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Abstract: This paper presents a comparison of different image fusion methods for matching
visible-spectrum images with thermal-spectrum (far-infrared) images, aimed at enhancing
person detection using convolutional neural networks (CNNs). While object detection
with RGB images is a well-developed area, it is still greatly limited by lighting conditions.
This limitation poses a significant challenge in image detection playing a larger role in
everyday technology, where illumination cannot always be controlled. Far-infrared images
(which are partially invariant to lighting conditions) can serve as a valuable complement to
RGB images in environments where illumination cannot be controlled and robust object
detection is needed. In this work, various early and middle fusion techniques are presented
and compared using different multispectral datasets, with the aim of addressing these
limitations and improving detection performance.

Keywords: thermal images; person detection; multispectral image fusion; deep learning;
computer vision

1. Introduction
Object detection is already an extensively studied field that has yielded impressive

results. However, most of the work has focused on visible-spectrum images captured with
conventional cameras, which present inherent limitations. Certain applications require a
level of robustness beyond what can be achieved with standard RGB images. Tasks such as
search-and-rescue (SAR) operations and security and surveillance applications cannot rely
on controlled lighting conditions and need to remain robust across different scenarios.

In the last decade, two families of detectors based on convolutional neural networks
(CNNs)have dominated the field. One family is based on two-stage object detectors such
as RCNN [1] and its successors, Fast-RCNN [2] and Faster-RCNN [3]. In the second family
of one-stage object detectors, the YOLO [4] algorithm and its different versions stand out.
In recent years, transformer architectures, initially proposed by [5], have been incorporated
into object detection as a stand-alone approach, such as DETR [6]. Research has continued
to push forward in optimizing the training process, reducing model complexity, improv-
ing scalability, enhancing precision, increasing detection speed, and refining many other
features, but it has usually focused on visible-spectrum images.

But what happens when conditions cannot be controlled? What happens when occlu-
sions or objects obscure the target objects that need to be detected? SAR operations and
security applications are expected to operate continuously and in real time under unknown
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and uncontrolled conditions. A straightforward application could be an autonomous
system onboard a mobile robot or UAV. While a robot can change perspectives or even
deal with certain challenging lighting conditions, there are still cases where it would be
impossible to achieve good performance with only visible-spectrum information. One such
edge case is shown in Figure 1c, but there are many other similar situations. Although the
person cannot be detected at all in the visible-spectrum image, they are clearly recognizable
in the thermal image. The opposite scenario is also possible.

(a)

(b)

(c)

Figure 1. Visible and thermal image pairs under different conditions: (a) Visible and thermal images
under normal conditions. (b) Visible and thermal images of a person behind glass doors. (c) Visible
and thermal images of a person behind bushes.

Thermal cameras are able to detect infrared radiation, which is proportional to an
object’s temperature. Depending on the range of temperatures measured, different spectra
can be used. The infrared or thermal spectrum is usually divided into different ranges:
visible (VIS), near-infrared (NIR), short-wave infrared (SWIR), and long-wave infrared
(LWIR). Higher temperatures can be better measured at shorter wavelengths, whereas these
temperatures might cause a noisy image at longer wavelengths such as LWIR [7], which
is a better alternative for lower temperatures [8]. For typical SAR operations or security
applications, the most suitable spectrum ranges from 8 µm to 14 µm, known as far-infrared
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or long-wave infrared (LWIR), which have proven to be reliable spectra for measuring
human temperatures [9]. They are also valuable in Earth science research, as they allow
for monitoring surface temperatures [10], and they are useful in wildlife well-being and
thermoregulatory behavior studies [11]. Depending on the camera sensor’s sensitivity, it is
possible to capture temperatures between −20 ºC and 1000 ºC. For temperatures ranging
from −10 ºC to 130 ºC, measurements can be taken with an LWIR camera [12] without
any cooling equipment and without overstressing the camera sensor, making it a perfect
solution for this kind of use case.

Some approaches rely solely on thermal images, as demonstrated in [13] or [14], which
were evaluated using YOLOv3. YOLOv3 is a one-stage detector, initially introduced in [15],
and forms the foundation for understanding the current development of the YOLO family.
While thermal imagery offers rich data that are invariant to lighting conditions, it still has
some limitations, such as the presence of transparent objects in the visible spectrum that
may not be detectable in thermal images. It is also susceptible to climatological conditions,
such as changes in ambient temperature or variations in human clothing. These aspects
pose clear challenges for detection tasks.

It is important to differentiate calibrated from non-calibrated thermal cameras. Some
available thermal cameras are previously calibrated so that the temperature of each specific
pixel can be inferred from the gray level of the corresponding image. Other models, despite
not being calibrated, still have a constant exposure time. In this way, the temperature-
to-gray-value match remains constant across all images. Finally, some cameras include
autoexposure or contrast enhancements that might worsen the impact of different climato-
logical conditions on the dataset. In the specific case of this research (person detection), any
of the mentioned camera types should provide better results by maintaining a coherent
gray-level representation of people in different background conditions (warm or cold,
depending on climatological conditions).

Since each type of image (visible and thermal) has its own strengths and weaknesses, a
promising solution could involve fusing the information from both images. Under nominal
conditions, the person should appear in both images, as in the case shown in Figure 1a;
however, as shown in Figure 1b or Figure 1c, even though the person is recognizable in
one spectrum, they may not be visible in the other. There are different approaches to this
problem, the first being to merge both images before introducing the information to the
detection algorithm (usually based on deep learning), also known as early fusion. The
fusion of images can range from easy solutions, such as averaging time channels [16], to
more complex solutions, such as superpixel segmentation, as in the approach presented
in [17]; wavelet transforms [18]; or wavelet analysis in RGB-NIR image fusion [19]. Other
works, focused on detecting moving wildlife, such as [20], follow a different approach,
using airborne images to fuse different thermal images with a visible image so that moving
parts are highlighted in different colors. Using a deep network to learn the fusion of
images is also an interesting approach, either by integrating it into the feature extraction
stage [21,22], using attention mechanisms [23], or applying it in the classification/detection
stage. In cases where thermal and visible images do not match, a depth estimation module
is needed beforehand to reproject the information [24].

When exploring new solutions for this problem, as stated in the Introduction, it is
always tempting to delve into the latest state-of-the-art techniques, often involving complex
architectures and methodologies. However, before doing so, it is crucial to establish a
solid baseline that ensures not only the performance of different algorithms but also the
quality of the input data to be used. A basic approach is to compare different techniques,
and if their complexity is really worth their use. This research focuses on early fusion
algorithms to verify how robustly simple approaches can perform before resorting to more
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complex methodologies. This manuscript also emphasizes the importance of the input
data, evaluating some approaches that could enhance their quality or at least point out
their limitations to be addressed in future research.

Even though making use of both RGB and thermal images has already proved to be
useful in SAR missions, such as in [25], there is still work required before this approach
can take full advantage of the benefits of automation [26]. The contributions of this paper
include a comparison between four early fusion approaches and three middle fusion
detection algorithms based on CNNs, based on matching visual–thermal images, and how
the range restriction problem can affect them, with a proposed solution. The impact of
unsynchronized image pairs is also explored, proposing a feasible solution to this problem.
A CNN deep learning algorithm was used to assess the performance of each of them based
on a fully autonomous approach.

