results with very similar
inputs. �e opacity of deep learning models makes it di�cult to justify and interpret the results obtained. In
such cases, modifying the model behaviour may require multiple training sessions with adjustments to the
architecture and input parameters. �is process can be costly and time-consuming. �is stands in contrast
to analytical algorithms, where the behaviour of the algorithm can be interpreted and addressed through
logical and reasoned solutions devised by researchers.

�e e�ciency of themethods is also evaluated, demonstrating that the analyticalmethod is considerably
more e�cient than deep learning models, in terms of memory and latency. In certain circumstances and
with respect to speci�c tasks, it may be advantageous, or even essential, to employ more e�cient methods
that can be executed on robotic systems with constrained resources.

�e choice of themost appropriate methodology is dependent upon the particular circumstances under
consideration, with factors such as e�ciency, the accuracy of segmentation, and the availability of resources
on the robot.

In future studies, the veri�cation of the methods with real datasets could be a valuable contribution
to the �eld. However, this may present challenges when the environment di�ers from the ones used in
simulation, e.g., indoor environments. In such cases, new datasets and training procedures should be
conducted for neural network models and parameter adjustments of the ad hoc algorithm should be done.
Future improvements could also include the truss generationmodule by integrating alternative base models,
such as cylinders or more complex bar representations, to facilitate the creation of more detailed and
accurate structural models. Furthermore, the extension of the proposed methods to operate with more cost-
e�ective sensors, such as RGB-D cameras, could be explored with a view to improving accessibility and
reducing implementation costs. Another potential direction for research involves the utilisation of a per-
face labelled dataset to develop methods for instance segmentation of bar surfaces. �is would address not
only the segmentation between the structure and background, but also the detection of individual attachable
surfaces. �e identi�cation of individual planes could be exploited to construct lightweight parametric
representations, enabling highly scalable maps in large-scale environments.
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