The remainder of this paper is structured as follows: Section 2 covers the methodology
used in the performance analysis, presenting the detection algorithm, the dataset as well
as its characteristics and limitations, and with the training approach. The different image
fusion methods, both early and middle fusion approaches, are described in Section 3. In
Section 4, the results of the different tests with different datasets are discussed. These
results are provided in Section 5, with the conclusions and proposed future research.

For reproducibility purposes, the source code of this implementation is publicly
available (https://github.com/enheragu/yolo_test_utils, accessed on 26 February 2025).

2. Methodology
This section describes different aspects about the methodology followed in this re-

search, the motivation behind the decisions taken, and a thorough explanation of how the
experiments could be replicated.

2.1. The Detection Algorithm

In this experiment, the detection algorithm was mainly used as a constant descriptor
to evaluate the different fusion methods proposed. In the specific use case proposed in this
manuscript, i.e., SAR operations and similar use cases, the system should run onboard a
mobile robot or UAV where memory and energy consumption are limited. A one-stage
detector such as YOLOv8 has been proven to be faster than others such as Faster R-CNN [3]
or DETR [6]. YOLOv8 provides notable results while maintaining controlled memory
consumption. While YOLOv8 (m size) operates with around 25 M parameters, other SOTA
algorithms such as Faster R-CNN make use of 35 M of parameters, ResNetSt-200 [27]
requires 70 M of parameters, and others use up to 304 M parameters (Co-DETR proposed
in [28]). YOLOv8 offers a low-memory, high-speed solution ideal for real-time, onboard
deployment on resource-limited platforms.

YOLOv8

The final version used in this study is based on YOLOv8, as presented in [29]. Although
YOLOv8 provides functionalities such as classification, segmentation, and detection, only
the detection stack was used.

Taking a three-channel input image, YOLOv8 detects objects by providing their posi-
tion, class, and bounding box dimensions. In this case, YOLOv8 was trained to detect only
one class: person.

YOLOv8 handles image detection (positive or negative) with two confidence metrics:
box confidence and class confidence. Box confidence combines objectness score (does
the box contains an object?) and intersection over union (IoU). Class confidence is the
conditional probability of the class given that an object is detected. IoU was configured

https://github.com/enheragu/yolo_test_utils
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as 0.5, as recommended by [30]. The class confidence varies in a continuous range and, as
most of the metrics that are later explained, is a function of this parameter.

2.2. Data

As already stated, this research focused on the detection problem with multispectral
images (visible and thermal from far-infrared spectrum). To tackle this problem, multispec-
tral aligned images with a pixel-to-pixel match are needed. The FLIR-ADAS dataset is a
good resource, although it only contains thermal information [31]. CVC-14, which includes
multispectral images (visible and thermal), has issues with the rectification between images,
as reported by [32]. The LLVIP dataset [33], captured with a similar approach as the one
followed in CVC-14, tackles the misalignment and rectification problem, providing a robust
dataset. Another well-explored dataset in the literature is the KAIST dataset [34]. KAIST
also includes calibrated image pairs in both the visible and thermal spectra. Finally, the
Multi-spectral Object Detection Dataset [35] includes labeled image pairs with multiple
objects. Images and data from other datasets reported in the literature could not be found
and are not mentioned here. Based on the information provided, the tests focused on both
the LLVIP and KAIST datasets, which include labeled image pairs (for pedestrians) in the
needed spectra. The following sections focus on describing both datasets and how they
were used in the tests performed.

2.2.1. KAIST Dataset

The images used in this evaluation were all extracted from the published KAIST
dataset, presented in [34]. As stated in the paper, the dataset includes 95 k color–thermal
pairs (640 × 480, 20 Hz) that have been manually labeled (pedestrian, cyclist, and people).
Both the visible (RGB) and thermal (T) images of each pair are already calibrated so the
scene matches pixel per pixel.

In the experiments, only the pedestrian class was used, as the dataset does not include
enough instances of the classes cyclist or people to obtain dependable detection results
after training.

KAIST provides balanced and split subsets for both testing and training, covering both
day and night conditions, as well as some sets with both conditions combined. When using
the whole dataset, the proposed split is summarized in Table 1, which shows the number of
images in each set, the number of background images (images without a person), and the
number of subjects (instances) found in each set. The train datasets were used to train the
model while the test datasets were used to assess its performance. As it can be observed, the
balance between the train and test images proposed by KAIST is not very conventional in
the classification/detection field. In these experiments, we opted to switch to 80% training
images and 20% testing images, as shown in Table 2. The images were selected so that the
train and test sets included images from different scenarios to avoid similar images in both
datasets, which would lead to distorted results in the train/validation stages.

Table 1. Summary of data as provided by KAIST in [34].

Set Name Images Backgrounds Instances

test-day-01 29,178 15,191 34,492
train-day-02 16,694 10,803 12,521

test-night-01 15,962 10,253 11,999
train-night-02 8392 4817 8671
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Table 2. Summary of data from KAIST dataset used in tests: 80–20% split.

Set Name Images Backgrounds Instances

Test day 12,515 7043 10,500
Train day 50,062 29,761 49,031

Test night 10,036 6035 8696
Train night 40,148 25,211 33,695

As the dataset was not balanced in terms of the number of images between conditions,
two models were trained: one for night conditions and one for day conditions. It was
assumed that the preferred fusion method changed from one condition to another, as
light/color relevance varied.

Figure 2 presents a set of example image pairs. It is important to note that the camera
used to acquire the LWIR images, the FLIR-A35, was not calibrated to measure specific
temperatures from each pixel but had a constant exposure time. Consequently, while
many images may appear to have low brightness, the correspondence between a given
temperature in the scene and the grayscale level in the image remains consistent throughout
the dataset.

Figure 2. Examples of visible–LWIR image pairs from KAIST dataset.

As clearly stated by the authors, the KAIST dataset is primarily aimed at accident
avoidance, particularly in the context of pedestrian detection. This means that the images
included are consecutive images focused on urban environments, all taken from a car
perspective. This implies some limitations to the use case presented in this paper, which is
discussed further in later sections.

KAIST Correction

The KAIST dataset is known to have calibrated pairs of images with the same field of
view thanks to the beam splitter used. But, the images are not pixel-to-pixel matched due
to the desynchronization of both cameras. Although a small gap between the capture of
both images may seem to have a minor impact, this difference becomes significant with
moving objects. This issue is particularly relevant for the KAIST dataset, as the images
were captured from a moving vehicle.

The magnitude of this kind of distortion depends on both the speed of the vehicle
and the relative distance between the objects and the camera. As anyone can imagine, the
distortion varies from image to image, so there is no perfect solution to tackle this. For this
specific dataset, the images were taken consecutively from a car. The desynchronization
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problem occurs because the LWIR image was taken before the visible-spectrum image,
causing a small time lag of the visible images from their corresponding LWIR images. The
transformation that could correct this distortion is a fraction of the transformation between
that visible image and the previous image, as rresented in Figure 3, where T represents
the affine transformation between consecutive visible images, while T’ represents the
transformation between the visible image and the corresponding LWIR image.

Figure 3. Estimation of the transformation between LWIR and visible images based on consecutive
visible images.

To compute this transformation, and taking advantage of the fact that the dataset
contains consecutive images, the optical flow is computed for all the visible images in the
dataset with respect to the previous image. Using this optical flow, which is based on
matching key points between both images, the affine transformation between them can
be computed, as expressed in Equation (1). Specifically, key points are first detected in
the current visible image using the Shi–Tomasi corner detection algorithm [36]. These key
points are then tracked in the previous visible image using the Lucas–Kanade optical flow
method [37], and, finally, the transformation matrix is estimated using an approach based
on RANSAC.

Iv, t+1 = T ∗ Iv, t (1)

where T is the homogeneous affine transformation. With this transformation matrix, each
pixel from Image 2 can be projected back to match Image 1, as in Equation (2), where
(xv, t+1, yv, t+1) are the coordinates in the visible image Vv, t+1, and (xv, t, yv, t) are the
coordinates in the following visible image Iv, t.xv, t+1

yv, t+1

1

 =

a b tx

c d ty

0 0 1


xv, t

yv, t

1

 (2)

where elements a, b, c, and d in the matrix represent the rotation, scale, and shear transfor-
mations, while tx and ty represent the translation components of the affine transformation.

Given that the LWIR image Ilwir, t is captured slightly earlier than Iv, t, we assume that
its corresponding transformation T′ should be a scaled version of T. We define T′ as

T′ = S ∗ T (3)
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where S is a scaling function that adjusts T to compensate for the time difference between
the capture of the LWIR and visible images. Applying T′ to Ilwir, t, we obtain the temporally
corrected LWIR image with Equation (4):

Ialigned
lwir,t = T′(Ilwir, t) (4)

As the distortion between images was more noticeable on the borders of the image,
each image was slightly cropped. To maintain image size and future compatibility with
additional data, the margins of the image were filled with a mosaic of the remaining parts of
the image, following the mosaic approach of YOLOv8 data augmentation. Note that labeled
objects in the remaining area were duplicated in the margins, leading to extra instances. The
dataset labels were also refined to label specific pedestrians that were previously labeled
under the general category of people. The resulting dataset is summarized in Table 3.

Table 3. Summary of data from the corrected KAIST dataset used in tests: 80–20% split.

Set Name Images Backgrounds Instances

Test day 12,515 7043 11,667
Train day 50,062 28,942 57,052

Test night 10,036 5784 10,401
Train night 40,148 24,613 41,127

For reproducibility purposes, the source code of the image alignment correction tool
(https://github.com/enheragu/multiespectral_correction, accessed on 26 February 2025)
and the label review tool (https://github.com/enheragu/kaist-dataset-relabeling, accessed
on 26 February 2025) are publicly available.

2.2.2. LLVIP Dataset

The LLVIP dataset [33] includes 16 k color–thermal image pairs (1080 × 720, 20 Hz)
that were manually labeled (pedestrian). All images were taken in low-light conditions
with a static camera at 26 different locations.

As shown in Table 4, the dataset is provided with a 80–20% split of the images, which
were used in the experiments as such. The number of images is smaller than in the KAIST
dataset but, in terms of pedestrian instances, is quite balanced. Note that, in this case, the
number of images without detection targets is almost zero.

Table 4. Summary of data from LLVIP dataset.

Set Name Images Backgrounds Instances

Test 3463 0 8302
Train 12,025 2 34,135

An example set of image pairs is shown in Figure 4. This dataset was acquired with a
binocular camera from Hikvision. As a commercial camera, the images seem to have been
preprocessed, and some equalization and autoexposure have been used. In this manner, the
same temperature can be represented with different gray tones between images, leading
to a better contrast but avoiding invariance to thermal conditions. In this case, the gray
level on each part of the images depends not only on the body temperature but also on the
thermal data and the general image brightness.

https://github.com/enheragu/multiespectral_correction
https://github.com/enheragu/kaist-dataset-relabeling
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Figure 4. Examples of visible–LWIR image pairs from LLVIP dataset.

2.3. Training Procedure

YOLOv8, as provided by the authors, can be fine-tuned with a custom dataset or it
can be completely trained from scratch with custom data. The base model can be used out
of the box as it was pretrained with the COCO dataset, as presented in [38], or fine-tuned
with extra data. The COCO dataset is commonly used as a benchmark for detection-based
models. This implies that the model was already trained with a huge source of information,
which has a great impact on the performance obtained with each fusion algorithm, but it
can also include extra noise that hinders the comparison between the fusion methods.

Since different architectures or fusion algorithms (middle or late fusion methods)
cannot take advantage of this pretrained model, comparing the performance between them
would include not only the differences between the algorithms to be compared (fusion)
but also the ones from the pretrained model. This source of extra noise was isolated by
training each model from scratch only with the selected dataset: KAIST. This way, different
methods could be compared under the same conditions, whichwas not an easy task to find
datasets with such requirements or to produce a new one.

To reduce potential sources of variability and to be able to compare the different
methods and approaches, the same untrained model was used as the seed for all the tests.
Following the same policy, and while it could impact performance and speed, the YOLOv8
algorithm was set to work in deterministic mode, as explained in [39].

Apart from controlling the external influence from other data, making use of the
KAIST dataset alone also reduced the time needed for training and validating.

As may be obvious for the reader, to compete with other approaches, external datasets
should be adapted to be included in the workflow so as to determine the best performance
amongst them. In our case, the total number of images used during training was low, so the
results in terms of detection are weak. However, this sufficed for the comparison between
the different fusion methods, providing useful information about how to complete the
dataset and in which direction to advance.

Finally, all the tests were performed with the same equipment, making use of an
NVIDIA GPU, model GeForce RTX 4090 with 24 GB.

2.4. Evaluation and Metrics

To evaluate the performance of each approach, common metrics were used, such as
precision, recall, and mean average precision (mAP). They are described below, and that
is how they were used in this study. There are many ways to measure the performance
of a deep learning implementation, each with its limitations and advantages. In order to
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provide a clear picture of all of them for the later discussion of the results, this section
includes a description of all the metrics involved:

• Precision (P) reflects the proportion of true positives (TPs) in all positives detected by
an algorithm, including both correctly detected instances (true positives) and instances
incorrectly detected as positives (false positives, FPs). It assesses the capacity of the
model to avoid false positives. Equation (5) summarizes this description.

• Recall (R) computes the proportion of true positives (TPs) in all real positives, including
both instances correctly detected (true positives) and instances missed (false negatives,
FNs). It measures the capacity of the system to detect all instances of a given class.
Equation (6) shows the mathematical expression.

• F1-score is the harmonic mean (see Equation (7)) of both precision and recall, de-
signed to provide a balanced metric between both, so that it allows evaluating model
performance. Note that the results presented in the following section, provided
with YOLOv8 for both precision and recall, were computed at the point at which F1
was maximized.

• Intersection over union (IoU) measures the overlap between the predicted box and the
ground truth. It measures the capability of the algorithm to find instances of each class.

• Average-recision (AP) computes the area under the precision–recall curve. It gives a
unique value that encodes both the precision and recall of the model.

• Mean average precision (mAP) expands the AP concept by averaging the mean pre-
cision between different classes. It is the more generic metric used to evaluate the
performance of a model. Note that despite the fact that only one class was detected in
the following tests (no average performed), the mAP is presented in Section 4 as it is
the most commonly used metric. mAP is presented in two cases: mAP50, computed
with an IoU of 0.5 to reflect the precision of the model considering easy detections;
mAP50-95, which accumulates the average of the precision computed with different
IoU thresholds that vary between 0.5 and 0.95.

• Log average miss rate (LAMR) is a popular metric in pedestrian detection tasks [30,34].
The miss rate (MR) reflects the percentage of pedestrians missed, as can be observed
in Equation (8). False positives per image (FPPI) is a function of the confidence value
(threshold in probability to accept or not a positive detection). As mAP makes use of
the precision–recall curve, LAMR is computed based on the MR–FPPI plot. It averages
the miss rate at nine different points along the FPPI axis (FPPI(c)) evenly spaced in
log-space in the range of 1 × 10−2 to 1 × 10−0 (represented as f in the equation). Note
that if there are no MR data in that part of the function, the highest existent FPPI is
used as reference point. LAMR is computed as shown in Equation (9).

Precision : P =
TP

TP + FP
(5)

Recall : R =
TP

TP + FN
(6)

F1 Score = 2 · P · R
P + R

=
2 · TP

2 · TP + FP + FN
(7)

MissRate : MR =
FN

TP + FN
= 1 − Recall (8)

LAMR(c) = exp

(
1
9 ∑

f
log(MR( f ))

)
(9)

Note that each of the metrics are evaluated at different confidence values that include
different variations in IoU thresholds. For each case, the measure is a function of this
confidence, c (TP(c), FP(c), . . . ).
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3. Image Fusion Algorithms
The different multimodal systems, with regard to where the fusion is performed, can

be split into three different approaches:

1. Early fusion: Fusion occurs on raw data, before entering any detection algorithm. It
has the advantage of allowing the usage of other unspefcific algorithms instead of
having to develop a new approach for the specific data and use case.

2. Middle fusion: Fusion occurs during the feature extraction of a network. All informa-
tion sources are mixed to extract relevant features from the data.

3. Late fusion: Fusion is performed in the decision layer, at the end of the network, when
all the features are taken into account. In this way, specific feature extraction branches
can be applied to each input and then merged once the relevant information is ex-
tracted. In this specific case, in the image detection domain, the fusion is performed
in the dense layer where objects are detected and classified.

As explained by [40], early fusion methods have not been as thoroughly explored in
the domain of multimodal fusion. It is not easy to find a fusion algorithm that can obtain
relevant information between different sources of data (image, LIDAR, etc.). In the specific
case of visible and thermal images, fusion is not as abstract, and it can be achieved without
much difficulty. As already described by [40], we expect that these methods can be valuable
and provide good results even when they are compared to more complex methods.

3.1. Early Fusion

In the early fusion approach, the visible and LWIR images are combined into a single
three-channel image that is subsequently fed into a YOLO network for object detection
(see Figure 5). The primary goal is to merge the information from all four spectral chan-
nels—three from the visible spectrum (red, green, and blue) and one from the thermal
domain—into a format compatible with state-of-the-art convolutional neural networks
such as YOLO, which are optimized for three-channel inputs.

Static Fusion YOLOv8

Feature extraction

···

Detection

Input images Result

Figure 5. Architectural view of the methodology followed in this study with the early fusion approach,
from the input images to the detected persons in the result.

To accomplish this, several static fusion methods have been proposed. Each method
adjusts the relative weighting of the individual channels or directly manipulates the color
components to compress the four-channel input (R, G, B, T) into three channels. The
objective of these transformations is to minimize the loss of important target information
during the channel reduction process.

It is important to note that these early fusion methods rely on the assumption that
the scene captured in both the visible and thermal images is identical. The fixed transfor-
mation—termed the static fusion algorithm—applies the same fusion strategy uniformly
across all images, without introducing any dataset-specific bias.
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The following subsections detail four specific fusion strategies that have been devel-
oped to achieve this compression while retaining critical detection features.

3.1.1. RGBT

Trying to minimize information loss, both visible (RGB) and thermal (T) images are
compressed into a three-channel image by multiplying the thermal channel with each of
the other channels; each pixel value is then re-escalated to fit in the 8-bit image, as shown
in Equation (10):

ch1 = (R ∗ T)/255

ch2 = (G ∗ T)/255

ch3 = (B ∗ T)/255

(10)

Then, the resulting image is based on each channel: ch1, ch2, and ch3 are merged back
together as if they were RGB channels. This approach is similar to the one proposed in [16],
but, instead of averaging the channels, they are multiplied. This way, different areas of the
image for each of the R, G, and B channels are either highlighted or subdued based on the
heat information from the thermal image.

3.1.2. HSVT

HSVT compresses both the visible (in HSV, hue–saturation–value, color encoding) and
thermal image (T), combining the thermal channel with the intensity of the visible image.
Next, the resulting channel is re-escalated back to fit in an 8-bit image. The transformation
is performed as explained in the following equations:

ch1 = H

ch2 = S

ch3 = 255 ∗ (V + T)/500

(11)

Following Equation (11), the final image comprises channels ch1, ch2, and ch3, which
are merged back as if they were HSV channels. This transformation achieves a similar result
as the previous one in Equation (10) in terms of highlighting visible-spectrum features by
means of thermal information, but, in this case, the color information remains unmodified,
and it is only the intensity channel that is changed.

3.1.3. VTHS

Depending on the illumination conditions under which a dataset was captured, color
information may be less relevant compared to intensity (both from the visible- and thermal-
spectrum images). If color information is not as relevant, a plausible fusion technique could
be compressing it into only one of the three input channels. This way, the visible-spectrum
image is split into HSV channels to keep the information from the brightness channel
(V), compressing the hue (H) and saturation (S) channels into one and adding thermal
information as the third channel. This way, both H and S are compressed into 4 bits each
and merged into an 8-bit channel. In Equation (12), this transformation is represented with
bit shifting notation (subindex 4 represents that a 4-bit representation from that channel
is used):

ch1 = V

ch2 = T

ch3 = H4&(S4 ≪ 4)

(12)
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Thus, the resulting image is composed of channels ch1, ch2, and ch3, which are merged
back together, keeping all the brightness information from both images unchanged and
color information from the visible-spectrum images compressed.

3.1.4. VT

Continuing with the previous idea, if color is not relevant in the dataset, good results
should be obtained by giving even more importance to brightness for both channels. This
fusion method keeps the brightness from both images in the first and second channels,
averaging both into the third one, as explained in Equation (13):

ch1 = V

ch2 = T

ch3 = (V + T)/2

(13)

The resulting image is obtained by merging the three channels back together, now
without any color information at all.

As a summary of this section, Figure 6 shows, in a false color representation, the result
of each fusion method with a given image taken from the KAIST dataset. It is worth noting
how some methods seem, at least visually, to highlight interesting parts of the scene as a
result of the combination of the four channels. Figure 7 shows the same results based on an
image from the LLVIP dataset. It is important to note that the results are slightly different
because of not only different lightning conditions but also the range of data from different
cameras (calibrated vs. autoexposure) since they may differ.

(a) (b) (c) (d)

Figure 6. Examples in false color representation of the result of each fusion method based on a KAIST
dataset image. (a) HSVT fusion. (b) VT fusion. (c) RGBT fusion. (d) VTHS fusion.

(a) (b) (c) (d)

Figure 7. Examples in false color representation of the result of each fusion method based on an
LLVIP dataset image. (a) HSVT fusion. (b) VT fusion. (c) RGBT fusion. (d) VTHS fusion.

3.2. Middle Fusion

In the middle fusion approach, the four channels are fed directly to a modified YOLOv8
network that is capable of handling the four channels and mixes them in the feature
extraction stage. The data flow can be better observed in Figure 8.
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Figure 8. Architectural view of the methodology followed with the middle fusion approach from the
input images to the detected persons as the output.

Different variations in the YOLOv8 model were created to handle four raw input
channels. Although the base model was previously modified, the experiments revealed a
tendency to overfit. As a result, three different models are proposed, summarized in Table 5.
The base YOLOv8 adapted for four-channel data was tested along with two different sizes
with extra dropout layers, one after each C2f layer of the original YOLOv8 architecture.

The data loader was updated so that color data augmentation was applied to all four
channels, making use of the HSV color space for visible images and a similar variation for
the thermal channel.

Table 5. Summary of size of each middle fusion variation.

Fusion Method Layers Parameters Gradients

YOLOv8 (m) 295 25,856,899 25,856,883

YOLOCh4 (m) 295 25,858,489 25,858,473

YOLOCh4V2 (m) 300 31,814,529 31,814,513

YOLOCh4V3 (m) 300 38,503,281 38,503,265

3.3. Variations: Histogram Equalization

The methods presented in the previous subsections weight each channel to create
the resulting fusion. These weighting operations are very sensitive to differences in the
intensity levels of the channels being processed, meaning that large discrepancies or range
restriction at these levels could significantly affect the final outcome.

Figure 9 shows a good example of the range restriction affecting LWIR images. As
shown in the histogram in Figure 9a, it only has information in part of the X axis, leaving
the rest of the histogram with zero values. This can be a problem when the information is
merged with the other channels as the scale of the data differs between the images. An easy
and promising solution to tackle this problem is histogram equalization. The left image
in Figure 9a is an original image from the KAIST dataset [34] from the LWIR spectrum
(in false color for a better appreciation of the equalization effects); its histogram clearly
illustrates the range restriction issue already described. Figure 9b shows the result of
histogram equalization, both the resulting image and its histogram. The range restriction
problem was solved. However, image noise noticeably increased in the resulting image.
The preferred solution, shown in Figure 9c, is applying an adaptive equalization: Contrast-
Limited Adaptive Histogram Equalization (CLAHE). In this particular case, the image is
split into 6 × 6 tiles to be locally equalized. Also, to avoid noise propagation, a contrast
threshold is applied. The resulting image shows better contrast between objects of interest
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and background (these differences in the LWIR channel being represented in terms of
temperature). Although part of the histogram is still unused (gray values higher than 200),
the range restriction issue is notably improved, and the data are more evenly distributed
throughout the whole range.

(a)

(b)

(c)

Figure 9. Comparison of equalization techniques of LWIR histogram images from the KAIST dataset.
(a) Original LWIR image with its histogram. (b) LWIR image and histogram processed with a standard
equalization. (c) LWIR image and its histogram processed with CLAHE.

Following the same approach, RGB images can be equalized with the CLAHE method,
applied to the luminance channel (Y) of the YCbCr color space of each image, based on [41].
It could provide better results than equalization on HSV or RGB color spaces. Usually, at
night, some range restriction issues might appear due to the lack of light in the environment.
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Note that YOLOv8 architecture normalizes all the input channels. Middle fusion
algorithms should not suffer from the range restriction problem as the data are nor-
malized independently. Tests with middle fusion algorithms were performed without
any equalization.

4. Results
This section describes the results of this research. It is worth noting the impact of the

previously described equalization method. The training results include the combination
of the equalization of each image source and the fusion methods. Please also note that
these fusion methods were proven to not compromise the real-time execution this use case
requires, as shown in the following sections.

4.1. Preprocessing: Fusion Methods

All early fusion approaches have the disadvantage of increasing the processing time
of the toolchain, since the information has to be fused before progressing to the deep
model. Table 6 shows the mean time consumed by all fusion methods to obtain each of the
processed images. Although the time consumed by the RGBT method is much longer than
the rest of the methods, this is considered to be acceptable because, in this specific use case,
it allows real-time processing at high speeds without delays or bottlenecks.

Table 6. Summary of fusion time for each method.

Fusion Method Mean (ms) Std (ms)

HSVT 9.91 3.76

VT 8.81 4.31

RGBT 36.5 6.90

VTHS 1.74 1.19

4.2. Training Results

As previously described, there are multiple metrics that can be used for assessing the
performance of a given dataset-algorithm pair. None of them provides a comprehensive
view adaptable to all use cases. As a result, in this section, different metrics are analyzed
for different purposes. While each plot is discussed individually, a summary of all metric
results is presented in the tables at the end of each section. In all cases, apart from the four
early fusion methods and the three middle fusion versions, the visible and LWIR spectra
are included as references.

Due to the large number of possible combinations (each fusion method with or without
equalization), the most intuitive starting point was to evaluate precision and recall, and
evaluate how they affect the specific use case that this research focused on. Both metrics, as
presented in the summary tables, were computed at the maximum F1 score and provide
a robust comparison frame. Then, the precision recall curves were analyzed to see the
evolution of both metrics at other working points apart from the maximum F1. Finally, these
conclusions were compared to the rest of the metrics computed, which can be reviewed in
the summary tables.

Note that the comparison includes not only the fusion method but also combinations
in the equalization of the images. The same format is followed in all the images, with the
tests tagged as follows:

• no_equalization: none of the images are equalized.
• rgb_equalization: only the visible image is equalized.
• rgb_th_equalization: both images, visible and thermal, are equalized.



Remote Sens. 2025, 17, 1060 17 of 29

• th_equalization: only the thermal image is equalized.

The following sections are focused on analyzing the training results with the described
approach on both the LLVIP and KAIST datasets.

4.2.1. Training Results: LLVIP Dataset

The scenarios contemplated in this manuscript (e.g., SAR operations) require a higher
recall so that no persons are left undetected. Increasing the recall is usually followed by a
decrease in the precision metric. Although a higher recall is preferred, precision should not
be too low. The idea is that a human operator could inspect the output of the algorithm
to discard false positives while ensuring that false negatives are minimized. In terms of
precision, in Figure 10, a good choice would be to take the LWIR images or the fusion
provided by the CH4V3 method or the VT method. Note that thermal channel equalization
seems to be relevant in terms of increasing the precision of the VT method and VTHS,
whereas RGB equalization seems to provide worse results. In terms of recall, in Figure 11,
the VT method clearly outperforms the rest, followed by VTHS and CH4V3. Again, thermal
channel equalization seems to provide a relevant enhancement in the results.

Figure 10. Comparison of precision at maximum F1 between the different methods described based
on training results with LLVIP dataset images.

The precision–recall curve shown in Figure 12 also confirms the previous insights. The
VT method provides better results compared with the rest (and compared with visible or
LWIR images alone) in the whole plot.

All the metrics studied, presented in Table 7, validate these conclusions. mAP provides
a good indicator of the general performance of a model, and it is really useful for comparing
the performance of the different models and datasets; mAP50 is the standard metric, and
mAP50-95 is the more restricting case. LAMR is commonly used in pedestrian detection
because it provides an integrated measure of both the miss rate (related to recall) and
false positives on images for different confidence thresholds (as shown in Equation (9)).
The VT method provides better results in mAP50, miss rate, and LAMR. Focusing on
the mAP50-95 metric, which provides a view of the algorithms’ performance under more
severe conditions (higher confidence threshold for the predictions), the VTHS method (with
thermal equalization) produces slightly better results.
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Figure 11. Recall at maximum F1 comparison between the different methods described based on
training results with LLVIP dataset images.

Figure 12. Precision–recall curve at mAP0.5 for the selected methods with LLVIP dataset images.

Note that the LLVIP dataset, as previously described, includes images in low-light
conditions. The results with visible images only reflect these. Although LWIR images
provide much better results, static early fusion methods prove to be valuable, even com-
pared with the middle fusion methods tested in this study. As expected, in poor light
conditions, where color information is not so relevant: better results are produced by a
method that actually discards all color information, which is followed by the VTHS method
that considerably reduces color information. Based on the results on the LLVIP dataset, it
can be concluded that the fusion of visible and thermal data improves the results on the
detection task with YOLOv8.
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Table 7. Summary of training results on LLVIP dataset.

Model Eq.
RGB/T P R mAP50 mAP50-95 MR LAMR FPPI Best Epoch

HSVT ✗/✗ 0.950 0.895 0.955 0.630 0.105 0.668 6.097 54
LWIR ✗/✗ 0.961 0.914 0.966 0.655 0.086 0.660 3.662 37
RGBT ✗/✗ 0.889 0.811 0.876 0.489 0.189 0.719 20.107 18
Visible ✗/✗ 0.871 0.799 0.870 0.487 0.201 0.713 21.050 18

VT ✗/✗ 0.946 0.900 0.955 0.640 0.100 0.667 6.051 16
VTHS ✗/✗ 0.955 0.907 0.961 0.653 0.093 0.673 3.440 35

CH4 ✗/✗ 0.955 0.896 0.959 0.634 0.104 0.654 7.321 24
CH4V2 ✗/✗ 0.958 0.911 0.957 0.634 0.089 0.665 8.577 21
CH4V3 ✗/✗ 0.961 0.918 0.965 0.642 0.082 0.654 6.423 36

HSVT ✓/✗ 0.935 0.854 0.926 0.600 0.146 0.710 6.788 32
RGBT ✓/✗ 0.908 0.832 0.899 0.520 0.168 0.712 11.602 44

VT ✓/✗ 0.922 0.870 0.938 0.608 0.130 0.680 9.148 27
VTHS ✓/✗ 0.951 0.861 0.941 0.635 0.139 0.697 4.779 48

HSVT ✓/✓ 0.916 0.819 0.911 0.592 0.181 0.704 7.672 60
LWIR ✓/✓ 0.956 0.883 0.945 0.633 0.117 0.681 7.489 31
RGBT ✓/✓ 0.897 0.802 0.879 0.478 0.198 0.715 21.828 42
Visible ✓/✓ 0.842 0.780 0.848 0.477 0.220 0.725 21.104 18

VT ✓/✓ 0.962 0.897 0.958 0.647 0.103 0.660 6.321 33
VTHS ✓/✓ 0.953 0.901 0.960 0.661 0.099 0.658 4.736 51

HSVT ✗/✓ 0.934 0.889 0.947 0.622 0.111 0.678 5.754 48
RGBT ✗/✓ 0.864 0.771 0.854 0.454 0.229 0.697 39.838 14

VT ✗/✓ 0.961 0.935 0.974 0.671 0.065 0.631 4.782 60
VTHS ✗/✓ 0.959 0.921 0.970 0.676 0.079 0.642 5.027 68

The best results for each metric are highlighted in the table.

4.2.2. Training Results: KAIST Dataset Correction

To evaluate the performance of the previously described correction, a set of training
tests were performed after and before correction was applied (Section 2.2.1). The RGBT
and HSVT methods as well as the CH4 model were chosen for this comparison under
equalization and non-equalization conditions with daylight images. Night images are
less impacted, as LWIR information takes precedence over color data. The results of each
training execution can be observed in Table 8. All results show an improvement in all
the metrics with the corrected dataset with respect to the uncorrected version. Note that
middle fusion approach seems to be more sensitive to the misalignment of the images.
Also, as already stated, CH4 seems more prone to overfitting than the other methods, a
situation highlighted by the desynchronization of the images. Although the correction
algorithm could be refined, the results show that it already provides a good improvement.
The experiments discussed in the following sections made use of the corrected version of
the dataset only.
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Table 8. Comparison between results with and without correction of the dataset.

Model Dataset
Correction Eq. RGB/T P R mAP50 mAP50-95

HSVT ✗ ✗/✗ 0.658 0.511 0.581 0.232
HSVT ✓ ✗/✗ 0.707 0.558 0.622 0.254

HSVT ✗ ✓/✗ 0.667 0.509 0.569 0.228
HSVT ✓ ✓/✗ 0.686 0.572 0.633 0.252

HSVT ✗ ✓/✓ 0.69 0.551 0.591 0.234
HSVT ✓ ✓/✓ 0.717 0.592 0.652 0.253

HSVT ✗ ✗/✓ 0.695 0.551 0.619 0.24
HSVT ✓ ✗/✓ 0.677 0.625 0.66 0.243

RGBT ✗ ✗/✗ 0.698 0.505 0.623 0.258
RGBT ✓ ✗/✗ 0.716 0.652 0.696 0.265

RGBT ✗ ✓/✗ 0.662 0.607 0.64 0.233
RGBT ✓ ✓/✗ 0.694 0.639 0.68 0.255

RGBT ✗ ✓/✓ 0.643 0.557 0.588 0.216
RGBT ✓ ✓/✓ 0.706 0.605 0.659 0.232

RGBT ✗ ✗/✓ 0.653 0.563 0.599 0.214
RGBT ✓ ✗/✓ 0.653 0.574 0.613 0.228

CH4 ✗ ✗/✗ 0.341 0.483 0.439 0.173
CH4 ✓ ✗/✗ 0.687 0.592 0.643 0.254

4.2.3. Training Results: KAIST Dataset

During daylight conditions, as expected, the LWIR data only produced very poor
results both in precision, as presented in Figure 13, and recall, as shown in Figure 14.
Having three channels with meaningful information is much more useful than only thermal
information. Note that the dataset does not include challenging images such as those
presented in Figure 1b or in Figure 1c, so both visible and LWIR results should be carefully
inspected. Although using only LWIR did not produce valid outputs, once fused with the
rest of the data, the precision improved, meaning that a notable false positive discrimination
was achieved. In this sense, VTHS, which saves one whole channel for thermal data,
produced the best performance in terms of precision, followed by the HSVT and RGBT
methods, which enhanced the inputs from the RGB channels by adding thermal information.
It is noticeable how thermal equalization only produced better results in the case of the
VTHS fusion method, with worse results for the rest of the tests. The results on the KAIST
dataset were not as consistent as those on the LLVIP dataset. With regard to recall, which is
the ability of the solution to find all the instances in the image, the RGBT method proved to
be the best, without the need for any equalization. It can be seen that although the thermal
information provided a better detection of instances, the most instances detected occurred
when the RGBT method was used, or when only visible data were used. The images in
the dataset do not have much variance in color, as most come from a city environment
with predominant dimmed and gray tones. This fact suggests that HSVT could provide
better results in other scenarios. Note that the HSVT method already provides good results
in terms of precision, so it should be a good candidate in daylight conditions with more
varied images. The precision–recall curves below provide a clearer assessment of which
method should be preferred.

In the case of the night condition images presented in Figures 15 and 16, the results
slightly changed.
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Figure 13. Comparison of precision at maximum F1 between different methods described based on
training results with daylight images from KAIST dataset.

Figure 14. Comparison of recall at maximum F1 between the different methods described based on
training results with daylight images from KAIST dataset.

In this scenario, the color information is poorer, and the LWIR channel has a larger
influence. In terms of the precision metric, VTHS with the equalization of the thermal
channel provides the best results, followed by RGBT, which equalizes both the thermal and
RGB channels (separate equalization of RGB or thermal channel seems to provide similar
results to no equalization). The absence of light in certain areas of the images (despite
the presence of artificial lighting from paths and roads) may have caused effects similar
to those previously described as caused by range restriction. Thus, equalization becomes
increasingly important, as observed in the cases of the RGBT, VTHS, and VT methods.

In terms of recall, RGBT produced the worst results, as it was likely to find the most
obvious instances without many false positives and, at the same time, left many instances
undetected. The best recall was achieved when the LWIR channel was used alone. Again,
no challenging data are available in the dataset, so there were not many situations where
LWIR could benefit from other fusions, which is something that would not happen with
more difficult data. Color information is not very important, as demonstrated by the
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results of the VT fusion, followed by VTHS. Both take the intensity information of the RGB
channels, disregarding color data.

To better assess these results, the precision–recall curves can be reviewed. In this
case, Figure 17 shows the precision–recall curve for a subset of the proposed fusions
in daylight conditions, while Figure 18 shows the analogue representation using night
condition images. For easier interpretation, only a subset of the methods and conditions
are presented, and the plot focuses on a recall range that is relevant for the analysis.

Figure 15. Comparison of precision at maximum F1 between different methods described based on
training results using night condition images from KAIST dataset.

Figure 16. Comparison of recall at maximum F1 between different methods described based on
training results using night condition images from KAIST dataset.

With regard to daylight conditions, VTHS seems to provide quite good results in terms
of precision, but these results degrade when recall increases. At higher recalls, RGBT is
able to maintain good precision. All of them produce better results than visible or LWIR
data alone, which are provided as a reference. With this information and on the KAIST
dataset, RGBT proves to be the best approach under daylight conditions. Under night
conditions, LWIR alone clearly stands out, followed by VTHS with no equalization. With
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this dataset, LWIR should be the preferred option, although, as already explained, with
more challenging datasets, VTHS could be more suitable.

Figure 17. Precision–recall curve (mAP0.5) for most promising methods under daylight conditions.

Figure 18. Precision–recall curve (mAP0.5) for most promising methods under night conditions.

Focusing on the data in Table 9, in terms of both recall and mAP50, RGBT without
equalization proves to be the best. These conclusions align with what was previously
stated regarding Figures 14 and 17. For a more restrictive metric, mAP50-95,the VTHS
method is the one that provides better results, which aligns with the conclusions extracted
from Figure 13. Once again, for these methods and conditions, equalization does not
contribute significantly to producing better detection results. When compared, the metrics
support with the conclusion of using the RGBT fusion method for better detection under
daylight conditions.
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Under night conditions, the conclusions are not as clear as before. Table 10 shows
a summary of all the tests with their associated performance metrics. In terms of recall,
miss rat, and mAP50, LWIR images alone without equalization are the ones that stand
out, as consistently observed in Figure 16 and in Figure 18. In a more restrictive scenario,
based on mAP50-95, VT without equalization provides better results. Based on the LAMR
metric, VTHS is preferred, which aligns with the conclusions if more importance is given
to precision, as shown in Figure 16.

Table 9. Summary of results of different tests under day conditions for each fusion algorithm on
KAIST dataset images.

Model Eq.
RGB/T

P R mAP50 mAP50-95 MR LAMR FPPI Best
Epoch

HSVT ✗/✗ 0.707 0.558 0.622 0.254 0.442 0.848 3.203 12
LWIR ✗/✗ 0.641 0.495 0.518 0.198 0.505 0.840 11.807 3
RGBT ✗/✗ 0.716 0.652 0.696 0.265 0.348 0.797 6.146 4
Visible ✗/✗ 0.699 0.636 0.673 0.257 0.364 0.822 3.208 8

VT ✗/✗ 0.704 0.595 0.66 0.281 0.405 0.832 2.968 15
VTHS ✗/✗ 0.753 0.627 0.689 0.283 0.373 0.827 3.255 12

CH4 ✗/✗ 0.687 0.592 0.643 0.254 0.408 0.814 7.634 3
CH4V2 ✗/✗ 0.715 0.597 0.664 0.261 0.403 0.824 3.588 3
CH4V3 ✗/✗ 0.694 0.586 0.643 0.260 0.414 0.825 5.775 4

HSVT ✓/✗ 0.686 0.572 0.633 0.252 0.428 0.796 9.445 3
RGBT ✓/✗ 0.694 0.639 0.680 0.255 0.361 0.819 3.198 8

VT ✓/✗ 0.705 0.575 0.636 0.261 0.425 0.842 2.884 12
VTHS ✓/✗ 0.742 0.635 0.687 0.287 0.365 0.825 2.939 10

HSVT ✓/✓ 0.717 0.592 0.652 0.253 0.408 0.838 3.359 11
LWIR ✓/✓ 0.608 0.458 0.496 0.191 0.542 0.877 3.755 14
RGBT ✓/✓ 0.706 0.605 0.659 0.232 0.395 0.804 9.331 4
Visible ✓/✓ 0.687 0.631 0.664 0.245 0.369 0.814 4.851 5

VT ✓/✓ 0.705 0.595 0.660 0.281 0.405 0.832 2.968 12
VTHS ✓/✓ 0.715 0.624 0.654 0.272 0.376 0.818 4.750 5

HSVT ✗/✓ 0.677 0.625 0.660 0.243 0.375 0.815 4.920 5
RGBT ✗/✓ 0.653 0.574 0.613 0.228 0.426 0.807 10.206 1

VT ✗/✓ 0.69 0.593 0.639 0.260 0.407 0.822 4.843 8
VTHS ✗/✓ 0.773 0.537 0.674 0.303 0.463 0.861 0.953 67

The best results for each metric are highlighted in the table.

The middle fusion algorithms do not provide good enough results. Although a larger
network and dropout inclusion should lead to better results, these algorithms are less
precise than simpler fusion methods. In all cases, overfitting is a problem for the different
versions of the model. Note that the split of the train and test images from the dataset was
made so that the images were from quite different scenarios, which would have made the
models vulnerable to overfitting. In other cases, this overfitting might be unnoticed, but
the generalization issue it creates would still be present.
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Table 10. Summary of results of different tests under night conditions for each fusion algorithm on
KAIST dataset images.

Model Eq.
RGB/T

P R mAP50 mAP50-95 MR LAMR FPPI Best
Epoch

HSVT ✗/✗ 0.790 0.412 0.561 0.369 0.588 0.628 0.095 57
LWIR ✗/✗ 0.806 0.773 0.855 0.435 0.227 0.784 0.825 43
RGBT ✗/✗ 0.797 0.337 0.500 0.362 0.663 0.709 0.074 98
Visible ✗/✗ 0.740 0.384 0.477 0.286 0.616 0.674 0.117 17

VT ✗/✗ 0.814 0.655 0.784 0.473 0.345 0.450 0.130 84
VTHS ✗/✗ 0.814 0.691 0.796 0.425 0.309 0.399 0.137 22

CH4 ✗/✗ 0.793 0.377 0.449 0.250 0.623 0.926 2.747 78
CH4V2 ✗/✗ 0.777 0.473 0.526 0.241 0.527 0.886 5.992 31
CH4V3 ✗/✗ 0.835 0.367 0.452 0.262 0.633 0.928 2.685 74

HSVT ✓/✗ 0.805 0.637 0.774 0.443 0.363 0.837 0.445 91
RGBT ✓/✗ 0.790 0.348 0.499 0.343 0.652 0.690 0.080 74

VT ✓/✗ 0.814 0.697 0.815 0.451 0.303 0.380 0.138 47
VTHS ✓/✗ 0.831 0.634 0.776 0.448 0.366 0.470 0.112 78

HSVT ✓/✓ 0.817 0.549 0.711 0.426 0.451 0.865 0.382 115
LWIR ✓/✓ 0.830 0.748 0.850 0.435 0.252 0.323 0.133 37
RGBT ✓/✓ 0.841 0.309 0.513 0.400 0.691 0.933 0.243 221
Visible ✓/✓ 0.796 0.339 0.501 0.355 0.661 0.704 0.075 102

VT ✓/✓ 0.838 0.641 0.789 0.464 0.359 0.459 0.108 117
VTHS ✓/✓ 0.816 0.648 0.780 0.43 0.352 0.450 0.127 76

HSVT ✗/✓ 0.649 0.513 0.639 0.432 0.487 0.893 1.000 187
RGBT ✗/✓ 0.803 0.333 0.500 0.359 0.667 0.705 0.071 117

VT ✗/✓ 0.841 0.654 0.791 0.457 0.346 0.439 0.107 110
VTHS ✗/✓ 0.852 0.609 0.764 0.466 0.391 0.476 0.092 132

The best results for each metric are highlighted in the table.

4.2.4. Training Results: Conclusions

LLVIP and KAIST have different characteristics that should be taken into account
when evaluating the results. As already described, LLVIP only contains low-light condition
images that were acquired in similar conditions (all urban areas). As the images were
captured in urban areas, the illumination is not as good as in daylight, but the view is
clear in the visible-spectrum images. The LLVIP images primarily include close-up shots
with minimal background, something that also benefits more uniform illumination. On
the other hand, the KAIST dataset includes both day and night condition images, taken in
four different scenarios. Some of the scenarios also have good illumination under night
conditions. As the images were acquired from a vehicle, the perspective includes more
background information, persons that vary in size, and less uniform illumination. The split
between the test and train datasets reflects the difference in scenarios, making KAIST a
better option for evaluating the generalization capabilities of the system. Finally, LLVIP
is well aligned and synchronized, making the results in terms of fusion more robust than
with the KAIST dataset, which is desynchronized.

Even with these limitations, the conclusions are consistent for both datasets. The LLVIP
data shows better performance in VT and VTHS, which agrees with the night condition
results from KAIST. In the KAIST scenario, LWIR produces better results than the other
methods, probably due to the misalignment of the images not being sufficiently corrected.

In both cases, simple middle fusion algorithms are not able to provide better results
than the methods studied in these experiments. Other methods should be studied with
other changes to the YOLOv8 architecture or with other architectures.
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5. Conclusions
This research focused on a set of fusion methods to combine visible and LWIR images

to enhance performance on a detection task under different lightning conditions. The
importance of the quality of the data was also examined, along with its format and usage
(train/test split) as it is of major importance to be able to obtain good results as well as
generalization capabilities while knowing the limitations of the selected approach.

Rigorous experimental controls were implemented and explained in this paper. We
found that such control is of extreme importance to ensure the validity and repeatability
of the tests and the conclusions drawn from them. Excluding pretrained models based
on COCO was important to be able to compare early fusions methods and middle fusion
methods, even at the cost of impacting the obtained results.

We consequently defined an experimental setup to control that potential bias and to
establish a common benchmark for all the fusion approaches that were compared. Taking
this into consideration, these experiments excluded other sources of bias, and we trained
from zero the YOLO detection stack with only the KAIST or LLVIP dataset. This way, four
different RGB-T early fusion methods with and without equalization, along with three
middle fusion versions, were compared under the same conditions.

The presented results proved that splitting the problem into day and night conditions
was a good decision. Environments such as SAR operations or surveillance need a robust
solution in terms of their sensitivity to false negatives. Thermal information mixed with
visible-spectrum images leads to better detection results. As supported by the tests on the
KAIST and LLVIP datasets, our findings demonstrate that under low-light conditions, both
the VT and VTHS methods provide promising results. This means that color information is
not as useful as brightness and thermal data. During daylight, color information becomes
more relevant, with RGBT being the method that provides better results. Even though the
processing time is negligible for all the methods used, both VTHS and VT stand out as the
most efficient.

Evaluation metrics are a key point in the field of machine learning not only during
training or validation but also when sharing results and comparing methods with other
state-of-the-art approaches. Although standardization is needed to compare the results
between different works, it is important to remember that, for different specific use cases,
these metrics alone might not be the best approach. Having a bigger picture including other
metrics, even if they seem redundant, can provide a better understanding of the solutions
being compared and lead to better decisions. In this specific case, recall proved to be a
paramount metric in choosing a robust method.

It is also important to remark on the limitations of this paper. Despite the fact that
the KAIST and LLVIP datasets proved to be valuable in reaching robust results, both have
constraints that should be taken into account. All the fusion methods described suffer from
misalignment between images. Future research should apply a better correction approach
on to the KAIST dataset. A new dataset should include more challenging information, as
presented in the Introduction, which neither KAIST nor LLVIP include. Although LLVIP
includes quality data, it has minimal variety in terms of background or smaller objects
instances, which would be more representative of the use case presented in this manuscript.

We conclude that the fusion of extra thermal data is relevant and beneficial under
both daylight and night conditions. Simple methods can be very powerful in terms of
performance but also robustness in regard to image distortion or overfitting. Future
research could include comparisons with other early, middle, and late fusion methods. The
analysis revealed a critical gap in existing datasets, highlighting the need for a novel, more
comprehensive dataset to address the limitations of the current resources.
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